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Abstract

Metformin, an established first-line treatment for patients with type 2 diabetes, has been associated 

with gastrointestinal (GI) adverse effects that limit its use. Histamine and serotonin have potent 

effects on the GI tract. The effects of metformin on histamine and serotonin uptake were evaluated 

in cell lines overexpressing several amine transporters (OCT1, OCT3 and SERT). Metformin 

inhibited histamine and serotonin uptake by OCT1, OCT3 and SERT in a dose-dependent manner, 

with OCT1-mediated amine uptake being most potently inhibited (IC50 = 1.5 mM). A 

chemoinformatics-based method known as Similarity Ensemble Approach predicted diamine 

oxidase (DAO) as an additional intestinal target of metformin, with an E-value of 7.4 × 10−5. 

Inhibition of DAO was experimentally validated using a spectrophotometric assay with putrescine 

as the substrate. The Ki of metformin for DAO was measured to be 8.6 ± 3.1 mM. In this study, 

we found that metformin inhibited intestinal amine transporters and DAO at concentrations that 

may be achieved in the intestine after therapeutic doses. Further studies are warranted to determine 

the relevance of these interactions to the adverse effects of metformin on the gastrointestinal tract.
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Introduction

Metformin, a biguanide, is used worldwide as first-line therapy for the treatment of type 2 

diabetes, and acts primarily in the liver to reduce gluconeogenesis [1, 2]. However, 30–50 % 

of patients on metformin report gastrointestinal (GI) side effects, such as diarrhea and 

bloating [3–6]. These GI side effects are generally dose-dependent, and for the majority of 

patients, subside after several doses. However, in approximately 5 % of patients, these side 

effects are severe enough to warrant discontinuation of the drug, and these patients switch to 

other anti-diabetic drugs. Several hypotheses as to the cause of these metformin-induced GI 

side effects have been proposed, including mal-absorption of bile salts in the ileum [7], 

increased serotonin release from human gut mucosa [8], increased gastrointestinal hormone 

levels and increased gastric acid secretion [9].

Signaling molecules such as histamine and serotonin can bind to receptors in the GI tract to 

regulate normal physiologic function. Histamine receptors are highly expressed in the 

gastrointestinal tract [10, 11]. Interactions of histamine with H1 receptors regulate intestinal 

smooth muscle contraction, and H2 receptors stimulate gastric acid secretion. In contrast, 

histamine interactions with H3 receptors may inhibit gastric acid secretion, whereas 

histamine interactions with H4 receptors have been implicated in immune-mediated 

responses in gut inflammation [10–12]. In the intestine, histaminergic signalling is 

terminated by the inactivation of histamine by the enzymes diamine oxidase (DAO) and N-

methyltransferase (HNMT) [13]. Given the important roles that histamine plays in the 

gastrointestinal tract, it is not surprising that when histamine levels increase due to impaired 

histamine degradation or ingestion, GI effects such as nausea, vomiting and diarrhea can 

occur [14].

Most of the serotonin in the body is produced in the gastrointestinal tract, where the 

monoamine plays an important role in the regulation of gastrointestinal physiology [15]. 

Primarily stored in enterochromaffin (EC) cells of the mucosal epithelium, serotonin release 

activates intrinsic and extrinsic sensory GI neurons, leading to gut motility, secretion and 

sensation [15, 16]. Defective serotonergic signaling has been implicated in a number of GI 

disorders, and small molecules that interact with serotonin receptors have been developed to 

treat GI symptoms [17]. The primary serotonin transporter, SERT, is responsible for the 

reuptake of extracellular serotonin in order to terminate serotonergic signaling. SERT 

knockout mice were observed to have increased stool water and colon motility when 

compared to wildtype mice [18]. Further, many drugs, including many antidepressants that 

inhibit SERT, cause GI adverse effects, suggesting that inhibition of the transporter may 

produce undesired GI effects [19]. Though less permissive in its substrate selectivity, SERT 

shares some overlapping substrates with organic cation transporters (OCTs). Moreover, 

SERT knockout mice show upregulation of OCT transporters [18].

