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Preoperative bevacizumab and chemotherapy may benefit a sub-
set of breast cancer (BC) patients. To explore potential mechanisms
of this benefit, we conducted a phase II study of neoadjuvant
bevacizumab (single dose) followed by combined bevacizumab
and adriamycin/cyclophosphamide/paclitaxel chemotherapy in HER2-
negative BC. The regimen was well-tolerated and showed a higher
rate of pathologic complete response (pCR) in triple-negative (TN)BC
(11/21 patients or 52%, [95% confidence interval (CI): 30,74]) than in
hormone receptor-positive (HR)BC [5/78 patients or 6% (95%CI:
2,14)]. Within the HRBCs, basal-like subtype was significantly associ-
ated with pCR (P = 0.007; Fisher exact test). We assessed interstitial
fluid pressure (IFP) and tissue biopsies before and after bevacizumab
monotherapy and circulating plasma biomarkers at baseline and be-
fore and after combination therapy. Bevacizumab alone lowered IFP,
but to a smaller extent than previously observed in other tumor
types. Pathologic response to therapy correlated with sVEGFR1
postbevacizumab alone in TNBC (Spearman correlation 0.610, P =
0.0033) and pretreatment microvascular density (MVD) in all patients
(Spearman correlation 0.465, P = 0.0005). Moreover, increased peri-
cyte-coveredMVD, amarker of extent of vascular normalization, after
bevacizumab monotherapy was associated with improved pathologic
response to treatment, especially in patients with a high pretreat-
ment MVD. These data suggest that bevacizumab prunes vessels
while normalizing those remaining, and thus is beneficial only
when sufficient numbers of vessels are initially present. This study
implicates pretreatment MVD as a potential predictive biomarker
of response to bevacizumab in BC and suggests that new therapies
are needed to normalize vessels without pruning.
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Ten drugs that target VEGF or its receptors have been approved
for the treatment of various malignant diseases (1). However,

bevacizumab, an anti-VEGF antibody, and other antiangiogenic
agents (AAs) that target the VEGF pathway have failed to pro-
vide an overall survival benefit to metastatic breast cancer (BC)
patients (2). Preoperative (neoadjuvant) therapy is an effective
way of treating certain BC patients, because this strategy leads to
survival rates similar to those from postoperative therapy (3) while
reducing the extent of surgery. Moreover, a favorable pathologic
response to neoadjuvant therapy is associated with longer disease-
free survival (4, 5). Recent studies report significant increases in
the percentage of patients with no detectable residual disease—
referred to as pathologic complete response (pCR)—with the
addition of bevacizumab to neoadjuvant chemotherapy in human
epidermal growth factor receptor 2 (HER2)-negative BC. The

GeparQuinto, the CALGB 40603, and the ARTemis trials dem-
onstrated a significant increase in pCR with the addition of
bevacizumab in patients with triple-negative BC (TNBC) (6–8).
However, the National Surgical Adjuvant Breast and Bowel Project
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B-40 study demonstrated a higher pCR rate in hormone receptor-
positive BC (15.1% without bevacizumab vs. 23.2% with
bevacizumab, P = 0.007) but no statistically significant dif-
ference in TNBC (9). Moreover, two postoperative (adjuvant)
trials of bevacizumab, BEATRICE and E5103, demonstrated
no improvement in disease-free survival with the addition of
bevacizumab to standard anthracycline- and taxane-based che-
motherapy (2, 10). These inconsistent results underscore the need to
identify mechanistic biomarkers of response to bevacizumab
therapy.
There are two major hypotheses concerning AAs’ mechanism

