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Abstract

The oral route of drug administration is most preferred due to its ease of use, low cost, and high 

patient compliance. However, the oral uptake of many small molecule drugs and biotherapeutics is 

limited by various physiological barriers, and, as a result, drugs suffer from issues with low 

solubility, low permeability, and degradation following oral administration. The flexibility of 

micro- and nanofabrication techniques has been used to create drug delivery platforms designed to 

address these barriers to oral drug uptake. Specifically, micro/nanofabricated devices have been 

designed with planar, asymmetric geometries to promote device adhesion and unidirectional drug 

release toward epithelial tissue, thereby prolonging drug exposure and increasing drug permeation. 

Furthermore, surface functionalization, nanotopography, responsive drug release, motion-based 

responses, and permeation enhancers have been incorporated into such platforms to further 

enhance drug uptake. This review will outline the application of micro/nanotechnology to 

specifically address the physiological barriers to oral drug delivery and highlight technologies that 

may be incorporated into these oral drug delivery systems to further enhance drug uptake.
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1. Introduction

Oral drug administration is the most preferred and common route. As opposed to parenteral 

administration, the oral route typically causes neither tissue damage nor pain and requires 

less patient supervision, resulting in high patient compliance and decreased cost of care [1]. 

Oral drug formulations may also provide advantages over intravenous drug formulations, 

which can involve injection of solubilizing excipients associated with toxicity and/or altered 

disposition of coadministered drugs [2–4]. In addition to being the primary route for 

systemic drug administration, oral administration allows for localized drug treatment of 

gastrointestinal (GI) tissue. However, there is currently a lack of approaches to target 

diseased tissue [5, 6]. Therefore, diseases of the GI tract are often treated through 

formulations designed for systemic administration, resulting in system-wide side effects [5, 

7].

While oral administration is most preferred, approximately 50% of active pharmaceutical 

agents suffer from limited oral uptake [8, 9]. The oral route is associated with issues with 1) 

drug degradation, 2) low drug solubility, and 3) low drug permeability, preventing uptake of 

intact drug into the bloodstream [10]. Current approaches to improve drug uptake include 

permeation enhancers, excipients to enhance drug solubility or provide sustained drug 

release, micro- and nanoparticulate systems, drug conjugation and modification, enteric 

coating, metabolic and transporter protein inhibitors, and bioadhesive polymers and ligands, 

which have been reviewed in detail [6, 11–19]. While these approaches allow for control 

over many properties of drug delivery systems, they do not typically provide precise 

geometric control, which can be used to facilitate interaction with the micro- and nanoscale 

features of GI tract physiology for increased adhesion and tissue permeability [20, 21].

Photolithography, soft lithography, and nanofabrication approaches can be used to fabricate 

oral drug delivery systems with precise control over feature geometry, symmetry, 

dimensions, material composition, and surface modification, allowing for design of 

microscale devices that specifically address physiological barriers of the GI tract. These 

fabrication technologies have also been reviewed in detail previously [6, 22–25]. 

Application of these approaches to oral drug delivery has been expanding to utilize 

biocompatible and bioadhesive polymers, asymmetric geometries, nanotopographical 

features, and materials that respond to environmental cues to improve drug uptake. This 

review will highlight recent advances in the application of micro/nanotechnology to oral 

drug delivery and predict how current and developing technologies may be incorporated into 

these micro/nanofabricated platforms to improve bioavailabilities of a wide range of drugs 

and biotherapeutics.
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2. Physiological barriers to oral drug uptake

2.1 Physiological considerations for oral drug delivery

The physiology of the human digestive tract presents significant barriers to oral drug 

delivery. Among these challenges are poor drug stability, poor drug solubility, and mucosal 

barriers that limit the application of current oral dosing strategies to drugs that possess good 

bioavailability. In general, the digestive tract is composed of a series of compartments that 

work together using mechanical and chemical processes to help convert food into energy 

and nutrients for the body. Beginning with the oral cavity, multiple accessory organs (i.e. 

teeth, salivary glands, tongue) break down food and secrete lubricants to help food pass into 

the pharynx, a tube that connects the mouth and the esophagus. Passing through the 

esophagus, the food reaches the stomach where the low pH and digestive enzymes help 

break down the food. The digested food moves to the small intestine for further digestion 

and absorption of nutrients and finally moves to the large intestine where water is absorbed 

and microflora futher breaks down waste products prior to excretion.

The physiology throughout the digestive tract can differ significantly in the form of gastric 

mucosa, organization of the epithelium, and chemical microenvironment. Therefore, the 

physiological characteristics of the targeted region and all preceding regions must be 

considered when designing drug delivery platforms. The following sections will provide the 

reader with a general understanding of the different targets for oral drug delivery and some 

of the benefits and challenges posed by each target.

2.2 Buccal cavity

Delivery to the oral cavity is sometimes preferred over the conventional oral route because it 

avoids pre-systemic clearance by the liver and physiological challenges related to membrane 

permeability and absorption found in the gastrointestinal tract. Buccal mucosa includes a 

stratified squamous epithelium that comprises the upper and lower lips as well as the lining 

of the cheek and is richly vascularized. As such, buccal administration is an attractive target 

due to easy accessibility, mild pH microenvironment, and direct access to systemic 

circulation thereby avoiding the hepatic “first-pass” effect [26]. However, drawbacks 

include the smaller surface area of membranes, about 170 cm2, of which ~50 cm2 of non-

keratinized buccal tissue is available for drug absorption [27]. In addition, saliva is 

constantly secreted in the oral cavity and can dilute and/or degrade labile drugs susceptible 

to enzymatic degradation [28]. The reader is referred to the following reviews for more in-

depth information regarding buccal anatomy and conventional drug delivery approaches [29, 

30]. To bypass these physiological barriers, drug delivery platforms can be designed to 

prolong residence time with the mucosa, enhance drug permeation, and protect the drug 

from degradation.

2.3 Esophagus

The esophagus is a site not often utilized for drug delivery due to presence of a stratified, 

squamous epithelial layer that is known for its low permeability and very short residence 

time [31]. For example, a 10 mL bolus has less than 16 s of residence time in the esophagus 

before reaching the stomach [32]. Additionally, poor blood supply makes esophageal 
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delivery less ideal for systemic delivery. Certain local diseases such as esophageal cancer, 

bacterial infection, and Barrett’s esophagus can be targeted specifically through the use of 

bioadhesives to improve local delivery [33]. However, some solid dose formulations may 

become lodged in the esophagus, which is a concern. In this scenario, a high concentration 

of drug is delivered to a localized area, potentially causing damage to the tissue. As such, 

drug delivery to the esophagus must focus on devices that can improve device residence 

time while preventing permanent lodging of the device.

