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The human gut contains a microbial community composed of tens of trillions of organisms that normally assemble during the first 2–3 y of
postnatal life.We propose that brain development needs to be viewed in the context of the developmental biology of this “microbial organ” and its
capacity to metabolize the various diets we consume. We hypothesize that the persistent cognitive abnormalities seen in children with undernu-
trition are related in part to their persistent gut microbiota immaturity and that specific regions of the brain that normally exhibit persistent juvenile
(neotenous) patterns of gene expression, including those critically involved in various higher cognitive functions such as the brain’s default mode
network, may be particularly vulnerable to the effects of microbiota immaturity in undernourished children. Furthermore, we postulate that
understanding the interrelationships betweenmicrobiota and brainmetabolism in childhood undernutrition could provide insights about responses
to injury seen in adults. We discuss approaches that can be used to test these hypotheses, their ramifications for optimizing nutritional recom-
mendations that promote healthy brain development and function, and the potential societal implications of this area of investigation.
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In 2001, Raichle et al. published a paper in
PNAS describing the default mode network
(DMN) (1). This network consists of discrete,
bilateral, and symmetrical areas in parietal,
prefrontal, and temporal cortices of the hu-
man, nonhuman primate, feline, and rodent
brain (2). The DMN consistently decreases
its activity during the performance of novel,
attention-demanding, non–self-referential tasks
compared with quiet repose and more auto-
matic activities. Another unique feature of the
DMN is that it exhibits an overall high met-
abolic rate. The discovery of the DMNwith its
unique constellation of features has reignited a
longstanding interest in the significance of the
brain’s ongoing or intrinsic activity (currently
dubbed the brain’s “resting state”) (3), which
accounts for the vast majority of its enormous
energy cost. We believe it is timely to provide
a Perspective that challenges us to consider
how this cost is being met and how new
knowledge gleaned from studying the devel-
opment of our gut microbial communities
can be leveraged to build healthy brains
and minds through better nutrition.
The importance of adequate nutrition for

infants and children routinely commands our
attention because of its personal and societal
importance. Not only is severe malnutrition/
undernutrition (see Box for definitions) a
threat to life but chronic undernutrition

results in impaired cognitive abilities that are
often not evident until the second or third
decade, including effects on behaviors, such
as self-control (4), that are of critical impor-
tance for a successful and productive life. Nu-
tritional status in infancy and childhood is
typically defined based on anthropometric
measurements (the extent of deviation of
height-for-age, weight–for-age, or weight-for-
height scores from mean values established by
the World Health Organization for a multi-
national, multiethnic healthy cohort). Using
these metrics, numerous studies have docu-
mented how childhood undernutrition rep-
resents a pervasive global public health
challenge and have shown that its origins
are not attributable to food insecurity alone
but rather reflect complex and still poorly un-
derstood interactions between factors that
operate within and across generations (5, 6).
A common practice in understanding the

origins, effects, and effectiveness of various
treatment/prevention strategies for childhood
undernutrition has been to focus on the “first
1,000 d,” which begins with conception and
ends approximately 2 y after birth (7). Here,
we call for an expanded view beyond these
1,000 d, particularly in relation to the brain,
and a broader cellular, metabolic, and genetic
view of our developmental biology that
encompasses our gut microbial community

(microbiota) and its genes (microbiome) (Fig.
1A and Box). We propose that understanding
the relationship between brain development,
metabolism, and assembly of this gut “micro-
bial organ,” with its capacity to transform the
foods that we consume into valuable cellular
building blocks and energy, will provide new
insights about the determinants, definitions,
and optimization of brain nutrition. A corol-
lary is that adequate brain nutrition and me-
tabolism is required not only to build a
healthy mind but also to support its adapta-
tions and redevelopment throughout life.