of action in tumors: (i) starving the tumor by blocking its blood
supply and (ii) alleviating hypoxia by normalizing the function of
tumor vasculature (1). Emerging functional imaging data in
glioblastoma, nonsmall-cell lung cancer, and BC patients sug-
gests that improved vascular function and the resulting increase
in tumor oxygenation are associated with response to AAs (1,
11–15). However, there are no structural features of tumor
vessels that can be used to predict the response (16), and the
vascular changes induced by AAs to increase vessel function
remain unclear. To complement the previous functional imaging
studies with histological analysis of in situ changes in vascular
structure in response to AA, we conducted a phase II trial of
HER2-negative BC to investigate the neoadjuvant use of
bevacizumab combined with standard of care dose-dense chemo-
therapy, which consists of doxorubicin and cyclophosphamide
followed by paclitaxel (ACP). Neoadjuvant treatment enables pre-
and posttherapy biopsies to explore potential mechanisms of ac-
tion and biomarkers that may help select patients likely to benefit
from AAs. In this exploratory correlative study, we evaluated bio-
markers in serial biopsies, blood samples, and a functional marker
of vascular normalization—tumor interstitial fluid pressure (IFP)—
before and after a single dose of bevacizumab. Our results suggest
that a high baseline microvascular density (MVD) in breast
tumors may be necessary to benefit from bevacizumab-induced
vascular normalization.

Results
Bevacizumab Combined with ACP Showed Superior Antitumor Activity
in TNBC Compared with Hormone Receptor-Positive BC.A total of 104
patients were registered on study between November 2007 and
June 2011 (Table S1). One patient did not initiate study treatment
and was removed from the analysis; another patient withdrew
consent; one was ineligible after rediagnosis with HER2+ BC; and
two other patients were not evaluable for response because they
did not complete therapy as per protocol due to toxicity. There-
fore, 99 patients represent the efficacy population. A total of 91
patients (88%) completed all protocol therapy (Fig. S1). Of the
103 patients who initiated study treatment, 52 patients (50.5%)
experienced grade ≥3 adverse events. The toxicities observed in
this study were consistent with that observed in prior studies of
similar bevacizumab/chemotherapy regimens (Table S2). pCR was
observed in 16 of 99 patients, with greater responses seen within
the TNBC cohort [52%, 95% confidence interval (CI): 30–74%]
than within the hormone receptor-positive BC (HRBC) cohort
(6%, 95% CI: 2–14%). This represents a 15-fold increase in the
odds of pCR in TNBC over HRBC (P < 0.0001). Similar differences
were seen in residual cancer burden (RCB) (P < 0.0001) andMiller–
Payne (MP) scores (P = 0.0005).

Gene Expression Profile Analysis Showed Differential Response in BC
Subtypes. PAM50 gene signature, which measures expression
profiles for 50 genes and classifies tumors into four intrinsic
subtypes (luminal A, luminal B, HER2-enriched, and basal-like),
was available for 70 patients in the efficacy population (Table
S3). Within this group, there were 13 pCRs (19%). The distri-
bution of responses did not differ between subjects with and
without PAM50 data available. Of the 13 pCRs, 11 were seen
within the basal-like subset, 1 within the luminal A subset, and 1
within the luminal B subset (Table S3). Overall, responses varied

by subtype in terms of pCR (P < 0.0001), MP (P = 0.0001), and
RCB (P < 0.0001). Within the HR-positive subset with PAM50
data (n = 54), there was insufficient power to contrast pCR
among luminal tumors (one pCR each, luminal A and B).
However, even within these HRBCs, basal-like subtype was sig-
nificantly associated with pCR (P = 0.007; Fisher exact test).