2.4 Stomach

The stomach is responsible for storing food temporarily and slowly releasing it into the 

small intestine. Within the stomach is a harsh microenvironment with a pH range of 1.0–2.5 

that acts as a chemical factory for breaking down food and harmful pathogens [34]. To 

prevent self-digestion, the stomach possesses the extrinsic gastrointestinal barrier, a layer of 

mucus spanning 40–450 μm and bicarbonate ions secreted by surface epithelial cells [35, 

36]. Much of the mature epithelial cells have high turnover rate and die within a few days. 

Beneath this layer is the intrinsic barrier, which is composed of epithelial cells that seal the 

paracellular space with tight junctions. With a small surface area, there is little absorption 

that takes place making delivery difficult [37]. Drug delivery systems that target diseases 

like peptic ulcer disease in the stomach must seek out methods to increase gastroretention 

time to avoid gastric emptying. This is primarily achieved by means of high and low density, 

bioadhesive, swellable, expandable, or raft floating drug delivery systems for which the 

reader is referred to the following review for further detail [38].

2.5 Small intestine

Digested food from the stomach moves into the small intestine for further digestion and 

processing. The small intestine can be further divided into three structural parts: duodenum, 

jejunum, and ileum. The duodenum is a short structure that receives the gastric chyme from 

the stomach and secretes an alkaline solution of bicarbonate that neutralizes the stomach pH. 

The pH changes rapidly to about pH 6 in the duodenum and will rise to about 7.4 in the 

terminal ileum [39]. The jejunum connects the duodenum to the ileum and possesses villi 

that increase its surface area for absorption of nutrients. The ileum is the final section that 

possesses similar physiological structure to the jejunum and absorbs remaining nutrients not 

absorbed by the jejunum.

Greater than 99% of the epithelial tissue is covered with enterocytes to form the villi, finger-

like projections 0.5–1 mm in length [40]. The role of villi is to use their apical projections, 

called microvilli, to increase surface area for greater absorption [41]. The total surface area 

is approximately 400 m2, although this varies with the individual, with an average 

measurable microvilli height and diameter of 0.67–1.36 μm and 0.08–0.15 μm, respectively 

[42]. Covering the villi are follicle associated epithelium, M-cells, and mucus secreting 

goblet cells, which play a role in protecting the epithelium. The high surface area and 

numerous transport mechanisms make the small intestine a prime target for oral drug 

delivery [43].
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However, there are multiple challenges that arise from its physiology. Drugs must survive 

the severe chemical microenvironment in the stomach prior to entering the small intestine. 

Once in the intestine, drugs are then exposed to numerous pancreatic enzymes and bile salts 

that can degrade drugs. In addition, the presence of a mucosal layer results in low drug 

bioavailability of most water-soluble macromolecules due to their low mucus permeability. 

Drugs must be able to cross the mucosal layer followed by a submucosal and areolar cell 

barrier where they interact with a plethora of transport pathways including transcellular 

transport, paracellular transport, or receptor/carrier-mediated processes to enter systemic 

circulation (Figure 1) [13]. Various microdevices and nanotechnology-based approaches 

propose to take advantage of the physiology of the small intestine [42, 44]. Ability to control 

device dimensions in micro- and nanoscale allows targeting of specific villi and microvilli 

dimensions, leading to increased retention of the device, which may increase overall 

bioavailability [23]. Furthermore, microfabrication can also incorporate permeation 

enhancers that promote absorption of therapeutics that have traditionally been difficult to 

use for oral drug delivery. This will be explored in further detail in later sections.

2.6 Colon

Digesting food moves from the small intestine and into the large intestine, or colon, which is 

the final site of the digestive system before excretion. Compared to other oral drug delivery 

sites, the colon is host to lower digestive enzyme activity, higher pH compared to the 

stomach and small intestine, and a long residence time of up to 5 days [45, 46]. Furthermore, 

the gut microflora can carry out chemical reactions that may metabolize a number of 

different drugs. Delivery to the colon is important for treatment of bowel diseases including 

Crohn’s disease, ulcerative colitis, and colorectal cancer. Specific targeting of these diseases 

would benefit from local delivery by using less drug and can reduce side effects that arise 

from systemic delivery. As the colon is the most distal target, device design must ensure that 

drug release and absorption do not occur in the stomach or small intestine while protecting 

the drug against degradation in the variable microenvironments encountered. However, a 

major drawback to targeting the colon is the inherent variability of the patient’s pH levels, 

gastric emptying times, and differing microflora [47, 48]. As a result, the unique 

microenvironment found in each patient leads to variable drug release and poor 

bioavailability, which makes it challenging to deliver consistent, therapeutic doses. 

Therefore, device design must take these physiological challenges into consideration.

2.7 Concluding remarks for physiology

There are a number of physiological barriers that must be considered in the design of new 

devices to transport and protect drugs with subsequent delivery to targeted tissue. Therefore, 

it is important to design systems capable of taking advantage of biology by means of 

increased adhesion to promote retention time, response to stimuli in the local 

microenvironment, and enhanced permeation at target sites while being capable of 

delivering a significant dose of drug by efficient loading. The following sections will 

describe in detail how micro/nanofabrication present approaches to drug delivery that 

specifically take advantage of physiology in device design.
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3. Strategies to increase micro/nanofabricated oral drug delivery system 

adhesion

3.1 Rationale for promoting adhesion

The GI tract presents unique barriers and micro/nanoscale features that can be addressed by 

oral drug delivery systems. Micro- and nanofabrication approaches provide precise control 

over device geometry, surface modification, material composition, symmetry, and size, all 

of which can be used to design drug delivery systems for specific interactions with GI tract 

tissue. One particular interaction that is advantageous for oral drug delivery is bioadhesion, 

as adhesion to GI tract enhances drug uptake by 1) prolonging device residence time and 

drug exposure and 2) allowing for release of drug in high concentrations proximally to 

epithelial tissue for enhanced permeation effects [20, 21]. Drug delivery platforms can be 

fabricated to adhere to the lining of the GI tract via geometric, mechanical, biochemical, 

nanotopographical and/or motion-based approaches [49, 50]. To promote adhesion to 

specific regions of the GI tract, these approaches may utilize bioresponsive “smart” 

materials or be used in combination with other targeting technologies such as enteric 

coating.