Brain Metabolism in Children and Adults
The resource demands of the human brain
are astonishing. The adult brain represents
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2% of the body weight yet consumes ∼20%
of the body’s energy (8, 9). The brain is even
more expensive in childhood. At approx-
imately age 10, a child’s brain represents
5–10% of body mass, consumes twice the
glucose and 1.5 times the oxygen per gram
of tissue compared with an adult’s brain,
and accounts for up to 50% of the total basal
metabolic rate of the body (10–12).
By age 2 (i.e., the end of the first 1,000 d),

the brain is 75% of its adult size (Fig. 1B)
(13). However, the explosive growth of syn-
apses has yet to occur, with synaptic pro-
liferation peaking a few years later. Synaptic
pruning follows until a stable synaptic density

is reached sometime in the third decade of
life. These features underscore a key point:
When factoring in synaptic proliferation and
associated metabolism, the “initial” develop-
ment of the human brain extends well into
the second decade of life, far beyond the
first 1,000 d postconception (14) (Fig. 1 A–
D). Moreover, critical constituents of the adult
brain turn over continuously (15). Thus, the
brain may be vulnerable to poor nutrition
not only during its initial development but
also during its ongoing remodeling and as it
recovers from various forms of damage.
There is growing evidence that postpubes-

cent psychiatric illnesses such as schizophrenia

have their roots in early brain development
(16). Even minor effects on self-control and
anxiety may have profound implications
for families, communities, and societies
where the prevalence of childhood under-
nutrition is high. Of course, brain devel-
opment is not simply reliant on optimal
nutrition: Nurture and education clearly con-
tribute to ensuring that the brain receives the
resources it needs to grow and develop opti-
mally (17, 18).
Given the brain’s voracious appetite, the

vast majority of studies of brain glucose
metabolism have focused on the generation of
energy in the form of ATP from glycolysis
and oxidative phosphorylation (Fig. 2A).
However, glycolysis is also critical for bio-
synthesis of cellular macromolecules (e.g., the
lipids required for membrane maintenance)
(19, 20), and likely for other functions (e.g.,
powering membrane channels and trans-
porters). The amount of glucose devoted to
these additional functions is revealed by the
discrepancy between the amount of glucose
metabolized by the brain and the amount of
oxygen used to convert it to carbon dioxide,
water, and energy. In adults, the amount of
glucose devoted to these functions accounts
for 10–12% of the total glucose metabolized
by the brain (21–23) [note that these values
may be underestimates (24)]. The process by
which glucose is metabolized to lactate despite
oxygen availability has been referred to as
“aerobic glycolysis” or the “Warburg effect”
after its discovery as a metabolic signature of
cancer (25). This term has since expanded to
encompass the intermediary pathways that
arise from glycolysis and fuel cellular anabolic
demands (20, 25–30) (Fig. 2A).
Aerobic glycolysis has a number of dis-

tinguishing features that reveal its role in
brain function. One of the most striking is its
nonuniform distribution in the brain (Fig.
2B) and its spatial overlap with cortical re-
gions responsible for many higher-level cog-
nitive functions such as the DMN (2, 31).
Another important feature of aerobic gly-
colysis in the adult human brain is its cor-
relation with persistent expression of genes
associated with earlier phases of brain de-
velopment (“transcriptional neoteny”) (Box)
(11). Regions of the brain with the highest
levels of aerobic glycolysis preferentially ex-
press genes related to synapse formation and
dendritic spine growth whereas regions high
in oxidative glucose metabolism preferentially
express genes related to synaptic transmission.
Furthermore, aerobic glycolysis in the brain
is substantially increased during early child-
hood, occurring precisely during the period
of peak neuronal arborization (Fig. 1C)
(11). Finally, aerobic glycolysis reflects the

Box—Definition of Terms
Malnutrition. Broadly defined as a biological state reflective of the underrepresentation
or overrepresentation of nutrients. In this Perspective, we refer to childhood un-
dernutrition as a pathologic state reflecting the interactions between a number of factors
including, but not limited to, the inadequate representation of macro- and micronutrients
in the diet. Nutritional status in infancy and childhood is typically defined based on
anthropometric measurements (height-for-age, weight–for-age, or weight-for-height). The
values for a given individual or individuals are compared with the mean and SDs of a
World Health Organization (WHO) reference cohort of 8,440 individuals living in six
countries representing diverse geographic and cultural features who manifested healthy
growth phenotypes. The WHO standards are designed to depict normal early childhood
growth under optimal environmental conditions and can be used to assess children
everywhere, regardless of ethnicity, socioeconomic status, and type of feeding.