Organic cation transporters, such as OCT1 and OCT3, are known to transport a variety of 

drugs and endogenous molecules such as serotonin and histamine [20–24]. OCT1 is 

primarily expressed in the liver and expressed at lower levels in other tissues, whereas 

OCT3 is expressed ubiquitously in various tissues [25]. In the intestine, OCT3 has been 

localized to the apical membrane of enterocytes [26, 27], whereas there are contrasting 
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reports about the localization of OCT1 in enterocytes [28–31], with the transporter localized 

to the apical membrane in some reports and to the basolateral membrane in others [29–34]. 

Typically prescribed at high doses (500–1000 mg), metformin is a known substrate of 

organic cation transporters [32, 35–39]. A recent study showed that patients on metformin 

with concomitant use of other medications known to inhibit OCT1 were more likely to be 

metformin-intolerant, and that people carrying reduced-function mutations in OCT1 were 

also more likely to be intolerant to metformin [40]. Though metformin is clearly a substrate 

of organic cation transporters, its interactions on transporters is poorly understood.

The goal of this study was to determine the effect of metformin on modulating the uptake of 

histamine and serotonin through amine transporters expressed in intestinal cells, particularly 

OCT1, OCT3 and SERT. Our data suggest that at expected concentrations of metformin in 

the intestine after therapeutic doses, metformin may inhibit OCT1, OCT3 and SERT, thus 

modulating intestinal levels of histamine and serotonin (Fig. 1). In addition, using the 

Similarity Ensemble Approach (SEA) [41–45], a chemoinformatic method, we predicted 

that metformin may interact with another protein involved in intestinal histamine 

disposition, DAO. This prediction was confirmed through experimental methods. 

Collectively, our study suggests that metformin interacts with proteins involved in the 

intestinal disposition of serotonin and histamine at clinically relevant intestinal 

concentrations, and we hypothesize that such interactions may ultimately contribute to the 

GI side effects of the drug.

Methods

Chemicals

All compounds (metformin, aminoguanidine, histamine, 5-hydroxytryptamine (5-HT, 

serotonin), putrescine, dianisidine, Tris, 2-[N-morpholino]ethanesulfonic Acid (MES), 

acetic acid, porcine diamine oxidase and peroxidase) were purchased from Sigma Aldrich 

(St. Louis, MO). Cell culture media (DMEM H-21), fetal bovine serum, penicillin/

streptomycin, hygromycin B and Hank’s balanced salt solution (HBSS) were obtained from 

University of California San Francisco Cell Culture Facility. [14C]-Metformin (MC 2043) 

was purchased from Moravek Biochemicals (Brea, CA), [3H]-histamine (ART 1432) and 

[3H]-5-hydroxytryptamine (5-HT) (ART 0350) were purchased from American 

Radiolabeled Chemicals, Inc. (St. Louis, MO).

Cell culture

Stably transfected HEK-293 cells were maintained in Dulbecco’s Modified Eagle Medium 

(DMEM) H-21 medium supplemented with 10 % fetal bovine serum, 100 units/mL 

penicillin, 100 units/mL streptomycin, and 150 lg/mL hygromycin B. HEK-293 cells which 

were used for transient transfection were cultured in the above medium but without the 

selection antibiotic, hygromycin B. All cell lines were grown at 37 °C in a humidified 

atmosphere with 5 % CO2.
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Cell lines and transfection

Human embryonic kidney (HEK-293) Flp-In-293 cells stably transfected with the full-length 

reference human OCT1 cDNA (HEK-hOCT1), OCT3 cDNA (HEK-hOCT3), and the empty 

vector (HEK-EV) were previously established in our laboratory [22, 46, 47]. HEK-293 cells 

transiently transfected with the full-length reference SERT cDNA (HEK-hSERT) were 

established by transfecting 500 ng/well of pCMV6-XL4 vector containing the full-length 

transporter cDNA (NM_001045.2) from Origene (Rockville, MD) into HEK-293 cells using 

Lipofectamine LTX from Life Technologies (Grand Island, NY) per manufacturer 

instructions. The expression level of each transporter mRNA in each transfected HEK-293 

cell line was verified by quantitative RT-PCR. The transport activity of metformin and 

serotonin in transfected cell lines were compared to the HEK-EV cell line in every transport 

assay.

