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Abstract

Advances in the field of tissue engineering have enhanced the potential of regenerative medicine, 

yet the efficacy of these strategies remains incomplete, and is limited by the innate and adaptive 

immune responses. The immune response associated with injury or disease combined with that 

mounted to biomaterials, transplanted cells, proteins, and gene therapies vectors can contribute to 

the inability to fully restore tissue function. Blocking immune responses such as with anti-

inflammatory or immunosuppressive agents are either ineffective, as the immune response 

contributes significantly to regeneration, or have significant side effects. This review describes 

targeted strategies to modulate the immune response in order to limit tissue damage following 

injury, promote an anti-inflammatory environment that leads to regeneration, and induce antigen 

(Ag)-specific tolerance that can target degenerative diseases that destroy tissues and promote 

engraftment of transplanted cells. Focusing on targeted immuno-modulation, we describe local 

delivery techniques to sites of inflammation as well as systemic approaches that preferentially 

target subsets of immune populations.
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1. INTRODUCTION

The immune system has been implicated in numerous aspects of tissue dysfunction and/or 

limited regeneration, such as injury, autoimmune diseases, and allograft rejection. More than 

50 million injuries are reported to hospitals each year accruing over $80 billion in direct 

medical costs over the lives of these patients ranging from minor bone fractures to traumatic 

brain and spinal cord injuries [1]. An injury can activate the innate immune response leading 

to the recruitment of pro-inflammatory neutrophils and macrophages to prevent infection, 

yet their presence may lead to extensive secondary damage and persistent activity may result 

in chronic inflammation, both of which can limit tissue regeneration [2]. Dysregulation of 

the adaptive immune response, which is characterized by a shift in T cell phenotypes, can 

lead to autoimmunity or chronic inflammation after injury, both of which can compromise 

the function of tissues [3].

Strategies that are central to tissue engineering can also initiate an immune response that is 

detrimental to regeneration [4]. Biomaterial scaffolds are frequently used to mechanically 

support the regenerating tissue or as a vehicle for cell transplantation, for which the immune 

system initiates a response to the implantation procedure and a foreign body response 

targeting the implant. Transplantation of non-autologous cells will initiate an allogeneic or 

xenogeneic immune response, which leads to failure of the graft. Furthermore, protein or 

gene delivery systems have potential immunogenicity based on intrinsic properties of the 

bioactive agent or consequences of the processing. Taken together, the immune responses 

that develop due to injury or to therapeutic strategy can limit regeneration.

Herein, we review strategies for modulating the immune response, both locally and 

systemically, in order to promote tissue regeneration. Blocking immune responses has 

proven to be ineffective, as the immune response contributes to regeneration. Modulating 

the immune response has the ability to limit tissue damage following injury, promote an 

anti-inflammatory environment that leads to regeneration, and induce Ag-specific tolerance 

that can target degenerative diseases that destroy tissues and promote engraftment of 
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transplanted cells. We discuss recent developments in the area of biomaterial design, protein 

and gene delivery systems, cell transplantation, and nanoparticle delivery systems for their 

ability to modulate immune responses associated with multiple regenerative medicine 

applications.

2. LOCALIZED STRATEGIES

Modulating the immune response locally at the injury site can promote regeneration and 

facilitate the engraftment of transplanted cells [2]. Systemic strategies for delivering 

therapeutics to affect local responses have led to concerns associated with side effects, such 

as hypersensitivity, the development of bacterial resistance, and gastrointestinal intolerance 

[5]. Conversely, delivering therapeutics into the local environment can modulate recruitment 

of immune cell types and their phenotype while avoiding adverse systemic side effects. 

Localized delivery of therapeutics also provides direct access to tissue-specific 

inflammatory cells. Within the central nervous system (CNS) microglia and astrocytes work 

in concert with traditional inflammatory cells to limit inflammation to the injury site and 

limit excitotoxic molecules such as glutamate released from damaged neurons. In other 

tissues there are tissue-specific subsets of traditional immune cells, such as Langerhan’s 

cells which are specialized dendritic cells (DCs) in the epidermis and Kuppfer cells that are 

specialized macrophages in the liver. Tissue specific immune cell populations must be 

considered when designing local delivery therapeutics, as they may have a different 

response than their systemically derived counterparts. The traditional early inflammatory 

response is characterized by macrophages and neutrophils responding to injury or non-

autologous cells by secreting interleukin (IL)-1β, tumor necrosis factor (TNF)-α, interferon 

(IFN)-γ, and IL-12, which can induce cell dysfunction and/or apoptosis [6]. These 

inflammatory cytokines can further amplify the adaptive immune response, leading to T cell 

activation and cell destruction. The traditional innate and adaptive immune response (Figure 