Transcriptional Neoteny. Neoteny refers to the persistence of juvenile traits in adults.
Transcriptional neoteny refers to the persistence of juvenile gene expression patterns in the
adult. Regions of the adult brain that exhibit neoteny include the default mode, control,
and dorsal attention networks. They demonstrate persistent heightened expression of
genes related to synaptic growth and turnover and exhibit elevated levels of aerobic gly-
colysis. A hypothesis arising from these observations is that the neotenous regions may
be vulnerable to childhood undernutrition due to their dependence on high rates of
biosynthesis and aerobic glycolysis. Accordingly, childhood undernutrition may affect
higher cognitive functions associated with neotenous regions more so than it affects
primary functions associated with, for example, the visual cortex or cerebellum.

Gnotobiotic Animals. Animals born sterile (germfree) and either maintained in a
germfree state in specially designed isolators for the duration of their lives, or at some
specified time point colonized with intact uncultured microbial communities harvested
from various sources, including the intestines of children with and without undernutrition
living in various geographic locations representing different cultural traditions, or with one
or more cultured microbial species/strains. Animals can be fed various diets, sterilized by
irradiation or other means, including diets representative of those consumed by human
microbiota donors, so that interactions among foods, gut microbes, and microbial/host
metabolism can be delineated. Colonizing recipient germfree mice with (human) donor
microbiota represents a preclinical test of whether that microbial community is causally
related to various donor phenotypes and the extent to which those features are diet-
dependent.

Microbiota. The collection of organisms that together form a microbial community
occupying a given habitat (e.g., the gut). These organisms can represent all three domains
of life: Bacteria, Archaea and Eukarya (and their viruses), but are dominated by Bacteria.

Microbiome. The collection of microbial genes present in the genomes of members of a
given microbial community.
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“symbiotic” relationship between neurons and
astrocytes (32) as well as oligodendrocytes
(33). In this relationship, glutamate in the
synaptic cleft is taken up by astrocytes in a
sodium-dependent manner where it triggers
aerobic glycolysis and the production and
release of lactate. Lactate is subsequently taken
up by the neuron where it profoundly influ-
ences allocation of metabolic resources in favor
of biosynthesis (Fig. 2A), such as that required
for long-term memory formation (34).
A critical element in this orchestration of

neuronal metabolism is the nucleotide nico-
tinamide-adenine dinucleotide (NAD+) and
its reduced form NADH (Fig. 2A) whose
precursors are derived from the diet (35).
NAD+ is a central coenzyme in biochemical
pathways with far-reaching effects on health
and responses to stress (36). NAD+ is es-
sential for carrying out glycolysis and thus
the production of basic cellular building
blocks from glucose (Fig. 2A). In addition,
NAD+ is consumed by a number of im-
portant enzymes: e.g., the sirtuins that link
metabolism to a variety of cellular processes
including aging, the poly- and mono-ADP
ribosylases that participate in cell death
pathways, and other enzymes that promote
metabolic homeostasis via monitoring NAD+