Transporter inhibition studies

Transporter inhibition studies were performed using HEK-293 cells stably expressing the 

vector only (HEK-EV), SLC22A1 (OCT1), SLC22A3 (OCT3) and SLC6A4 (SERT). Briefly, 

transfected cell lines were grown on poly-D-lysine coated 24-well plates in DMEM H-21 

medium supplemented with 10 % fetal bovine serum to at least 90 % confluence (16–48 h 

post seeding). For uptake studies, HEK-EV, HEK-hOCT1, HEK-hOCT3 and HEK-hSERT 

were preincubated in Hank’s balanced salt solution (HBSS; 5.4 mmol/L potassium chloride, 

0.44 mmol/L monobasic potassium phosphate, 4.2 mmol/L sodium bicarbonate, 137 

mmol/L sodium chloride, 0.34 mmol/L dibasic sodium phosphate, 5.6 mmol/L D-glucose, 

1.3 mmol/L calcium chloride, 0.49 mmol/L magnesium chloride, 0.41 mmol/L magnesium 

sulfate, pH 7.4) for 15–20 min. The buffer was removed and replaced with uptake buffer 

(HBSS containing 10 nmol/L unlabeled histamine and a trace amount of [3H]-labeled 

histamine or 10 nmol/L unlabeled serotonin and a trace amount of [3H]-labeled 5-

hydroxytryptamine). Uptake was performed at 37 °C for a designated period of time for 

which linear uptake was observed, and then the cells were washed twice with 1 mL of ice-

cold HBSS. To determine the inhibition of the uptake, the HEK-293 cells were 

simultaneously exposed to the substrate (histamine or serotonin) and metformin at various 

concentrations (0, 1, 5, 10, 15 and 30 mM). Cells were lysed with 0.1 N NaOH and 0.1 % 

SDS, and the lysate was subjected to scintillation counting on a LS6500 Scintillation 

Counter (Beckman Coulter) and normalized by protein content per well as determined with a 

Pierce BCA Protein Assay Kit (Life Technologies).

Similarity ensemble approach (SEA) (http://sea.bkslab.org/)

SEA predictions were calculated as previously described [45, 48] using RDKit (http://

rdkit.org) ECFP4 (Morgan) fingerprints. For the SEA target panel, we used subsets of 

ChEMBL-14 and ChEMBL-16, extracted as previously described [42], and whose ligand 

structures were prepared using the ChEMBL standardiser (https://github.com/flat kinson/

standardiser). Small SEA p-values (for ChEMBL-14 predictions) and expectation values (E-

values; for ChEMBL-16 predictions) denote relationships between drugs and ligand sets that 

were stronger than would be expected by random chance alone; these values have meanings 

related to the more familiar E-values from BLAST searches, as the same statistical engine is 
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used by SEA. High maximum Tanimoto coefficients (Max Tc) reflect high pair-wise 

chemical structural similarities between the drug and its closest ligand neighbor annotated to 

the predicted target. A maximum Tc of 1.00 means that a drug has already been reported 

within the ChEMBL database to bind to the predicted target.

Diamine oxidase assay

Metformin was tested for inhibition of porcine kidney diamine oxidase (E.C. No. 1.4.3.6, 

Sigma-Aldrich). Stocks of the compounds were prepared in purified water or in 50 mM 

phosphate buffer and subsequently diluted into a three-component, constant ionic strength 

buffer [49] (final concentration of 50 mM acetic acid, 50 mM MES and 100 mM Tris) to 

yield a final reaction volume of 1 mL. This buffer helped to alleviate the previously reported 

ionic strength effects on DAO activity [50]. In addition to the buffer, assays for diamine 

oxidase contained 0.15 mg/mL O-dianisidine, 100 pyrogallol U/mL peroxidase, 0.024 

Units/mL diamine oxidase, 0–100 mM putrescine and 0–100 mM metformin. All reagents 

and water were added to the cuvette, the reactions were incubated at 37 °C for 5 min, and 

the reaction was initiated with diamine oxidase. Assays were performed at 37 °C, pH 7.0. 