3.2 Geometry-mediated adhesion

Microscale drug delivery systems are capable of enhanced adhesion over macroscale drug 

delivery systems as a result of their high surface-area-to-mass ratio and ability to become 

entrapped within the microscale villi [6]. Geometry-based approaches can further promote 

device adhesion by utilizing a flat or planar device shape that is typical of microdevices for 

oral drug delivery [21, 51–56]. As shown in Figure 2, a planar geometry promotes adhesion 

by 1) increasing the contact area available for interaction with the epithelial lining of the GI 

tract and 2) decreasing the force exerted on the devices from the fluid flow in the GI tract 

[20, 21]. Furthermore, microdevices can be fabricated asymmetrically with a drug reservoir 

on only one side of the device, providing unidirectional drug release to create a steep 

concentration gradient to increase drug permeation. Tao et al. investigated the effect of 

device geometry on adhesion by incubating planar, asymmetric devices with dimensions of 

150 × 150 × 5 μm over a monolayer of Caco-2 intestinal epithelial cells and exposing the 

devices to multiple washing steps [52]. After washing, 68% of the planar microdevices 

remained adhered while 17% of poly(methyl methacrylate) (PMMA) microspheres of 

similar surface area remained adhered. When loaded with the model drug fluorescein and 

added to a Caco-2 monolayer under flow conditions, these devices increased permeation of 

drug 10-fold over that of a bolus dose [55]. Furthermore, Chirra et al. demonstrated the 

effect of planar device geometry on adhesion in vivo [53]. When PMMA microdevices 200 

μm in diameter and 8 μm in thickness (Figure 3 A) were administered to mice, they showed 

27% retention in the proximal small intestine after 2 hours while PMMA microspheres of 

similar surface area demonstrated 12% retention. When loaded with drug, the planar PMMA 

microdevices provided a fourfold increase in oral bioavailability of acyclovir, a 

Biopharmaceutics Classification System (BCS) class III poorly permeable drug, relative to 

that of a bolus dose.
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3.3 Biochemical surface modifications to enhance adhesion

In addition to providing geometry-mediated enhancement in bioadhesion, micro and 

nanofabricated oral drug delivery platforms can be surface modified with bioadhesive 

compounds to promote adhesion. Microdevices are typically fabricated on a silicon wafer or 

other substrates, facilitating asymmetric functionalization of exposed device regions [22]. 

This asymmetric surface modification can be used to promote binding of the drug-releasing 

side of the device, providing unidirectional drug release toward epithelial tissue [20, 21]. 

Lectins, carbohydrate-binding proteins capable of binding to glycosylated proteins and cell 

membrane components to provide muco- and cytoadhesion [14], have been functionalized 

onto drug delivery systems to promote adhesion to the lining of the GI tract [6, 51–53, 59–

61]. PMMA microdevices modified with tomato lectin (Figure 3 B), which binds selectively 

to the epithelium of the small intestine [62], demonstrated 92 ± 4% retention in an in vitro 

Caco-2 adhesion assay, whereas devices lacking modification showed 29 ± 9% retention 

[51]. In vivo, lectin-conjugated PMMA microdevices showed 41% retention in the proximal 

small intestine of mice two hours following oral administration as opposed to 27% for bare 

devices [53]. Biochemical adhesion utilizing high-affinity interactions between a targeting 

ligand and specific moieties can provide highly specific binding to the small intestine or 

diseased tissue. However, one drawback to the use of biomolecules and other surface 

modifications to promote adhesion is degradation as a result of the low pH of the stomach 

and proteolytic and metabolic enzymes throughout the GI tract [63]. Therefore, molecular 

stability must be considered for surface modification of oral drug delivery platforms.

3.4 Micro- and nanotopography-mediated adhesion

Topography-mediated adhesion presents an alternative approach to promote bioadhesion 

that is dependent upon geometry rather than degradable surface modifications. By increasing 

surface area, micro- and nanofeatures increase the interfacial surface adhesion [64–67]. 

Cylindrical pills coated with microneedles designed for physical penetration of epithelial 

tissue to increase drug permeation are also likely to provide the additional benefit of 

increased adhesion to the GI tract [68]. As with asymmetric surface functionalization, 

asymmetric topographical modifications have potential to promote unidirectional drug 

release toward epithelial tissue. In an example of hierarchical microdevice structure, multi-

layer fabrication was employed to modify one surface of 150 × 150 μm microdevices with 

microposts 10 μm in diameter [69]. In an alternate approach, bottom-up nanofabrication 

approaches have been employed to create nanoengineered microparticles (NEMPs) 

consisting of silicon oxide nanowire-coated silicon microparticles for oral drug delivery 

(Figure 3 C) [57, 70–73]. Following contact with an epithelial layer, the nanowire coating of 

these microparticles interdigitated with the microvilli on the surface of the epithelial cells 

[73]. The NEMPs showed a 100-fold increase in required lift-off force from an in vitro 

epithelial monolayer relative to unmodified microparticles [73]. In vivo, the retention time of 

the NEMPs in the GI tract following oral administration was 10-fold that of bare 

microparticles [57]. While NEMPs can be fabricated with a relatively planar shape for 

enhanced adhesion [71], the fabrication approaches used for NEMP fabrication do not allow 

for asymmetric nanowire functionalization for unidirectional drug release or use of highly 

biocompatible polymers. However, the techniques of photolithography and nanotemplating 
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were recently combined to asymmetrically coat PMMA microstructures with 

polycaprolactone (PCL) nanowires [74]. While not yet applied to oral drug delivery, this 

approach has potential to combine the benefits of asymmetric, planar microdevices with 

nanowire-mediated adhesion while utilizing polymers with FDA approval for medical 

applications [75, 76].

3.5 Mucoadhesive bulk materials

As an alternative to surface modification, a number of mucoadhesive materials including 

alginate [77, 78], chitosan and chitosan derivatives [79–81], hyaluronic acid [82, 83], gelatin 

[84, 85], cellulose derivatives [86, 87], and a number of synthetic polymers [88] are 

available for use as a bulk material in fabrication of oral drug delivery systems. Among 

these materials, chitosan has been highly utilized in a number of oral drug delivery systems, 

including chitosan-based micro- and nanoparticulate drug delivery systems [89–94], 

chitosan-drug conjugates [95, 96], and chitosan macroscale patches [97, 98]. Chitosan is an 

attractive material for micro/nanofabricated platforms as it is compatible with a number of 

microfabrication approaches [99, 100], is stable through pH values relevant to GI 

physiology [101], and has been utilized in microfabricated oral drug delivery systems [58, 

102].

3.6 Mechanical and motion-based adhesion

While device surface modifications including biochemical and nanotopographical cues are 

capable of interacting with epithelial tissue to enhance cytoadhesion and drug permeability, 

the mucus layer may prevent direct interaction between nanofeatures and epithelial cells. 

Mechanical and motion-based adhesion approaches may provide a mechanism for 

microscale devices to penetrate through the mucus layer and directly contact epithelial 

tissue.