levels (37).
The integrity of the axon is critical for

maintaining proper functional connectivity
in the brain. Degeneration of injured or un-
healthy axons is an active, self-destructive
process. This degenerative process is initi-
ated by decreases in axonal levels of NAD.
This role for NAD was first uncovered
during studies of the wlds mutant mouse in
which axonal degeneration is delayed due to
overexpression of the NAD+ biosynthetic
enzyme nicotinamide nucleotide adenyl-
transferase 1 (Nmnat1) (38, 39). Later studies
showed that a related short-lived protein,
Nmnat2, is transported down the axon and
is responsible for maintaining axonal NAD
levels (40). The sterile alpha- and armadillo-
motif-containing protein-1 (Sarm1), a Toll-
like receptor adaptor protein, also plays a key
role in axon maintenance (41, 42); upon ac-
tivation, it mediates a massive rapid loss of
NAD+ in the axon, which promotes axon
degeneration (43). The importance of NAD
homeostasis in maintaining brain circuitry
suggests that the NAD metabolic pathways
of the gut microbiota, which are diverse and
different from those in humans, are likely to
influence the development, maintenance,
and function of the human brain.
Given the high metabolic needs of the

brain during development, it is not surprising
that poor nutritional status in childhood is
associated with cognitive impairments later
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increase most rapidly during the first 1,000 d after conception (i.e., up to the end of the second year of postnatal life).
(C ) Dendritic spine density (green dots) and brain glucose uptake (blue line) are sustained well after the first 1,000 d.
Although the brain’s oxygen consumption (red line) is also higher during this period, it is not nearly as high as the
increase in glucose uptake, suggesting that much of the glucose is metabolized via aerobic glycolysis, in keeping with
the high levels of synaptic growth and turnover during this time. Adapted from ref. 11. Note that the data shown are
based on an invasive method (modified Kety–Schmidt technique for repeated measures of cerebral blood flow and
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in life (44–49). Thus far, two longitudinal,
randomized, controlled trials suggest that
early-life nutritional interventions may im-
prove cognitive outcomes although much
more work in this area is needed to deter-
mine the effect size as a function of the severity
of undernutrition at the time of diagnosis, the
type and timing of the nutritional interven-
tions, and diet type and diversity (including
during the period of complementary feeding)
(50, 51).
The brain undergoes remodeling at mul-

tiple time scales and levels of organization
throughout life (15). Notably, synaptic “prun-
ing” during adolescence may not be accom-
plished merely by a reduction in the activity
of synaptic proliferation genes but rather via
the increased expression of synaptic elimina-
tion genes (52). Although genes that control
synaptic proliferation are expressed well into
adulthood, increased rates of myelination and
synaptic elimination could maintain stable
synaptic densities (Fig. 1C). Intriguingly,
transcriptional networks underlying brain
development and growth are redeployed in
adulthood to assist recovery in murine models
of stroke (53, 54). This postinjury regenerative

growth process may require metabolic and
nutritional resources similar to those used
during development (55, 56). Thus, efforts
to understand these needs in the developing
brains of healthy and undernourished chil-
dren may enhance our ability to treat an
injured adult brain (57, 58).

Development of the Gut Microbiota in
Healthy Versus Undernourished Children
The gut microbiota, composed of tens of
trillions of microbes belonging to all three
domains of life (Bacteria, Archaea, and
Eukarya) but dominated by members of
Bacteria, is responsible for myriad tasks re-
lated to nutrient metabolism. Assembly of the
microbiota begins at birth (Figs. 1A and 3).
Studies of infants and children living in
diverse geographic areas representing dis-
tinct cultural traditions have shown that it
takes 2–3 y for the gut microbiota to mature
to a configuration resembling that of adults (59).
Recent studies have disclosed an order to

this process of community assembly (matu-
ration) that is shared across biologically un-
related individuals living in different parts
of the world, with age-indicative sets of