Data acquisition was performed by an HP8453a spectrophotometer using kinetic mode in 

the software UV–Vis ChemStation (Agilent Technologies). The rate of reaction was 

monitored spectrophotometrically at 440 nm. Activity was measured in triplicate for six 

different concentrations of metformin. The assay was repeated at least three times over 

several days. Dose–response curves were plotted, and Ki values were calculated using the 

enzyme kinetics mixed model inhibition equation in Graphpad Prism 6 (Graphpad, San 

Diego, CA). During the curve fitting process, the inhibition constant was defined as a global 

parameter. The Ki values reported for metformin represent the best-fit values for the 

respective data sets.

Results

Metformin-mediated inhibition of histamine and serotonin uptake by OCT1, OCT3 and 
SERT

Various concentrations of metformin were used to determine its potency in inhibiting OCT1 

(SLC22A1), OCT3 (SLC22A3) and SERT (SLC6A4) in overexpressing cell lines. Figure 2 

shows the effects of various concentrations of metformin on inhibition of transporter-

mediated serotonin uptake (Fig. 2a, c, e) and histamine uptake (Fig. 2b, d). Among the three 

transporters tested, metformin inhibited OCT1 most potently, with IC50 of 1.46 ± 0.14 mM 

and 1.46 ± 0.06 mM for serotonin and histamine, respectively (Fig. 2f). In contrast, 

metformin had a lower potency in inhibiting monoamine uptake by OCT3 and SERT (<50 

% inhibition at 10 mM, Fig. 2c–e).

Using SEA to predict metformin off-targets

We used SEA to predict whether metformin might bind to any unreported molecular targets. 

Of the approximately 2,100 protein targets present in ChEMBL-16, SEA predicted that 

metformin would bind to only one: diamine oxidase (DAO, also known as ABP1). Notably, 

aminoguanidine has a similar structure to metformin and is a potent inhibitor of diamine 

oxidase (Table 1), but inhibition of DAO activity by metformin has not been previously 
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reported. Diamine oxidase is highly expressed in the gut [51, 52] and metabolizes 

polyamines such as putrescine and histamine; for the latter, it is one of only two enzymes to 

do so. Diamine oxidase plays an important role in degrading exogenous polyamines, and 

reduced levels of DAO have been associated with histamine intolerance and allergy [53–56].

In vitro analysis of diamine oxidase inhibition

Using an enzymatic assay, we found that metformin inhibited porcine DAO with mixed-type 

inhibition, with a Ki value of 8.6 ± 3.1 mM (Table 2). Figure 3 shows a plot of porcine 

diamine oxidase inhibition by metformin. The KM value of putrescine in the experiment was 

0.33 ± 0.16 mM. Meanwhile, aminoguanidine, a known inhibitor of DAO, inhibited porcine 

DAO greater than 80 % at 100 μM in the presence of putrescine (100 μM) as the substrate. 

Previously, Cubria et al. [57] reported that phenformin, a biguanide and a predecessor of 

metformin, inhibited diamine oxidase with Ki of 4 mM. Furthermore, the reported KM value 

of putrescine using porcine diamine oxidase is 0.35 mM [58], which is within the error of 

our measurements. Both this result and the high inhibitory activity of aminoguanidine 

support the reliability of the assay. Whereas 9 mM is a high concentration, we note that 

metformin is a small molecule (MW 129.16 g/mol) and a polar drug (i.e. bearing at least one 

and possibly two positive charges), and concentrations higher than this are thought to be 

reached in the human intestine upon standard dosing [59, 60].

Discussion

Metformin is one of the most widely prescribed drugs worldwide due to its efficacy in 

treating patients with type 2 diabetes. Its major adverse effects are gastrointestinal and 

include diarrhea, nausea, vomiting and bloating. Several studies have reported that up to 50 

% of patients on metformin have one or two of these symptoms [3–6], and in one recent 

study, Dujic et al. reported that approximately 5 % of patients treated with metformin 

exhibit intolerance due to gastrointestinal symptoms that leads to discontinuation of the drug 

[40].