Microscale drug delivery systems can be designed to mechanically respond to the 

environment of the GI tract to promote adhesion. Self-folding devices have been developed 

to respond to solvent exposure [58, 102], temperature [103, 104], pH [102], and ionic 

strength [105]. Self-folding properties have been incorporated into microscale oral drug 

delivery systems to promote mechanical attachment to the lining of the GI tract. For 

example, Guan et al. fabricated bilayered devices consisting of chitosan and a copolymer of 

poly(ethylene glycol) methacrylate (PEGMA) and poly(ethylene glycol) dimethacrylate 

(PEGDMA) which used differential swelling to fold upon exposure to water (Figure 3 D) 

[102]. Similar bilayered devices composed of crosslinked poly(methacrylic acid) (PMAA) 

and poly(hydroxyethyl methacrylate) (PHEMA) were capable of mechanical attachment to 

excised pig intestinal mucosa [58], and demonstrated enhanced mucoadhesion, lower drug 

leakage into luminal space, and improved unidirectional delivery, resulting in improved drug 

transport across excised porcine mucosal epithelium [49]. While these self-folding devices 

have not demonstrated specificity in binding to the small intestine or other specific regions 

of the GI tract, alternative bioresponsive materials could be utilized to respond to pH or 

other cues for more specific targeting. Alternatively, these self-folding devices could be 

combined with other targeting technologies such as enteric capsules to release these devices 

at the desired region of the GI tract.

Fox et al. Page 8

J Control Release. Author manuscript; available in PMC 2016 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In an alternate approach involving motion-based adhesion, a number of technologies for 

chemically induced locomotion have been developed [106–111]. Gao et al. applied this 

technology to oral drug delivery systems by developing a pH-responsive micromotor 

approach to enhance device adhesion and payload delivery to the lining of the mouse 

stomach (Figure 3 E) [50]. Their design of micromotors consisting of a zinc core encased 

within a poly(3,4-ethylenedioxythiophene) (PEDOT) microtube was then tested in mice by 

oral administration. Upon exposure to the low pH of the stomach, the zinc core reacted to 

form hydrogen gas, propelling the micromotors into the lining of the stomach, enhancing 

binding and retention of the devices and delivery of gold nanoparticles to the stomach wall. 

The reaction of these micromotors to low pH environments makes them ideal for promotion 

of stomach-specific adhesion. However, different compounds will need to be incorporated 

into the micromotor core to improve adhesion in other regions of the GI tract with higher pH 

values.

4. Loading of novel micro- and nanoscale oral drug delivery platforms

Ideally, the loading of drugs into carrier systems should be 1) efficient, minimizing the 

amount of drug wasted during the loading process, 2) high-throughput, allowing for 

scalability in production, and 3) able to maintain drug integrity under loading and storage 

conditions. The versatility of using polymers in combination with MEMS technology has led 

to several innovative ideas of loading novel drug delivery carriers for controlled release 

applications [112–114]. Most of these innovative carriers load and release drugs using 

responsive polymeric hydrogels, degradable polymer coatings, dissolvable thin metal films, 

or capillary action.

The most common and successful microelectromechanical systems (MEMS) technique to 

load miniaturized carriers with a variety of drugs is by using photolithography. 

Photolithographic crosslinking of polymers in the presence of a photoinitiator proves useful 

in tailoring specific material properties such as hydrophobicity, biodegradability, and 

biocompatibility that play a role in drug release kinetics, cellular interaction, and 

immunogenicity. These properties can also be modified by varying the chemical structure/

functionality of the monomer used, molecular weight, and/or crosslinking density [49, 58, 

115, 116]. The process involves spin casting a photoinitiator mixed pre-polymer solution as 

shown in Figure 4 A. Polymerization is then carried out through the localization of light 

using an appropriate photomask. The drug is loaded inside the polymer matrix either by 

mixing it with the pre-polymer solution or via responsive swelling-diffusion-collapse 

method [117–120]. While spin casting is rapid in loading microreservoirs with drug 

solutions, a significant amount of drug is lost during the spin-casting and development steps, 

which makes the platform not viable for expensive drugs. Furthermore, drugs loaded by 

photolithographic approaches must be able to remain intact following UV exposure.

A more precise low-wastage drug loading method can be achieved by individually loading 

each reservoir with the appropriate volume of drug-polymer solution. Boisen and co-

workers recently employed an inkjet printer to load a drug solution into microdevice 

reservoirs [121, 122], which is a quasi-no-waste performance technique as shown in Figure 

4 B. They also loaded microdevice reservoirs with hydrophobic drugs in the absence of toxic 
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organics by incorporating supercritical fluid impregnation with inkjet printing [123]. In this 

method, well defined quantities of poly(vinyl pyrolidone) (PVP) were dispensed into 

microcontainers/microreservoirs. Then the poorly soluble drug ketoprofen was impregnated 

into the polymer matrix using supercritical carbon dioxide as the loading medium (Figure 4 

B(ii)). The amount of drug loaded or dosage achieved in microcontainers is tuned by varying 

the impregnation parameters. Compared to solid dispersions of the same drug, supercritical 

impregnated microdevices exhibit more reproducible drug loading and faster dissolution of 

drug, which allows for the modulation of drug release. While this method is capable of 

precise, relatively zero-waste performance, the sequential loading of each microdevice in a 

semi-automated manner makes it a low-throughput technique relative to spin casting. In 

their current state, microinjection/inkjet printing methods are not ideal for mass 

manufacturing production [21].

Simpler techniques for loading drugs into reservoirs have been utilized to overcome the low-

throughput issue associated with microinjection/inkjet printing and high-wastage issue 

involved with spin casting. Nielsen et al. used a modified screen printing technique that 

involves the use of a stencil mask pre-fabricated by laser machining that aligns on top of 

microdevices for accessing the vacant reservoirs [124]. The stencil has pores/holes matching 

the microdevice reservoirs with a high level of precision. Once the stencil is aligned using 

an optical microscope, powdered amorphous drug is pressed through the stencil into the 

microreservoirs (Figure 4 C). Any excess powdered drug not located within the microwells 

is removed along with the stencil and is reused for loading more devices, thereby reducing 

drug waste. An alternative wet loading technique developed by Guan and co-workers uses a 

discontinuous de-wetting technique to collect and crystallize model drugs via solvent 

evaporation into device reservoirs to provide a high throughput drug loading method [58]. A 

similar high-throughput and rapid approach to loading microdevices with drug is achieved 

by harnessing the phenomenon of capillary action. Several researchers have fabricated 

nanowire-coated oral microdevices and used the high surface area of nanowires to 

effectively load both aqueous and non-aqueous drugs via capillary action. After solvent 

evaporation, the drug crystallizes over the microdevice surface at the base of the nanowires 

(Figure 4 D) [71, 72, 74]. Because solvents of drug solutions can evaporate in a manner of 

minutes with >90% of drug collecting over nanowire-coated microdevices [74], loading via 

capillary action is efficient in both throughput and minimizing drug waste. However, 

because the drug is surface-loaded rather than loaded within a matrix with tunable 

properties, this approach may present challenges in tuning release rates.