Bevacizumab Treatment Exerts Effects Consistent with Vascular
Normalization in BC. In patients with available biopsy and/or
plasma samples, we examined the effects of bevacizumab treat-
ment on biomarker levels related to vascular normalization
(Tables S4–S6). We quantified all vessels in two biopsy sections
per patient with custom software that automatically segmented
CD31+ endothelial cells, αSMA+ perivascular cells (pericytes),
and vessel lumen, combined them into vascular structures, and
allowed manual confirmation of every selection (Fig. S2 and SI
Methods). Bevacizumab reduced the intratumoral MVD (number
of vessels per square millimeter; Fig. 1A), but not the density of
mature vessels [pericyte-covered MVD (PC-MVD) and number of
αSMA+ vessels per square millimeter; Fig. 1B and Table S4],
indicating pruning of immature vessels, which lack pericytes, but
not of mature vessels (Fig. S2 A–C). Pruning of immature vessels
likely increases the fraction of vessels that are pericyte-covered
(number of αSMA+ vessels per number of vessels), but VEGF
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Fig. 1. Effect of a single injection of bevacizumab on structural and func-
tional markers of vascular normalization. Box plots depict median and
interquartile ranges for biomarker values pre- (gray) and postbevacizumab
alone (white). Horizontal lines between bars pre- and postbevacizumab
monotherapy mark changes with a P value less than 0.05. (A) Microvessel
density decreased (P = 0.0041, Student’s t test, n = 52 and 53). (B) Bevacizumab
did not affect the density of mature vessels. (C) Fraction of vessel perimeter
associated with pericytes (αSMA+ cells), a marker that distinguishes between
poorly and completely covered vessels, increased (P = 0.037, Student’s t test,
n = 47 and 48). (D) Interstitial fluid pressure, which is a functional measurement
of vessel leakiness and lymphatic vessel dysfunction, decreased (P = 0.045,
Student’s t test, n = 70 and 65). (E and F) Histological markers of functional
vascular normalization, Ki67 for proliferation (n = 47 and 49) and HIF-1α (n = 53
and 49), did not change significantly.
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blockade may also promote maturation of nascent vessels through
active pericyte recruitment, thereby increasing PC-MVD (17, 18).
Through both mechanisms, bevacizumab increased the average
proportion of vessel perimeter associated with pericytes (αSMA+
vessel surface length per total vessel length; Fig. 1C), leading to a
reduction in IFP (Fig. 1D), presumably due to a decrease in vas-
cular permeability (19). However, biomarkers of functional nor-
malization such as fraction of proliferative cells (Ki67-positive)
and fraction of tissue area positive for endogenous hypoxia marker
HIF-1α did not significantly change (Fig. 1 E and F). The only
biomarker that differed between subtypes significantly in opposite
directions was Ki67, because the fraction of proliferative cells in-
creased in TNBC and decreased in HRBC (Fig. S3E and Table
S4). Of note, bevacizumab also tended to increase cellular pro-
liferation in lesions of colorectal cancer patients (20).
Among circulating biomarkers, bevacizumab therapy alone

decreased plasma angiopoietin 2 (Ang-2), soluble Tie2 receptor
(sTie2), and IL-1β and increased plasma VEGF, placental
growth factor (PlGF), and carbon anhydrase (CA)IX (Table S5).
During combination therapy, plasma Ang-2, TNF-α, IL-1β, IL-8,
and stromal-derived factor (SDF)1α decreased, and plasma
VEGF, PlGF, soluble (s) sVEGFR1 and sVEGFR2, basic fi-
broblast growth factor (bFGF), and IGF1 increased (Table S6).
These changes after bevacizumab alone or combination therapy
were consistent between BC subtypes, with the exception of
sVEGFR2 (which did not increase in TNBC patients) and TNF-α
(which did not decrease in HRBC patients) following combi-
nation therapy. After completion of neoadjuvant therapy, plasma
Ang-2, IGF1, sVEGFR2, and IL-8 decreased whereas plasma
VEGF, PlGF, sVEGFR1, bFGF, sTie2, IL-6, TNF-α, and CAIX
increased (Table S6). Once again, the changes were largely con-
sistent between BC subtypes, with the exception of sTie2 (not
decreased in HRBC patients) and IGF1 (not increased in
TNBC patients).

Baseline MVD, but Not Markers of Normalization, Associates with
Pathologic Response in All Patients. Although the sample size
precluded rigorous inferential statistical analysis, we explored
the association between biomarkers and tumor regression in this
patient population to generate hypotheses about potential mech-
anisms of action. Of all biomarkers, only baseline tumor MVD of
both total and patent (i.e., with open lumen) vessels associated
with both the RCB and MP tumor regression scores in all patients
with evaluable samples (n = 52, Table 1). Postbevacizumab
monotherapy, the increase in the fraction of cells positive for the
proliferation marker Ki67 correlated with RCB (more relevant
to prognosis after neoadjuvant therapy) but not MP (more rel-
evant to neoadjuvant therapy’s effectiveness in killing cancer
cells in primary tumors) regression scores (n = 45, Table 1).