bacterial species/strains represented at dif-
ferent relative abundances at different time
points during this process (60) (Fig. 3A).
Metrics (“relative microbiota maturity” and
“microbiota-for-age Z score”) have been
developed using this signature set of in-
dicative bacterial species that can be used to
define the state of maturation of an indi-
vidual’s microbiota relative to that of a ref-
erence group of healthy infants/children of
similar chronological age (Fig. 3 B and C).
Applying these metrics to children with
undernutrition revealed that they harbor gut
microbiota with delayed development: i.e.,
their microbiota have configurations that
are younger than that of chronologically
age-matched individuals who manifest healthy
growth phenotypes (Fig. 3C). Moreover,
the gut microbiota of undernourished chil-
dren are not durably repaired with current
therapeutic interventions; they revert to
immature configurations after cessation of
treatment (60, 61). In other words, these
individuals have a persistent developmental
abnormality.
Transplanting immature microbiota from

children with severe undernutrition and ma-
ture microbiota from healthy controls to
germfree mice, fed diets representative of
those consumed by the microbiota donors,
has shown that perturbations in gut com-
munity development are causally related to a
number of the metabolic and immunologic
manifestations of undernutrition and are not
simply an effect of undernutrition (61, 62).
Comparative metabolic studies have been

performed in the prefrontal cortex of adult
conventionally raised mice (i.e., animals that
have acquired microbes from environmental
sources, including their mothers, beginning
at birth) and their germfree counterparts.
The results suggest that at least in this re-
gion of the brain there is increased glycolysis
and oxidative phosphorylation in conven-
tionally raised animals with an established
microbiota (63).

Hypotheses About the Interrelationship
Between Development of a Healthy Gut
Microbiota and Development of a
Healthy Brain
Given the very large postnatal metabolic
needs of the developing human brain and the
importance of the gut microbiota in energy
harvest and nutrient metabolism, we postu-
late that gut microbiota immaturity is causally
related to the neurological abnormalities
associated with undernutrition. This concept
can be restated in the form of several inter-
related and testable hypotheses. (i) Normal
development of the gut microbiota is required
to support the metabolic activities of the brain
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during and after critical windows of neuro-
development (Fig. 1A). A corollary is that the
metabolic output of the gut microbiota might
include compounds that directly influence
brain development and physiology. It is
known that i.v. infusion of D-lactate in-
duces panic attacks in certain individuals
(64, 65) whose susceptibility is associated
with a significant asymmetry in cerebral
blood flow in the parahippocampal gyri at
rest (66). Intriguingly, the microbiota pro-
duces D-lactate and might mediate similar ef-
fects (note that the host produces L-lactate).
Moreover, neurotransmitters produced either
by microbial enzymes (67) or by stimulation
of enteroendocrine cells by the gut
microbiota (68, 69) can influence the en-
teric nervous system. (ii) The coordinated
development of the brain and gut micro-
biota reflects, in part, an underlying bi-
directional signaling between these two
organs mediated by innervation of the gut,
by the products of the gut epithelium’s

enteroendocrine cell lineage, by the met-
abolic effector circuits located in the hy-
pothalamus and elsewhere in the brain
(e.g., the circuits that control feeding be-
havior and energy storage) (70), and by
yet-to-be-defined mechanisms. (iii) Per-
turbations in normal gut microbiota de-
velopment result in disruption of various
aspects of brain metabolism, globally and/or
in specific regions, interfere with the forma-
tion and function of specific neural circuits,
and may affect synaptic development or
myelination. Effects on brain and gut
microbiota development are likely reciprocal,
resulting in a self-reinforcing pathogenetic
cascade. Indeed, there is evidence that neural
circuits impinge directly upon acetylcholine-
producing T cells to control innate immune
responses (71). A corollary hypothesis is that
auto-regulatory mechanisms that act to pre-
serve and maintain brain blood flow and meet
metabolic needs and that are especially active
in childhood may not be sufficient to fully

correct for glucose and energy deficiencies.
(iv) Regions of the brain that have high levels
of gene expression related to growth and ax-
onal projection may be particularly vulner-
able to undernutrition and the effects of gut
microbiota immaturity during brain develop-
ment and during recovery from brain injury.