A more controlled approach to loading drugs into oral devices involves using modified soft 

lithography techniques. Soft lithography is a well-known tool used in the patterning of 

hydrophilic or hydrophobic molecules or polymers, polysaccharides, stimuli-sensitive and 

responsive materials, proteins, and growth factors over a wide variety of surfaces [125–128]. 

Micromolding in capillaries (MIMIC) uses a polydimethylsiloxane (PDMS) mold that 

comes into contact with the substrate surface. A low-viscosity prepolymer solution is then 

placed at the open end of the channel, wherein the solution is transferred to specific 

locations on the substrate by fluid flow or capillary action [129, 130]. A modified version of 

MIMIC is currently being studied to load drugs into microdevice reservoirs. Lee et al. 

loaded small amounts of model drugs methylene blue and tetracycline hydrochloride into 
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microreservoirs using wet microcontact printing method [131]. In this process, a liquid drug-

carrier solvent mixture was transferred to the reservoir by contact printing process as shown 

in Figure 4 E. By prolonging the time of contact printing in the presence of a non-volatile 

drug carrier solvent such as poly(ethylene glycol) (PEG), a higher dosage of drug was 

loaded into the microreservoirs. Moreover, unlike conventional PDMS stamps used for 

microcontact printing, the use of an active polymeric composite membrane fabricated by 

Ahmed and group is able to enhance the rate of microreservoir loading [132]. These smart 

microtransfer stamps can locally sense and actuate during wetting and printing process, 

thereby reducing drug wastage and increasing rate of manufacturing. Although research on 

loading drugs into oral drug delivery microplatforms is at its relative inception, well 

established semi-conductor industry fabrication techniques combined with polymer 

technology is bound to improve the mass fabrication of novel microplatforms loaded with a 

variety of oral drugs.

5. Incorporation of tunable and bioresponsive smart materials for sustained 

and controlled drug release

Ideally, oral administration should deliver drug to a specific target of the intestine at a 

required concentration within the therapeutic window. In addition, the drug should be 

delivered at the right time in a safe and reproducible manner. Currently, with a variety of 

loading techniques available for introduction of drugs into oral microplatforms, the future of 

oral microdevices involves the appropriate selection of polymer systems and other materials 

that can be tuned to modulate the release kinetics of entrapped drug. Multiple drugs can be 

dispensed from the microarray devices at specific locations in the intestine in a pulsatile 

fashion using rapid responsive or dissolving materials to treat localized intestinal 

pathologies. The high drug concentrations achieved during pulsatile release may provide 

therapeutic drug concentrations in local drug delivery to the GI tract or allow for saturation 

of metabolic or proteolytic enzymes to enhance systemic drug uptake. In the case of drugs 

that are sensitive to the harsh GI environment, including macromolecules and proteins, co-

delivery of enzyme inhibitors and the therapeutic drug is beneficial. For this, a multi-

reservoir microdevice can be loaded with multiple entities for simultaneous release at 

different rates.

The development of such devices is made possible through use of different polymeric 

matrices that entrap the drugs of interest. Polymers have varying chain length, 

hydrophilicity, and ionic charge, granting ample control when tailoring drug release kinetics. 

Additionally, advances in the field of polymer science have fostered the design and 

preparation of polymers with sensitivity to pH, temperature, and a variety of additional 

stimuli, which confers added specificity. Use of these materials would allow for targeted and 

independent release of multiple drugs, resulting in the widespread application of 

miniaturized oral platforms that release a wide array of drugs including sensitive drugs and 

macromolecules that are currently administered non-orally. Here, we summarize both well 

investigated, as well as novel ‘smart’ drug release materials that are promising for oral 

administration.
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5.1 Multi-drug release

Combination therapies and co-delivery of permeation enhancers with the therapeutic drug of 

intertest may be enhanced by localized co-delivery by micro/nanofabricated platforms. 

Towards the goal of multi-drug release with separate release profiles, Ainslie et al. loaded 

single-reservoir microdevices with multiple drugs via a sequential layer-by-layer 

photolithographic process in combination with spin casting [20]. While the sequential 

loading of drugs into the same reservoir is useful for achieving sequential drug release 

kinetics, the release profile of each drug is dependent upon the property of all hydrogel 

layers. Alternatively, independent loading and release of multiple drugs can be achieved by 

using multiple reservoirs in the same microdevice. Chirra et al. entrapped three different 

model drugs via photopolymerization within separate reservoirs to provide simultaneous 

release [54]. The release profile of each drug loaded within the device was thereby solely 

dependent upon the property of the respective encompassing polymer/hydrogel matrix 

(Figure 5 A). This custom-release microdevice may be effectively used to deliver multiple 

drugs at different rates in localized regions to treat intestinal diseases including 

inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) or for co-delivery of 

permeation enhancers.

5.2 MEMS-based drug release

The earliest MEMS device developed for controlled drug delivery included the GI 

microcapsule and the ChipRx smart pill. Unlike what the name suggests, the GI 

microcapsule is a 1 × 3 cm tube that carries out real-time drug release and gastrointestinal 

fluid sampling, while passing through the intestine [134]. This remote-controlled 

polycarbonate capsule has a location monitoring unit, a receiver, a driving device, reservoirs 

for drug and sampling, and a battery. The ChipRx smart pill is an implantable, single 

reservoir device equipped with a sensor to detect changes in the tissue environment [134]. 

After a builtin chip processes the sensor’s signal, a drug-releasing signal is sent, actuating a 

polymer membrane that covers the reservoir to release a specific amount of drug. A similar 

‘smart’ system that caters to the variations in patient physiology and allows the user to 

deliver drugs on demand is the Philips IntelliCap technology [135]. It uses a telemetric 

capsule that delivers a drug at a certain place with a programmable release profile, which is 

realized by a miniaturized pumping system. Other pursuits concern the use of flexible, 

modularized systems where individual modules have its own drug and release kinetics. For 

example, Dome Matrix® technology, which is based on the concept of module assembly, 

has been used as an antimalarial drug delivery system that releases artesunate and 

clindamycin with different release profiles [136].

A more actively smart microdevice system that releases drug on cue is developed by 

MicroCHIPS Inc. Herein, a programmable microdevice made of an array of pyramid-shaped 

microreservoirs is used. The microarray of reservoirs is loaded with drug of interest using a 

microinjection method as shown in Figure 4 B. The loaded reservoirs are then capped with a 

thin gold film, as shown in Figure 4 B(i) that serves as an impermeable anode which readily 

dissolves to release the drug once triggered by a wireless electrochemical potential. 