In TNBC, the baseline HIF-1α area fraction (n = 11) and the
postbevacizumab increase in PC-MVD (n = 7) were associated
with both tumor regression scores (Table 1). Among circulating
biomarkers in TNBC, tumor regression scores were associated
with high plasma VEGF (at baseline) and low sVEGFR1 and
PlGF levels (postbevacizumab monotherapy) (n = 21, Table S7).
In TNBC at baseline, sVEGFR1 levels were associated with the
fraction of the average proportion of vascular perimeter associ-
ated with pericytes (Spearman’s rho = 0.857, P = 0.024, n = 7).
No other proangiogenic or inflammatory factor demonstrated
any association with pathologic response.

Response to Bevacizumab in BC May Depend on Extent of Vascular
Normalization Only in Patients with High Baseline MVD. The only
biomarker of vascular normalization that correlated with re-
sponse was change in PC-MVD after bevacizumab monotherapy,
but the association held only in the 7 TNBC patients (Table 1)
and not the 32 HRBC patients with data available at both
baseline and postbevacizumab alone. We reasoned that baseline
MVD could be an important distinguishing factor between
TNBC and HRBC, because baseline MVD was 62.5% greater in
TNBC (Fig. S3A) and correlated with RCB and MP scores in all
patients (Table 1). Thus, we hypothesize that low baseline MVD
might be related to the lack of association of PC-MVD and tu-
mor regression scores in HRBC.
To investigate this hypothesis, we classified high MVD HRBC

patients as those with a baseline MVD greater than or equal to
the lowest baseline MVD of a TNBC patient with pCR (MP =
5). We then used a standard cutoff point (MP >3) to differen-
tiate patients with the greatest tumor response (reduction in
tumor cellularity) postcombination therapy (SI Methods). Using
MP score rather than the RCB score focused the analysis on the
effect of combination therapy on the primary tumor. We evalu-
ated whether PC-MVD increased in 19 patients (all 7 TNBC and
the 12 high MVD HRBC). Seventeen of 19 patients followed the
pattern of stable or increased PC-MVD postbevacizumab alone
in tumors with MP >3 and decreased PC-MVD in tumors with
MP ≤3 (Fig. S4 A and B and Table S8). Stable or increased PC-
MVD implies pericyte recruitment to vessels. In contrast, fewer
than half (8 of 20) of HRBC patients with low MVD followed
this pattern (Table S8), which suggests that increased PC-MVD
might not be related to tumor regression scores in patients with
low baseline MVD. The fraction of pericyte-covered vessel pe-
rimeter in TNBC and high MVD HRBC patients also followed
this pattern (Fig. S4 C and D), whereas functional normalization
biomarkers did not, nor was there an apparent connection be-
tween structural and functional biomarkers (Fig. S5).
Averages of these vascular biomarkers in all patients, regard-

less of baseline MVD, within the same groups of good (MP >3)
or poor (MP ≤3) response postcombination therapy were

Table 1. Correlations between in situ biomarker levels and MP pathologic regression score and
RCB after neoadjuvant bevacizumab with dose dense chemotherapy

Biomarker Subtype Time point MP score RCB

MVD All Baseline 0.465 –0.364
P value 0.0005 0.0079
Patent MVD All Baseline 0.507 –0.426
P value 0.0001 0.0016
Proliferation (Ki67) All Fold change after bevacizumab 0.181 –0.416
P value 0.258 0.0068
PC-MVD TN Fold change after bevacizumab 0.879 –0.852
P value 0.0091 0.015
HIF-1α area fraction TN Baseline –0.663 0.649
P value 0.026 0.031