Testing the Hypotheses
At this moment, when so much attention
and exciting technical innovation is enabling
advances in both basic and clinical science, it
is timely to consider ways in which tests of
these hypotheses can be conceived and exe-
cuted. The urgency of doing so is under-
scored by the interrelated global challenges of
rapid population growth, threats to sustainable
agriculture, the need to identify more afford-
able and more nutritious food sources, the
slow progress in combating the already enor-
mous problem of childhood undernutrition,
and the long-term effects of undernutrition on
cognition and behavioral disorders.
Gnotobiotic animals (Box) represent one

way of simulating diet-by-microbiota inter-
actions that occur in humans. Methods have
been developed that allow a previously frozen
human fecal sample, obtained from a donor
representing a chronologic age, cultural tra-
dition, geographic region, and physiologic or
disease state, to be efficiently transplanted to
recipient germfree animals (typically mice)
(61, 72, 73). Once acquired, these commu-
nities can be transmitted across generations of
animals as long as the animals are maintained
in gnotobiotic isolators, thereby allowing the
impact of the human gut community to be
examined during pregnancy [the female gno-
tobiotic mouse (dam) is colonized with the
human donor’s microbiota], the suckling
period (as the dam’s human microbiota is
transferred to her pups), as well as during
and after weaning. Given improvements in
embryo transfer-based methods for rede-
riving conventionally raised mice as germfree
(74), these experiments can be conducted in
mice representing a variety of genotypes.
Gnotobiotic animals colonized with a hu-

man donor’s microbiota can be fed diets
whose composition and method of prepara-
tion are representative of those presently
consumed by the donor population (72); if
the representative diet is deficient in macro-
or micronutrients, additional reference con-
trol diets can be fashioned that are supple-
mented to adequately meet the nutritional
requirements of humans and mice (62). Re-
cipients of microbiota from undernourished
(and healthy control) donors can also be
given diets composed of ingredients envi-
sioned to represent more affordable and
more nutritious food sources in the future, or
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the microbiota of members of a birth cohort living in Bangladesh with healthy growth phenotypes, as defined by
anthropometry. A sparse 24-strain Random Forests model, comprising the most age-discriminatory organisms, pro-
vides a microbial signature for defining a postnatal developmental program of microbiota assembly shared across
biologically unrelated infants and children. Each row represents one of the 24 bacterial strains. Each column repre-
sents the postnatal month where fecal samples were obtained. The different colors represent relative abundances of
each bacterial strain in the microbiota as a function of the infant/child’s chronological age. (B) Using the model de-
scribed in A, a “microbiota age” is assigned to individual fecal samples collected from healthy children of various ages.
Each circle is a separate fecal sample collected from members of the birth cohort over time. The dashed line represents
a spline fit of the data. (C ) Two metrics describing postnatal development of the microbiota can be defined using the
model: relative microbiota maturity and microbiota-for-age Z score. The latter represents the extent of deviation of a
given individual’s microbiota from the median ± SD of the reference healthy cohort. Red circles in the plots represent
an immature gut microbiota from an 18-mo-old child with severe acute undernutrition. Adapted from ref. 60.
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they can be given therapeutic foods to reenact
current nutritional interventions (75). The
latter option allows studies to be performed
that are not possible in humans: for example,
overcoming potentially confounding bias and
variables by “enrolling” a given child (via his/
her microbiota) in multiple treatment arms
to directly compare their efficacy. Alterna-
tively, these preclinical models can be used to
develop new nutritional interventions, whose
effects can then be examined in humans.
Gnotobiotic models also offer an oppor-

tunity to examine the effects of gut micro-
biota from infants and children (representing
different human populations and varying
degrees of undernutrition/growth faltering, in
various diet contexts) on the biotransforma-
tion of food ingredients (including nutritional
supplements), as well as brain metabolism
and gene expression as a function of (i)
region, (ii) cell type (e.g., neurons, astrocytes,
oligodendrocytes, microglia, and their pro-
genitors), (iii) age, and (iv) genetic back-
ground of the animal. Additional parameters
that can be measured include immune func-
tion and vascular permeability in the brain;
dendritic spine growth/turnover; social, ex-
ploratory, and innate behaviors; and func-
tional connectivity.
If transplantation of an intact uncultured