Recently, a modified version of the microdevice was tested in clinical trials for delivering 

parathyroid hormone to humans [137]. Using the MicroCHIPs device, both in vitro and in 
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vivo pulsatile release of drugs has been well demonstrated [138–141]. In pursuit of a 

biodegradable platform, MicroCHIPs used a resorbable platform consisting of an array of 

microreservoirs capped with biodegradable poly (lactic-co-glycolic acid) (PLGA) 

membranes instead of a dissolving metal film [133, 142]. The degradable PLGA membranes 

were synthesized using various ratios of lactic acid to glycolic acid, different molecular 

weights, and different thicknesses to provide multi-pulse drug release (Figure 5B). Even 

though the MicroCHIPS platform was not used for oral drug delivery, similar devices with 

multiple drug reservoirs can be fabricated with polymer films with faster degradation rates 

to provide pulsatile drug release at rates relevant to oral drug delivery. Furthermore, while 

this platform utilized a single drug of interest, multiple drugs could be incorporated for 

sequential, pulsatile release.

5.3 Swellable polymers

The first systems developed for oral drug delivery were based on hydrophilic polymers that 

swelled in the presence of water to allow release of drug [143, 144]. Such systems were 

appealing due to previously demonstrated material biocompatibility and FDA approval, and 

as such, currently form the bulk of oral drug delivery strategies. However, a variety of 

complications limit the effectiveness of these systems for oral drug delivery. Due to the 

swelling-based mechanism of drug release, these systems often experience an initial burst 

release of drug before the drug delivery system reaches its intended site of action. 

Additionally, such systems are susceptible to bulk degradation by hydrolysis, altering drug 

release kinetics and creating another challenge in controlling drug release. The use of 

hydrophobic materials circumvents several of these issues, as they primarily degrade via 

surface erosion, maintaining drug release kinetics [143]. However, poor efficacy due to 

limited specificity and low bioavailability remain significant challenges in these systems.

5.4 Stimuli-responsive materials

Stimuli-responsive materials are promising for controlled drug release because they 

specifically regulate drug release by actively sensing and responding to external conditions. 

When exposed to a specific stimulus, including temperature, pH, light, electric field, 

magnetic field, ultrasound and binding of biomolecules [145–147], these materials undergo 

conformational changes that alter their hydrophilicity, affecting bulk matrix properties that 

modify drug release. Of these, pH- and enzyme-sensitive systems are the most relevant for 

oral drug delivery, as they detect and respond to signals along the GI tract without the need 

for external intervention.

pH-responsive hydrogels are a class of stimuli-responsive systems that have great potential 

in oral drug delivery due to dynamic changes in pH along the GI tract. Researchers have 

taken advantage of this variability in pH to design drug delivery systems that release 

therapeutic payloads specifically in the stomach, intestine, or colon. These systems are 

generally made of synthetic polyacids or polybases [148–151], although naturally occurring 

pH-sensitive polymers (e.g., alginate, chitosan, hyaluronan) have also been investigated 

[145, 146, 148–151].
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In addition to environmental pH, biochemical cues can be used to impart control over drug 

release. Generally, these materials modulate drug release via swelling or shrinking after 

binding a target biomolecule or enzyme-mediated degradation. Researchers have developed 

materials that can be degraded by microbial enzymes found in the intestine and colon [152–

155]. Early strategies involved prodrugs and hydrogels containing azoaromatic linkages for 

the treatment of IBS and other colon-related diseases [155]. These materials are protected 

from the harsh conditions of the upper GI tract, but are degraded by azoreductases found in 

the colon, triggering release of active drug. Another promising material for colonic drug 

delivery is pectin. Pectin is resistant to proteases and amylase in the upper intestine but is 

digested by enzymes in the colon [153]. Dextranase-, chymotrypsin-, and papain-sensitive 

hydrogels have also been investigated for enzyme-sensitive drug release [156].

Hydrogels that swell/shrink in response to a biological cue have also been developed. For 

example, glucose-responsive hydrogels containing phenylboronic acid or concanavalin A 

(ConA) are able to bind glucose and swell to release entrapped insulin [157]. These moieties 

generate a closed-feedback loop that senses and responds to the demands of the 

environment. While these systems are appealing, such biological interactions are not always 

easily found and incorporated into drug delivery systems. To this end, antibody- and 

aptamer-containing hydrogels have been engineered to respond to a multitude of biological 

stimuli [158, 159].

5.5 Molecularly imprinted polymers

Additionally, molecularly imprinted polymers (MIPs) have recently gained much attention 

as materials that can be designed to respond to virtually any substrate of interest [160]. MIPs 

are prepared by allowing a template molecule to form either covalent or non-covalent 

interactions with a monomer of interest, and then crosslinking the monomers to fix the 

interaction in place. The template molecule is then removed to leave a cavity that is specific 

for the desired target or a structurally similar molecule. Due to this increased affinity, these 

systems have been shown to have a higher drug loading capacity and slower drug release 

compared to non-imprinted matrices. External stimuli can be used to disrupt the binding 

interaction between the cavity and the drug to initiate drug release. While these systems 

have not been widely investigated for oral drug delivery, their use in ocular drug delivery 

devices is promising [144].

5.6 Multi-stimuli-responsive polymers

One major obstacle to oral drug delivery is the large variation in gastric retention time and 

GI pH between patients. In order to address this, numerous materials have been developed to 

exhibit responsiveness to two or more stimuli, enabling tighter control over delivery of a 

drug payload [145]. Most relevant to oral drug delivery are pH- and enzyme-sensitive 

systems. He et al. developed poly(ester amide) microspheres for oral insulin delivery using a 

dual-controlled system. The polymeric microspheres collapse at gastric pH levels, protecting 

insulin from degradation in the harsh conditions of the upper GI tract. Upon reaching the 

small intestine, the pH significantly increases, allowing the microspheres to swell and begin 

releasing insulin. Additionally, the poly(ester amide) microspheres can be degraded by 

elastases and chymotrypsin found in the small intestine, facilitating drug release and particle 
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degradation [161]. Similarly, Popat et al. developed mesoporous silica nanoparticles that are 

coated with a pH- and pancreatin-responsive polymer shell. As it reaches the small intestine, 

the polymer shell expands and slowly releases a prodrug containing an azoaromatic linkage, 

which is selectively activated in the colon [152].

5.7 Incorporating “smart” polymers into micro- and nanofabricated oral drug delivery 
systems

While many of these materials are promising for oral drug delivery, relatively few have been 

used in combination with micro- and nanofabrication technologies to combine the chemical 

and biological responsiveness with micro/nanotopography and other forms of geometric 

engineering. By incorporating these “smart” materials into these microscale devices, it may 

be possible to tailor the extent and specificity of drug loading and drug release for oral drug 

administration. The most facile method for achieving this is to use a matrix system where 

drugs of interest are entrapped in these materials and then tune the release rates at the 

relevant physiological conditions. Additionally, it is possible to use a reservoir system where 

these polymers can be used as a cap that will either control diffusion for the lifetime of the 

device or block drug release until it is dissolved in the presence of low pH or gastrointestinal 

enzymes. This ability to design microdevices on a molecular scale as well as on the micro- 

and nanoscale enables precise control over where and how drugs are delivered to the GI 

tract, suggesting the great potential of microdevices as oral drug delivery platforms.