Data are shown as Spearman’s ρ values; significant correlations are highlighted in bold. Higher MP scores
indicate better pathologic response. Lower RCB scores indicate better pathologic response. Positive values of
Spearman’s ρ indicate a direct correlation between MP/RCB score with higher biomarker levels; P values are from
the test of ρ = 0.
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consistent with these results. At baseline, the tumor MVD was
significantly higher in patients with MP >3 (Fig. 2A and Table
S9). In these patients’ tumors, bevacizumab significantly reduced
the MVD and increased the fraction of pericyte-covered vessel
perimeter (Fig. 2 A and B and Table S9). Despite the vascular
pruning, PC-MVD trended toward an increase in patients with
MP >3, suggesting pericyte recruitment contributed to the in-
creased pericyte coverage (Table S9). Indeed, PC-MVD post-
bevacizumab monotherapy was significantly higher in patients
with MP >3 than in those with MP ≤3 (Fig. 2C and Table S9).
Unlike the association between fold change of PC-MVD and
tumor regression, which only occurred in TNBC (Table 1), in
HRBC patients the pericyte-covered vessel perimeter significantly
increased postbevacizumab in MP >3 tumors and PC-MVD was
also significantly higher in MP >3 than in MP ≤3 tumors (Table
S9). These results in HRBC are consistent with our hypothesis
that low baseline MVD contributes to the lack of association be-
tween change in PC-MVD and tumor regression scores. Hence, in
TNBC and high MVD HRBC patients with improved pathologic
response postcombination therapy, bevacizumab induced vascular
remodeling, which led to a higher density of normalized vessels
(Fig. 3).

Discussion
BC is a complex disease composed of several biologically distinct
subtypes (21). For patients with HRBC, only 5–10% of patients
will achieve a pCR to preoperative chemotherapy. Recent neo-
adjuvant phase III trials showed that bevacizumab increases rates
of pCR in HER2-negative BC, yet the results were inconsistent
regarding which subtype benefits (6–9). Our study found that
even with the addition of bevacizumab to dose-dense ACP che-
motherapy, only 6.4% of HRBC patients achieved a pCR, in
contrast to 52% of TNBC patients. The study was not powered to
compare pCR rates between luminal A vs. luminal B BCs. However,
among patients with either HRBC or TNBC, PAM50 data sug-
gested an increase in response in those with the basal-like sub-
type, relative to other subtypes.
Serial biopsies enabled exploratory investigation of bevacizumab’s

effects and mechanism of action in BC. Consistent with other
tumor types, in BC bevacizumab pruned immature vasculature,
induced maturation of vessels (as evidenced by increased peri-
cyte coverage), reduced IFP, and changed levels of circulating
biomarkers PlGF, VEGF, and Ang-2. Nonetheless, the magni-
tude of the decrease in IFP was less than that seen in rectal cancer
(20, 22), which may indicate that either BC vessels are less sen-
sitive to VEGF blockade or bevacizumab distribution in BC tissue
is limited.
The effects of bevacizumab, though consistent with vascular

normalization, did not correlate with pathologic response in all
patients, because baseline MVD was the only biomarker to
correlate with both RCB and MP scores in the 52 patients with