microbiota is shown to mediate an effect (or
effects) on brain biology, follow-up studies
can be performed using collections of cul-
tured bacterial strains recovered from that
microbiota sample (62, 76, 77). These “per-
sonal” culture collections, containing mi-
crobes that have evolved together in a given
individual exposed to (i) the microbial res-
ervoirs present in a given geographic locale
and (ii) the selection imposed by the dietary
practices of the population, can be archived
in a clonally arrayed format, with each well
in a multiwell plate containing a single bac-
terial strain. Efficient methods for mining
these personal culture collections for strains
that effect or modulate host processes/phe-
notypes of interest have been developed that
overcome the large combinatorial challenge
inherent in determining which set of microbe–
microbe interactions in a multistrain collection
are responsible (62, 76, 78).
Little is currently known about the extent

to which being germfree alters brain metab-
olism and development, raising questions
about how to best use gnotobiotic models
for defining causal relationships between
the microbiota and brain biology. The ap-
proaches proposed above are based on com-
parative analyses, where germfree animals
are not used as controls per se; rather, the ef-
fects of healthy versus undernourished donor
microbiota are compared when transplanted

into groups of germfree animals with identical
genetic backgrounds, ages, and diets.

The Interdisciplinary Opportunities and
Challenges That These Preclinical
Studies Present
Characterizing these preclinical models re-
quires an inherently interdisciplinary ap-
proach and should, out of necessity, catalyze a
number of experimental and computational
advances. For example, characterizing varia-
tions in functional connectivity by blood ox-
ygen level-dependent functional MRI (fMRI)
is challenging given that the small size of the
mouse brain requires exceptionally high sig-
nal-to-noise and spatial resolutions that are
prohibitively difficult to obtain with current
MRI techniques. Functional connectivity op-
tical intrinsic signal (fcOIS) imaging, which
has recently been adapted to investigate cog-
nitive defects in children with undernutrition
(79, 80), represents one potential way of
addressing these problems in mice because
the instrumentation can be maintained within
a typical gnotobiotic isolator. Longitudinal
PET and magnetic resonance (MR) spec-
troscopy imaging studies of brain metabo-
lism also present their own set of challenges.
The good news is that protected transport
devices have been developed for moving
animals out of their gnotobiotic isolators
into various imaging instruments without
exposure to environmental microbes.
Defining neural circuits responsible for

particular behaviors affected by the gut
microbiota may be facilitated through the
use of engineered, cell type-specific expres-
sion of optogenetic proteins, such as chan-
nelrhodopsin and halorhodopsin; this ap-
proach has allowed the activities of individual
neurons in conventionally raised mouse mod-
els to be monitored and manipulated in vivo.
The coupling of genetically engineered ul-
trasensitive calcium indicator proteins to
two-photon microscopy could enable the
activity of thousands of neurons to be imaged
at the resolution of individual dendritic
spines (81) in models where nutritional status
and microbiota are deliberately manipulated.
Coupled with installation of standardized
behavior tests in gnotobiotic isolators and the
use of 3D virtual-reality environments, these
approaches could offer an unprecedented
view of brain circuitry in living animals that
are computing sensory inputs, thinking cre-
atively, and making decisions.
Nonetheless, the inherent complexity, mod-

ularity, and plasticity of neural circuits make
the task of correlating specific regions, cell
types, and networks of the brain with be-
havior notoriously difficult although notable
progress is being made in mouse models of

human neurodevelopmental abnormalities
such as autism (82). Advancing these char-
acterizations of neural circuits to include
assessments of their metabolic activities rep-
resents an inspiring but daunting challenge.
An aspirational goal will be to apply the
analytic methods and lessons learned from
conventionally raised mouse models, in-
cluding those that have been used to explore
interactions between the microbiota and brain
(83–86), to animals rederived as germfree so
that the effects of deliberate manipulations of
their gut microbial community membership
and diets can be determined.