Our group and others have shown that the organic cation transporters, OCT1 and OCT3, as 

well as the serotonin transporter, SERT, play a role in the uptake of serotonin and histamine 

as well as metformin [20, 22, 61]. In the intestine, these transporters appear to be involved in 

the influx of their substrates from the lumen into the intestinal epithelial cells or transport 

between the blood and intestinal epithelial cells. Thus, these transporters are thought to be 

important determinants of the disposition of signaling molecules (e.g., histamine and 

serotonin) and as such to play a role in gastrointestinal physiology. Notably, both histamine 

and serotonin have important roles in gastrointestinal physiology and pathophysiology [14, 

15]. For example, extrinsic sensory neurons activated by serotonin initiate sensations from 

the bowel, which may lead to nausea and bloating [16, 17, 62]. Similarly, histamine also 

plays important roles in gut motility and gastrointestinal symptoms [14]. In this study, we 

hypothesized that metformin inhibits intestinal transporters and enzymes known to function 

in the disposition of these important monoamines.

Our inhibition studies of serotonin and histamine uptake via OCT1, OCT3 and SERT 

showed that metformin inhibits OCT1 more potently than the other two transporters (Fig. 2). 
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Previously, we showed that metformin can competitively inhibit the uptake of thiamine 

through OCT1 (IC50 ~ 1.4 mM), which may lead to alterations in thiamine disposition [20]. 

Since the primary mechanisms by which serotonin and histamine are cleared are through 

cellular uptake and subsequent intracellular degradation, inhibition of these transporters by 

metformin may result in higher extracellular concentrations, particularly in the intestinal 

lumen, thereby enhancing or prolonging serotonergic or histaminergic signaling in the 

intestine (Fig. 1). These effects may result in gastrointestinal side effects. Because 

metformin doses are high, its predicted concentrations in the intestinal lumen are about 10 to 

20 mM; thus the drug would not have to interact potently with intestinal targets to exhibit 

pharmacologic effects on the intestinal tract in vivo [63].

Our data clearly showed that at concentrations achievable in the GI tract, metformin can 

inhibit OCT1-mediated transport of both serotonin and histamine (Fig. 2). Thus, though 

speculative, it is possible that metformin modulates levels of these monoamines in the GI 

tract, contributing to its adverse effects on the gut. This idea is supported by a recent 

publication, in which patients with reduced function non-synonymous variants (R61C, 

G401S, 420del, G465R) in OCT1 were found to be more likely to have metformin-induced 

gastrointestinal side effects [40]. This recent study of type 2 diabetic patients on metformin 

found that patients with concomitant use of medications known to inhibit OCT1 activity 

(e.g. calcium channel blockers, proton pump inhibitors, and alpha-adrenergic blockers) were 

more likely to be metformin intolerant [40]. Thus, it is possible that OCT1 genetic variants 

or concomitant use of prescription drugs that are OCT1 inhibitors may exacerbate 

metformin gastrointestinal side effects through effects on histamine or serotonin. Recent 

genomewide association studies of the human metabolome suggest an important link 

between OCT1 and serotonin. In particular, Shin et al. observed a strong association 

between the reduced-function OCT1 variant, rs683369, with serotonin levels, suggesting 

that OCT1 is involved in the systemic disposition of serotonin [64]. Serotonin and other 5-

HT3 agonists through interactions with 5-HT3 receptors are associated with vomiting and 

diarrhea in rodents [65]. Thus, through inhibition of OCT1, metformin may modulate 

intestinal or systemic levels of serotonin, which may contribute to the GI side effects of the 

drug. Metformin also inhibited serotonin uptake by OCT3 and SERT but at much higher 

concentrations (>30 mM to inhibit 50 % of serotonin or histamine) (Fig. 2). These 

transporters may also play a role in serotonin (and histamine) disposition and actions in the 

body. Other organic cation transporters in intestinal epithelial cells, for example, PMAT 

(SLC29A4), which transports monoamines [23], and MATE1 (SLC47A1) were not 

examined in this current research.