data available. Although this patient cohort is too small for rig-
orous statistical analysis, these results suggest that a sufficiently
high baseline MVD might be necessary for bevacizumab to aid
primary tumor regression. A phase II trial in 20 BC patients also
noted an association between expression of the endothelial cell
marker CD31 and tumor regression (23). In patients with other
tumor types treated with bevacizumab and cytotoxic therapy,
correlations between baseline MVD and response have also been
documented (24, 25), whereas other studies have found no re-
lationship between MVD or MVD surrogates and response (26,
27). The exploratory nature of our current analysis notwith-
standing, the association between MVD and tumor regression scores
is consistent with the notion that vascular remodeling post-
bevacizumab can convert some nonfunctional vessels into func-
tional ones, but it cannot create new vessels. Thus, the function
of the vascular network in tumors with high MVD and redundant
vasculature (Fig. 3, top left) might benefit from the pruning of
certain vessels and increased function of the remaining, normalized
vessels (Fig. 3, top right). In contrast, tumors with lowMVD (Fig. 3,
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Fig. 2. (A) The MVD at baseline is significantly higher (P = 0.0024) in patients with MP >3. In these patients, bevacizumab significantly reduced the MVD (P =
0.009). (B) Postbevacizumab the fraction of vessel perimeter covered by pericytes is significantly higher (P = 0.001) in patients with MP >3. (C) Post-
bevacizumab PC-MVD is significantly higher (P = 0.008) in patients with MP >3.
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Fig. 3. A schematic of the proposed mechanism of action of benefit from
antiangiogenic therapy. The left two quadrants depict tumor vessels (red) at
baseline before bevacizumab monotherapy, and the two right quadrants
depict the vasculature following bevacizumab monotherapy. In the top left
quadrant, there is a higher vascular density (MVD) than in the bottom left
quadrant. Tumors with insufficient baseline MVD do not respond to anti-
angiogenic therapy (bottom left to bottom right quadrants), because the
increase in functional vessels resulting from the recruitment of pericytes
(teal) cannot overcome the paucity of vessels. In contrast, tumors with high
baseline vascularity that recruit pericytes respond to bevacizumab combined
with chemotherapy (top left quadrant to top right quadrant) better than
tumors that undergo excessive pruning (top left quadrant to bottom right
quadrant). Responders: MP scores of 4–5; nonresponders: MP scores of 1–3.
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bottom left) might have their already limited number of vessels
pruned, which would outweigh the benefit of increased function
of normalized vessels (Fig. 3, bottom right). In this context, our
results also offer a potential explanation for the failure of anti-
angiogenesis therapy postoperatively (2), because micrometastatic
lesions might have very low MVD and lack angiogenesis (28).
Additionally, a significant fraction of BCs are desmoplastic (29,
30), which might cause vessel compression and reduce the patency
of vessels (31–33). In our current study, patent MVD had a
stronger association with tumor regression than total MVD.
Therefore, because a fraction of BCs are likely hypoperfused, the
response to normalizing therapy might be more sensitive to
baseline MVD.
The results of our correlative analyses suggested that the fold

increase in PC-MVD might be associated with tumor regression
in TNBCs (which are highly vascularized) (Table 1), but not in
HRBCs (which tend to be poorly vascularized). Nonetheless, we
reasoned that HRBC patients with baseline MVD greater than
or equal to that of TNBC patients with pCR might follow a
pattern similar to that of TNBC patients. Of note, this high
MVD threshold in HRBC is lower than the lowest MVD of all
patients assessed in a recent colorectal study (27). In this de-
scriptive analysis of high baseline tumor MVD in the HRBC
cohort, the majority of patients with a good response in the
primary tumor after combination therapy (MP >3) had main-
tained or increased PC-MVD (Table S8 and Fig. 3, top left to top
right), whereas patients with a poor response to therapy (MP ≤3)
had decreased PC-MVD (Table S8 and Fig. 3, top left to bottom
right). This pattern only held in about half of low MVD HRBC
patients (Table S8 and Fig. 3, bottom left to bottom right), which
suggests no association between changes in PC-MVD and tumor
regression. The averaging of the biomarkers of all patients followed
the trend of higher baseline MVD, increased pericyte-covered
vessel perimeter after bevacizumab, and higher postbevacizumab
monotherapy PC-MVD in patients with MP >3 (Fig. 2). Thus, our
exploratory findings support the concept that bevacizumab-induced
increase in PC-MVD is necessary but not sufficient for chemo-
therapy-induced tumor regression.
The evidence of PC-MVD increases in patients with better

responses to combination therapy indicates that, rather than
vascular pruning, VEGF blockade is inducing pericyte recruit-
ment to immature vessels to increase the fraction of pericyte-
covered vessel perimeter. To our knowledge this is the first
clinical evidence of antiangiogenic therapy-induced pericyte re-
cruitment, which has previously only been demonstrated pre-
clinically (18). One limitation of the present study is the lack of
functional imaging to confirm the significance of the structural
vascular changes. Because HIF-1α at best weakly correlates with
oxygen electrode measurements, our HIF-1α measurements may
not reflect functional changes accurately (34–36). Although there
are no clinical studies investigating the relationship between PC-
MVD and tumor oxygenation, preclinical studies demonstrated
that increased PC-MVD is associated with increased vascular
function and oxygenation (37, 38). Our result of increased PC-
MVD correlating with tumor regression is consistent with a
cediranib study in glioblastoma, which identified a “vascular nor-
malization index” as a measure of the extent of vascular normal-
ization (14). This index is proportional to a reduction in vessel
permeability, which is related to high levels of pericyte coverage in
preclinical models (39), and an increase in cerebral blood volume,
which is indicative of increased MVD. As a result, this functional
imaging index mirrors our histological assessment of increased
PC-MVD in BC patients with good response to combination
therapy. Similar imaging studies of cediranib in glioblastoma also
linked improved survival with treatment-induced increases in
perfusion and oxygenation (11, 15). Although our study’s design
with paired biopsies separated by 2 wk did not allow examination
of a normalization window over an extended time period, our
findings are consistent with these other studies’ functional as-
sociations with tumor regression, as early changes—not absolute
values—of normalization markers associated with regression.