1) following injury can be extended to spinal cord injury (SCI), however additional tissue-

specific astrocytes and macrophage-like microglia also contribute to inflammation and 

distinguish the immune restrictive nerve tissue from other tissues. Activation of the innate 

immune system has been shown as an important barrier to induction of immune tolerance in 

autoimmune diseases and cell transplantation [7], through multiple mechanisms, including 

activation of toll-like receptors [8, 9], elaboration of chemokines [10], and negating local 

immunosuppressive mechanisms such as negative co-stimulatory molecules (programmed 

death ligand 1 (PD-L1), T cell immunoglobulin mucin-3 (TIM3)) [11] and anti-

inflammatory factors (tryptophan, hemoxygenase (HO), carbon monoxide) [12]. Therefore, 

ameliorating innate immune responses associated with injured tissues and/or cell-based 

therapies will likely be a critical target to facilitating regeneration and promoting function of 

endogenous or exogenous progenitor cells. Strategies to achieve this goal are discussed 

below and reviewed in Table 1.

2.1 Biomaterials

Biomaterials play a central role in many strategies for regenerative medicine, as they 

provide space for tissue growth, maintain mechanical stability, and support cell adhesion 

and migration. In addition, biomaterials also act as a delivery vehicle for cell transplantation, 
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such as mesenchymal stem cells (MSC) and neural stem cells (NSCs) [13–16]. Porous 

scaffolds have been used for cell transplantation, which leads to vascularization and 

integration with the host, whereas encapsulation systems have been employed for allogeneic 

or xenogeneic cell transplantatation to isolate the cells from the host immune response [17, 

18]. These scaffolds also provide a convenient platform to present biological factors such as 

extracellular matrix proteins that modulate the cellular microenvironment for stimulating 

and directing cell migration and adhesion.

The chemical composition and surface properties of the biomaterial affect protein 

adsorption, which influences interactions with immune cells and their activation. Blood-

material interactions lead to protein adsorption on the biomaterial surfaces and the formation 

of a provisional matrix, consisting mainly of fibrin and fibronectin [19]. These events occur 

within minutes to hours after biomaterial implantation, and affect leukocyte interactions 

with biomaterials after implantation [20, 21]. Natural materials such as collagen [22], 

hyaluronic acid [23], and dextran [24] would generally be considered biocompatible, though 

their source, processing, and physical properties can influence the host response. Synthetic 

materials, such as poly(lactide coglycolide) (PLG) [25], poly(ethylene glycol) (PEG) [26], 

and poly(vinyl alcohol) (PVA) [27], can be modified in order to modulate the host immune 

response. The relative balance of hydrophobicity and hydrophilicity of the polymer surface 

influences biocompatibility, with increased monocyte adhesion observed with hydrophobic 

polymer surfaces, whereas a more hydrophilic chemistry decreased monocyte adhesion [28]. 

Additionally, hydrophilic/neutral material surfaces result in a significant decrease in 

monocytes and macrophages adhesion density and foreign body giant cell (FBGC) 

formation compare to hydrophobic surfaces in vitro [29]. FBGC formation can also be 

limited by the biomaterial dimensions. Spheres with increasing diameter (1.5– 2.5 mm) 

reduce the foreign body response compared to smaller diameter (<1 mm) hydrogels, 

ceramics, metals, and plastics [30]. Taken together these results indicate that the bulk charge 

and size characteristics of a biomaterial must be considered to limit the foreign body 

response.

The surface topography can also modulate immune responses at the host/implant interface 

[17, 18, 31–34]. Porous materials promote vascularization and less fibrous tissue 

encapsulation relative to non-porous biomaterials [17, 18]. Porosity on the scale of 30–40 

µm also increased the ratio of anti-inflammatory M2 to pro-inflammatory M1 macrophages, 

leading to fewer FBGC and enhanced tissue repair [17]. Nanotopography has also been 

shown to modulate the immune response with reduced M1 macrophage polarization on 

titanium substrates [35]. Similarly, aligned electrospun nanofibers minimize the host 

immune reaction, enhance tissue-scaffold integration, and generate a thinner fibrous capsule 

compared to random fibers and films [32]. Diameter of electrospun fibers modulate the 

immune reaction, macrophage-mediated release of pro-inflammatory cytokines, and 

astrocyte-mediated reduction of excitotoxic glutamate [31, 36], the latter of which could 

promote Treg infiltration and prevent chronic inflammation [37].