Translation to Humans
Movement from preclinical models to clinical
studies should be viewed as bidirectional,
with each informing the other. At a time
when “big data” multimodal neuroimaging
initiatives are including children and adults
to survey brain development across the hu-
man lifespan, it is timely to consider how the
resulting datasets and the underlying proto-
cols for imaging can be used to inform and
interpret studies of the effects of disrupted
development of the gut microbiota on the
structure and functional connectivity of the
developing brain. Studies of twins in Malawi
have revealed high incidence of discordance
for moderate and severe acute undernutrition
during the first 3 y of life (i.e., one cotwin in
the pair presents with disease whereas the
other has a healthy growth phenotype).
Remarkably, the incidence of discordance
(43% in a study of 317 twin pairs) was not
significantly different between mono- and
dizygotic pairs (61). In addition, the standard
of care in Malawi for discordant twin pairs is
to treat both members of the pair with ther-
apeutic foods. Imaging studies of discor-
dant pairs and control concordant healthy
pairs, living in a variety of populations where
childhood undernutrition is a pressing and
pervasive problem, represent one attractive
way of minimizing potentially confounding
variables in defining the effects of microbiota
immaturity on brain structure and function.
Establishing MRI capability at sites in such
low-income countries can be extremely
challenging due to constraints imposed by
inadequate infrastructure and/or lack of
experienced personnel. Novel approaches, such
as fcOIS imaging, may help overcome these
limitations. Malnutrition is also prevalent
among premature infants in nations where
advanced MRI of the neonatal brain is rou-
tinely performed (87), providing another av-
enue for studying the role of nutrition and
gut microbiota maturation in shaping brain
development.
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The gut microbiota and diets of human
subjects exhibiting phenotypic extremes in
microbiota maturity and brain imaging bio-
markers could then be further characterized
using gnotobiotic animal models of the type
described above to test for a causal relation-
ship between their microbiota and brain
development and to delineate underlying
mechanisms. Similarly, imaging, metabolomic,
and gene expression datasets, emanating from
preclinical models where microbiota imma-
turity and brain metabolism and development
are being characterized, should sponsor efforts
to create databases, bioinformatic tools, and
statistical methods for identifying significant
correlations between the different data types
and discriminatory biomarkers. These pre-
clinical databases and tools could help inform
the design, assembly, and mining of analogous
human databases (and vice versa; existing hu-
man databases and algorithms can help with
regard to the preclinical databases). Together,
such efforts should establish whether pre-
clinical proof-of-concept, if established in
gnotobiotic animal models, can translate to
humans. The path forward will be challeng-
ing, but the rewards could be great.

Societal Implications
Ultimately, results emanating from these types
of studies could have a large number of so-
cietal implications that need to be addressed
through an open, proactive, and sustained
public discussion. This discussion should be
accompanied by a factual, sober, and ongoing
educational initiative designed to inform the
public about the purpose of such studies and
the meaning of scientific advances. Given the
global nature of childhood undernutrition, this
educational initiative will have to build a vo-
cabulary and a narrative that is sensitive to the
widely ranging scientific literacy and disparate
cultural traditions of the varied populations to
which it is directed (88, 89). Examples of the
potential implications of this work range from
a better understanding of brain development
and repair to a more general consideration
of the biological, ethical, regulatory, and so-
cietal impact of dietary and/or microbe-based
interventions early in postnatal life that affect
various aspects of cognition and behavior.
We humans live in a microbe-dominated

planet and have benefited from the “invention,”
early in metazoan evolution, of a gut that
harbors microbial resources with the capac-
ity to adaptively support metabolic activities
not represented in the host genome. Looking
ahead, understanding how feeding our gut
satisfies the needs of our developing brain
should help determine, and hopefully ulti-
mately facilitate, our continued evolution as
a species.
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