6. Epithelial permeation enhancement

6.1 Advantages and risks of epithelial permeation enhancement

While polymer chemistry allows us to tailor drug release kinetics with significant control, 

there remain barriers to drug uptake once the drug leaves the microdevices, such as the 

existence of a thick mucus layer and the presence of tight junction proteins between 

epithelial cells. In order to address the physiological barriers posed by the intestinal 

epithelial layer, chemical and nanotopographical permeation enhancers have been explored 

in the field of drug delivery. Permeation enhancers temporarily disturb epithelial tightness, 

allowing greater transepithelial transport of therapeutics. With proper use, permeation 

enhancers can greatly increase bioavailability of orally administered drugs and allow more 

efficient delivery of therapeutics. However, since a normal epithelial layer serves as a 

natural barrier to harmful foreign agents, disruption of the membrane may have potentially 

dangerous side effects. Therefore, it is important to ensure that the effects of permeation 

enhancers are reversible and do not cause any permanent cellular damage.

6.2 Mechanisms of permeation enhancement

While many different mechanisms may be utilized to achieve increased permeation, one of 

the most common modes by which permeation enhancers function is through modulation of 

tight junctions. Tight junctional complexes greatly inhibit paracellular drug permeation, 

lowering bioavailability, and often serve as the rate-limiting barrier to various hydrophilic, 

large therapeutic agents. Another common mode of permeation enhancement includes 

modulation of transcellular drug transport by disruption of the cell membrane using 

excipients, such as fatty acids. In addition, some studies have utilized efflux inhibitors in 
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order to reduce efflux of therapeutics by membrane transporters, such as p-glycoprotein 

[162–164]. We refer to the reviews by Aungst [165, 166] for more detailed information 

regarding various types of permeation enhancers that have been used as excipients in clinical 

trials as well as their mechanism of action. In this review, we focus on the incorporation of 

chemical enhancers as well as permeation enhancing topography into micro/nanofabricated 

oral drug delivery systems.

6.3 Co-delivery of chemical permeation enhancers

Drug release profiles of co-delivered drugs from micro/nanofabricated drug delivery 

systems can be individually tailored to facilitate optimal chemical permeation enhancement. 

For example, as mentioned earlier, work by Chirra et al. enabled co-delivery of several 

therapeutics by loading them into multi-reservoir bioadhesive microdevices [54]. Using this 

approach, permeation enhancers described above, such as efflux inhibitors, can be co-

delivered with the therapeutic drug of interest in order to provide localized permeation 

enhancement at the site of delivery. This localized co-delivery of permeation enhancer may 

potentially reduce side effects associated with universal enhancement of transepithelial 

permeation along the intestinal lining. In addition, since the release of drugs from each 

reservoir is independent of each other, this technology allows the therapeutic to be delivered 

at a different rate than the permeation enhancer, potentially providing epithelial disruption 

prior to the release of the bulk of the therapeutic drug. This approach can also be used with 

the design of multilayered polymeric microdevice by Ainslie et al. [56]. Their study showed 

that their microdevices can provide simultaneous, unidirectional release of multiple 

therapeutics as well as achieve a significant increase in transepithelial permeation. By 

adding a layer that simultaneously releases a permeation enhancer along with the therapeutic 

of interest, localized permeation enhancement and consequent reduction in side effects may 

be possible.

6.4 Topographical permeation enhancement

Similarly to a subset of chemical permeation enhancers that rely on perturbation of tight 

junctional proteins, micro- and nanotopography have been shown to achieve tight junctional 

reorganization, which resulted in enhanced transepithelial permeability in cell culture 

models [70, 71, 167]. For instance, studies by Uskokovic et al showed that silica 

microparticles covered with PEGylated silicon nanowires (Figure 6 A) are able to increase 

transport of fluorescein-Na across a layer of Caco-2 cells compared to bare particles. 

Moreover, the nanowire-coated particles were able to decrease transepithelial electrical 

resistance (TEER), which indicates epithelial tightness, to a greater extent than bare particles 

when tested on Caco-2 cells [70]. This platform has further advanced to the form of planar 

nanowired microdevices that are made with biodegradable polymers for enhanced 

biocompatibility in oral drug delivery applications (Figure 6 B) [74].

Additional studies have focused on the role of nanostructured polymeric films in increasing 

transepithelial transport [167]. Unlike the nanoengineered microparticles described above, 

this study focused on the effects of nanotopography in the form of nanostructured thin films 

that were relatively large (>2 mm in dimension) compared to the microparticles. 

Nanostructured polypropylene thin films (Figure 6 C) were fabricated using nanoimprint 
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lithography and placed on top of Caco-2 cells that were cultured in transwell inserts. In line 

with work by Uskokovic et al [70], this study showed a significant decrease in TEER with 

nanostructure contact, which was reversible upon removal of the film. As mentioned earlier, 

the transient nature of TEER reduction upon nanostructure contact is noteworthy, as it is 

important to ensure lack of long-term disruption of the epithelial layer. The reversibility of 

tight junction modulation was also evident in immunohistochemical staining images (Figure 

6 D–F), which show ruffled ZO-1 pattern upon nanostructure contact (Figure 6 E), which 

was reversible upon removal of the film (Figure 6 F). Moreover, the study noted a 

significant increase in transport of large molecules, such as etanercept (MW = 150 kDa), 

across a Caco-2 layer upon contact with nanostructured films. While its underlying 

mechanism has yet been fully elucidated, the notable increase in transport is thought to be 

due to active modulation of tight junctional complexes by formation of focal adhesion 

complexes at the site of nanostructure-epithelial cell contact [167, 168].

While nanotopography-mediated modulation of tight junctional complexes introduced an 

interesting new mode of permeation enhancement, methods that utilize physical penetration 

of the epithelial membrane using micro- or nanoneedles have also shown great promise. 

While microneedles have been more widely explored in drug delivery across the skin, the 

idea of physically puncturing GI tissue using microneedle pills have been recently presented 

in the field [68]. This proof-of-concept study showed safety and feasibility in evaluation of 

the prototype in vivo by delivering insulin through the oral route.

In addition to microneedles, nanoneedles have recently gained considerable interest in the 

field for their ability to achieve highly efficient drug delivery to living cells [169–176]. 