Thus, our results indicate that tumor regression from VEGF
blockade might be restricted to tumors with a sufficiently
high MVD and might occur through pericyte recruitment
rather than vascular pruning, leading to an increased extent
of vascular normalization.
We found several biomarkers that associated with tumor re-

gression in TNBC, including high VEGF levels at baseline and
low sVEGFR1 and PlGF levels before combination treatment
(Table S7). Changes of sVEGFR1 levels—a factor linked with
“vascular normalization” (37) that we proposed as a resistance
biomarker to neoadjuvant bevacizumab in rectal cancer (40)—
was directly associated with pericyte coverage and inversely as-
sociated with response. Two phase III randomized trials of
bevacizumab have shown that specific VEGFR1 SNPs correlated
with high VEGFR1 expression and poor outcome (41). In
addition, we have reported inverse associations between
plasma sVEGFR1 and treatment outcomes after anti-VEGF
therapies in patients with metastatic colorectal (vandetanib
plus cetuximab/irinotecan), hepatocellular carcinoma (cediranib
monotherapy), sarcoma (sorafenib), and lung cancer (bevacizumab
plus chemotherapy) (12, 42–44). Finally, although plasma PlGF (a
growth factor not blocked by bevacizumab) consistently increased
in these BC patients, the extent of this increase was associated
with lower tumor regression scores in TNBC patients. This
association with less regression warrants further exploration of
this potential mechanism of resistance to anti-VEGF therapy
in TNBC.
In summary, bevacizumab induced changes in vascular struc-

ture and levels of circulating biomarkers indicative of vascular
normalization in BC, although these changes were small compared
with other tumor types. Baseline MVD was associated with tumor
regression, indicating that many BCs may be insufficiently vascu-
larized to yield improvement in perfusion or oxygenation because
anti-VEGF therapy-induced pruning of immature vessels may
outweigh the number of normalized vessels, leaving an insufficient
number of functional vessels. In patients with relatively high
baseline MVD, response may result from adequate number of
normalized vessels, as evidenced by increased PC-MVD. However,
the potential mechanistic link between sufficient MVD and changes
in PC-MVD with tumor regression needs to be confirmed through
simultaneous biopsies and functional imaging studies in larger
clinical studies (45). The observed association of circulating bio-
markers with regression in TNBC is consistent with previous
studies in BC and other tumor types and reveals a potential con-
nection between sVEGFR1 and vascular maturity. Together, these
results suggest that in poorly perfused BCs and other hypoperfused
tumors (e.g., pancreatic ductal adenocarcinoma), strategies that
increase perfusion without pruning—targeting alternative an-
giogenic pathways (46), directly inducing differentiation of intra-
tumoral sources of pericyte progenitors (47), and increasing vessel
patency by reducing solid stress (31–33) or enhancing lumen for-
mation (48)—should be explored (1, 49).

Methods
Patients and Treatment Regimen. Enrollment required a pathological di-
agnosis of adenocarcinoma of the breast. Two cohorts of patients were
eligible: patients with HRBCs and patients with TNBCs. Additional information
aboutpatient eligibility and ineligibility requirements, and treatment regimenare
provided in SI Methods. This study was approved by the Dana–Farber/Harvard
Cancer Center Institutional Review Board. Written informed consent was re-
quired for enrollment.

Tumor Genomic and Correlative Analyses. The experimental procedures for IFP
measurements, analysis of tissue and circulating biomarkers, and statistical
analysis are described in SI Methods.
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