We further tested whether metformin may inhibit other proteins involved in histamine 

disposition. To identify metformin off-targets, we used a chemoinformatic method, SEA. 

This method relates drugs to proteins based on the chemical similarity of the drug to each 

target’s set of ligands (http://sea.bkslab.org). It has successfully predicted off-target binding 

partners of prescription drugs that mediate side-effects [42]; for example, selective serotonin 

receptor inhibitors (SSRIs), were predicted and found to bind to β1-adrenergic receptors, 

which may contribute to sexual dysfunction and the SSRI discontinuation syndrome [48].
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Using SEA, we predicted one target for metformin with an E-value better than 10−4, the 

enzyme diamine oxidase (DAO). It is known that DAO, localized inside enterocytes, is 

involved in metabolism of putrescine and histamine to their inactive metabolites (Fig. 1). 

Previous studies have demonstrated that genetic polymorphisms in DAO and serum DAO 

activity are associated with food intolerance and polyamine levels [54, 55, 64]. Inhibition of 

DAO by metformin could therefore lead to aberrant histamine levels in the intestine and 

cause metformin-induced GI side effects. Metformin inhibited DAO less potently than it did 

OCT1 (IC50 = 8.6 mM for DAO and IC50 = 1.5 mM for OCT1), but DAO inhibition may 

nonetheless occur in vivo based on estimated intestinal concentrations following a 

therapeutic dose (10–20 mM).

Information from the literature [29–34] and various databases [51, 66, 67] found that OCT1, 

OCT3, SERT and DAO mRNA and protein are expressed at different levels and in different 

sections of the intestine (Supplemental Table 1). DAO transcript levels are the highest 

among the four genes in the stomach, duodenum, small intestine and colon, followed by 

SERT, which has greater mRNA expression levels in the small intestine, as compared to 

OCT1 and OCT3 (Supplemental Table 1). Although transcript levels of both OCT1 and 

OCT3 are low in intestinal tissue, the protein expression of OCT1, OCT3 and DAO are 

medium to high, depending on the location in the intestine (Supplemental Table 1) [28, 52, 

61]. Based on the localization of these transporters (Fig. 1) and our results from this study 

(Fig. 2), metformin may accumulate inside the intestinal cells through OCT3 [22, 26], 

inhibit DAO inside the cells, and inhibit OCT1 on the basolateral membrane of the intestine. 

As a result, histamine and/or serotonin levels will increase inside the enterocytes. 

Additionally, serotonin and histamine could be released or effluxed into the blood by OCT1 

and SERT (Fig. 1). After oral absorption of metformin through the intestine, metformin 

could inhibit the reabsorption of serotonin or histamine from the blood into the intestinal 

cells by OCT1. If this occurs, histamine and serotonin levels may increase in the blood. 

However, it is not known whether metformin-induced gastrointestinal side effects occur as a 

result of increased histamine or serotonin levels surrounding the basolateral membrane of 

the intestine, inside the intestinal cells, surrounding the intestinal lumen or by other 

unrelated mechanisms. Further studies are needed to assess the in vivo effects of metformin 

on proteins involved in the disposition of histamine and serotonin, as well as the 

mechanisms of metformin-induced gastrointestinal side-effects.

Conclusions

Our results indicate that metformin inhibits transporters and enzymes in the gut that are 

associated with the disposition of serotonin and histamine and suggest that clinically, 

metformin concentrations in the gut may be sufficient to inhibit these proteins. Future 

studies are necessary to determine whether metformin may modulate the levels of histamine 

or serotonin in the plasma (pharmacokinetic analysis) or gastrointestinal tract through 

inhibition effects on intestinal transporters or DAO, and whether such modulation may 

contribute to its adverse effects on the GI tract (pharmacologic effect).
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Postscript

This manuscript embodies two principles that I learned as a graduate student in Gary’s 

laboratory. First, research should focus on scientific mechanisms, and second, 

pharmacokinetics remains important, but only in the context of pharmacodynamics. The 

studies described in this manuscript focus on potential mechanisms by which metformin 

produces gastrointestinal side effects. The high concentrations that metformin achieves in 

the intestine, and its interaction kinetics with intestinal transporters and enzymes suggest a 

potential pharmacokinetic-pharmaco-dynamic relationship that may be responsible for the 

dose-limiting gastrointestinal side effects of metformin. Gary, your classical work on 

tubocurarine, beginning in 1964 [68] showing the differences in the temporal relationships 

of drug concentrations and drug effects, formed the basis of the field of pharmacodynamics. 