While free-floating nanotubes, such as single-walled carbon nanotubes, can be utilized as 

delivery vehicles in suspension [172, 173], more recent studies have focused on using 

vertical nanowire arrays for direct intracellular access. The nanoneedle platform involves 

vertical nanowires on a flat surface that puncture the cell membrane in order to deliver 

therapeutics of interest directly to the cell cytosol [170]. Various types of cells have been 

cultured on top of nanowired platforms to gain better access to the cell interior without 

significantly affecting their viability [171, 176]. The nanoneedle platform has expanded into 

various designs in the last decade, including a nanotemplated fluidic platform that allows 

hollow nanostraws to pierce the cell membrane and provide continuous intracellular access 

[169] and a nanowire-cell sandwich assay that allows enzymatic probing [176]. While the 

vertical nanoneedle approach has not been actively explored for direct cellular access in oral 

drug delivery applications, this direct mode of delivery may provide additional advantages 

over permeation enhancers that aim to increase transcellular drug transport. For instance, for 

drugs that require entrance into cells that are present along the digestive tract, microparticles 

covered with vertical nanowires may be able to achieve localized membrane penetration at 

the target site, allowing efficient intracellular drug delivery and reducing unnecessary drug 

distribution in the non-target sites.

7. Conclusion

The GI tract presents a complex set of physiological barriers that limit drug uptake. Micro- 

and nanotechnology provide flexibility in microdevice design, allowing for fabrication of 
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drug delivery platforms that specifically address these barriers. The efficacy of micro/

nanofabricated oral drug delivery systems may be enhanced by incorporating 1) tunable 

and/or responsive drug reservoir polymers for targeted release of intact drug, 2) adhesive 

polymers, surface modifications, and topographies to enhance adhesion, and 3) chemical and 

topographical permeation enhancers to increase drug permeability. With recent success in 

vivo, these technologies show promise for clinical trials. However, many of the top-down 

approaches used to fabricate these platforms for proof of concept are low-throughput and 

expensive relative to bottom-up fabrication techniques. To scale these technologies to the 

clinic, efficient, low-cost fabrication and drug loading approaches are being developed. 

Furthermore, to maximize cost-efficiency, these platforms may be used with highly potent 

drugs to minimize the number of devices required per dosage. As micro- and 

nanofabrication approaches continue to incorporate new technologies, future micro/

nanofabricated oral drug delivery systems may combine smart materials, bioadhesive 

functionalization, nanotopography, planar shape, asymmetric design, and/or motion-based 

responses to address the many barriers to oral drug uptake in a manner not possible with 

conventional technologies.
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Abbreviations

BCS Biopharmaceutics Classification System

ConA concanavalin A

GI gastrointestinal

IBD inflammatory bowel disease

IBS irritable bowel syndrome

MEMS microelectromechanical systems

MIMIC micromolding in capillaries

MIPs molecularly imprinted polymers

NEMPs nanoengineered microparticles

PCL polycaprolactone

PDMS polydimethylsiloxane

PEDOT poly(3,4-ethylenedioxythiophene)

PEG poly(ethylene glycol)

PEGDMA poly(ethylene glycol) dimethacrylate

PEGMA poly(ethylene glycol) methacrylate
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PHEMA poly(hydroxyethyl methacrylate)

PLGA poly (lactic-co-glycolic acid)

PMAA poly(methacrylic acid)

PMMA poly(methyl methacrylate)

PVP poly(vinyl pyrolidone)

TEER transepithelial electrical resistance
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Figure 1. 
Schematic representing the routes of drug transport through the physiological barriers of the 

small intestine. Drug molecules can be transported passively via paracellular or transcellular 

diffusion or actively via receptor-mediated endocytosis and carrier-mediated transport.
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Figure 2. 
In contrast to spherical microparticles, planar, asymmetric microdevices provide proximal, 

unidirectional drug release and increased residence time in the GI tract. A planar 

microdevice shape reduces the force experienced from intestinal fluid flow (blue arrows) 

and increases surface area available for binding to epithelial tissue, increasing device 

adhesion to the lining of the GI tract and prolonging drug exposure. Devices can be 

asymmetrical fabricated with a drug reservoir on one side of the device, allowing for 

proximal, unidirectional release of drug (green) toward epithelial tissue.
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Figure 3. 
Micro- and nanofabrication-based approaches to enhance bioadhesion. A. A planar device 

geometry for increased surface area available for interaction with epithelial tissue and 

decreased force from intestinal fluid flow [53]. B. Lectin (green) surface modification to 

promote bioadhesion of the side of devices with drug reservoirs (blue) for unidirectional 

drug release [54]. C. Silica nanowires coating silicon microparticles provide increased 

surface area, promoting muco- and cytoadhesion [57]. D. Bilayered microdevices before (i) 

and after (ii) exposure to water. Microdevice folding is designed for mechanical attachment 

to intestinal mucosa [58]. E. Micromotors consisting of a zinc core encased within a 

polymeric microtube react with gastric acid, propelling the micromotors for entrapment 

within the stomach lining (1 s intervals, i–iii) [50]. Images reproduced with permission.
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Figure 4. 
Schematic representation of loading drugs into microdevice platforms. A. Rapid loading of 

reservoirs via spin casting followed by drug entrapment inside a photopolymerized polymer 

matrix. B. Precise loading of microreservoirs using microinjection/inkjet printing and then 

entrapping the drug within the reservoir via (i) introduction of a cap layer on top or (ii) 
supercritical impregnation. C. A high-throughput screen printing method involves the use of 

a transparent stencil that aligns with the microdevices to the reservoirs. D. Drug loading via 

capillary action of drug solution during solvent evaporation. E. Novel soft lithography 

methods of wet microcontact printing or microtransfer printing to load drugs into multiple 

devices simultaneously.
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Figure 5. 
Tunable multi-drug and pulsatile release in microfabricated drug delivery devices. A. Multi-

reservoir microdevices loaded with different BSA-fluorophore conjugates demonstrated 

independent release at specific rates determined by drug matrix crosslinking density [54]. B. 

Microarray devices using multiple reservoirs coated with PLGA of varying molecular 

weights delivered heparin in a stepwise fashion [133]. Figures reproduced with permission.
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Figure 6. 
A–C. Scanning electron microscope (SEM) images of (A) nanowire-covered silica 

microparticles [71], (B) planar nanowired microdevices [74], and (C) nanostructured 

polypropylene film [167]. D–F. Immunohistochemical staining (green) of zonula occluden 

(ZO-1) in Caco-2 cells (D) before nanostructure contact, (E) after 2 hours of nanostructure 

contact and (F) 24 hours after removal of nanostructured film [167]. Upon contact with 

nanostructured film, a ruffling pattern of ZO-1 staining, which indicates loosening of 

epithelial barrier, is observed. ZO-1 morphology reverts to a similar morphology observed 

in (D) upon removal of nanostructure contact, which indicates reversibility of the 

permeation enhancement. Scale bars are (A) 2 μm, (C) 3 μm, and (B, D–F) 20 μm. Figures 

reproduced with permission.
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