Your published works over many years in which you and your research team characterized 

the effects of disease on pharmacodynamics were both exploratory and elegant [69–71], and 

built upon earlier work that we had done together focused on disease effects on 

pharmacokinetics (e.g., propoxyphene in renal and liver disease) [72, 73]. And there is one 

final principle I learned from you that truly has influenced my career. That is, “the half-life 

of your students’ careers far exceeds that of your research citations.” Your impact as a 

teacher and mentor to me has been long, sustained and profound. I have striven to pass your 

teachings on to my own students and postdocs. Thank you, Gary, for all you have done for 

me and my students and postdocs, and indeed for the entire field of pharmacokinetics and 

pharmacodynamics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overall figure showing the localization of various transporters (OCT1, OCT3 and SERT) 

and DAO, which are the subject of the current study, in enterocytes and enterochromaffin 

cells. This figure shows that histamine (red squares) from diet and metformin (orange 

circles) are transported into cells via OCT3. Transport of histamine, serotonin (blue 

triangles) or metformin across the basolateral membrane occurs by OCT1. Histamine, from 

the diet or synthesized from L-histidine, is inactivated by DAO and HNMT (not shown) to 

imidazole acetaldehyde and N-methylhistamine, respectively. Serotonin, which is 

synthesized from tryptophan (from diet), is stored in enterochromaffin cells and released 

into the blood by the serotonin transporter, SERT (SLC6A4). A recent study suggests that 

SERT is localized on the apical and basolateral membrane of enterocytes and plays a role in 

metformin and serotonin uptake [27]. Diamine oxidase (DAO) plays an important role in 

enterocytes to remove excess histamine and putrescine from diet. Other transporters not 

shown may also contribute to serotonin or histamine disposition. The bidirectional arrows 

show that the molecules could be transported into or out of the cells depending on the 

concentrations of the molecules inside and outside the cells. Note the upper part of the 

figure was modified from an image obtained from http://theibdimmunologist.com/

Review/wp-content/uploads/colon-and-small-intestine-wall-01.png (Color figure online)
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Fig. 2. 
Inhibition of serotonin- and histamine-mediated uptake by metformin in cells recombinantly 

expressing OCT1 (SLC22A1), OCT3 (SLC22A3), and SERT (SLC6A4). HEK-293 cells 

stably expressing SLC22A1 (a, b, f) or SLC22A3 (c, d) were used for serotonin and 

histamine uptake. HEK-293 cells transiently expressing SLC6A4 (e) was used for serotonin 

uptake. Various concentrations of metformin were used for the inhibition studies and a 

canonical inhibitor of the transporter was used in the study
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Fig. 3. 
An example of inhibition of porcine diamine oxidase (DAO). Experimental data curve fits 

were obtained through global model nonlinear regression analysis. Metformin inhibition of 

porcine diamine oxidase is shown [0 mM, (closed circle), 1 mM (open circle), 10 mM 

(closed square); 40 mM (open square); 90 mM (triangle)]. The overall fit values obtained 

from three separate experiments were Ki (metformin) = 8.6 ± 3.1 mM; and KM (putrescine) 

= 0.33 ± 0.16 mM
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Table 1

Metformin off-target prediction

Drug Closest ligand for predicted target Predicted target SEA E-value Closest (max) Tc

DAO (ABP1) 7.4 × 10−5 0.35 Tc

Tc Tanimoto coefficient. The Tc calculates the number of on bits in common between fingerprints divided by the total number of nonoverlapping 
on bits between fingerprints
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