Increasingly, biochemical modifications to biomaterials are being investigated as a means to 

modulate immune responses. Immobilization of adhesion peptides (RGD and PHSRN) are 

common to many synthetic materials to promote cell adhesion [81, 82]. While these peptides 
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may be targeting transplanted cells, they can also influence adhesion and function of 

macrophages. Attachment of Fas ligand (FasL) onto biomaterials has been used to modulate 

autoreactive T cell populations. Fas, a cell surface receptor expressed on activated 

lymphocytes, interacting with FasL promotes apoptotic cell death contributing to the down-

regulation of T and B lymphocytes and human neutrophils [83], which could prevent 

destructive alloreactive responses. Polymeric substrates conjugated with Fas antibodies 

promote T cell apoptosis, which can be enhanced further by conjugating a T cell adhesion 

ligand to the surface [38]. Taken together, biomaterials can regulate the host immune 

response through modulating immune cell responses, such as macrophage and T cell 

phenotype, toward the goal of promoting tissue regeneration.

2.2 Protein Delivery

Localized delivery systems provide the means to modulate immune responses. Several anti-

inflammatory or regenerative cytokines are up-regulated following injury but are not 

sufficiently high to elicit an immunomodulatory response. Small molecules (i.e.., non-

steroidal anti-inflammatory drugs (NSAIDS), methylprednisolone, and dexamethasone) 

have been widely investigated for their ability to down regulate leukocyte recruitment and 

phenotype (reviewed in [84]). In this section, we focus on protein delivery to promote and 

manage numerous cell processes in tissue regeneration, such as cell survival, proliferation, 

and differentiation. Local delivery of exogenous protein can initiate an immunomodulatory 

response, however, soluble proteins typically have an inherently short half-life. Proteins 

encapsulated within hydrogels often have a relatively rapid release, and may be more 

appropriate for resolution or dampening of acute inflammation. Alternatively, proteins can 

be encapsulated for sustained release from polymeric systems, or through immobilization of 

affinity based release strategies, thus extending their bioactivity to target cells involved in 

chronic inflammation [85–87]. These biomaterial (scaffold or particle) delivery systems for 

proteins limit contact with cell populations outside of the site of inflammation. Furthermore, 

the rate of release and duration can be tailored for each protein to maximize their efficacy. 

Growth factors, soluble growth factor receptors, cytokines, and monoclonal antibodies have 

all been delivered as a means to modulate the host immune response; we discuss their 

localized delivery from a biomaterial.

2.2.1 Leukocyte Recruitment

Modulating leukocyte infiltration can be one strategy for creating a local anti-inflammatory 

microenvironment, which can be achieved by preventing the infiltration into the site of 

inflammation by pro-inflammatory leukocyte phenotypes. Preventing early extravasation of 

neutrophils and monocytes into a site of injury or inflammation can be achieved by limiting 

the increase in vascular permeability through inhibition of matrix metalloproteinase-9 

(MMP-9) [39]. Cytokines, such as transforming growth factor (TGF)-β1, IL-4, and IL-10, 

can also be used to limit monocyte, neutrophil, and T helper (Th)1cell recruitment 

independent of vascular permeability [41, 42, 47]. Chemokines are a class of cytokines that 

recruit immune cells to an inflammatory site and have the potential to effectively target 

specific immune cell populations. Targeted blocking of C-X-C ligand (CXCL)12 and C-C 

ligand (CCL)5-CXCL4 through soluble release of these molecules, blocking antibodies, or 
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antagonists reduced neutrophil infiltration with increased vascularization seen following 

simultaneous biomaterial-release of CXCL12 and CCL5 [48, 49]. T cell recruitment can be 

limited with CXCL3 blocking antibodies or IL-4 delivery, however, IL-4 can stimulate Th2 

recruitment [42, 43, 50].

Creating a local anti-inflammatory microenvironment can also be achieved by promoting 

anti-inflammatory leukocyte infiltration. CCL22 and CXCL12 have been reported to 

enhance recruitment of Tregs, and delivery within tissues has been shown to control 

inflammation, reduce disease progression, and limit immune cell-mediated destruction [51–

54, 88, 89]. Local delivery of granulocyte macrophage colony-stimulating factor (GM-CSF), 

either soluble or within a biomaterial, promotes recruitment of macrophages, microglia, and 

DCs, and in a spinal cord model have reduced glial scar formation and improved motor 

recovery [55, 57]. While GM-CSF recruited more immune cells, those recruited cells likely 

had either an alternatively activated polarization or became alternatively polarized (i.e., M2 

macrophages and microglia) upon entering the injury.

2.2.2 Leukocyte Phenotype

Modulating the phenotype of the recruited immune cells may be a valuable therapeutic 

option for promoting regeneration. In a SCI model, the relative ratio of pro-healing M2 to 

pro-inflammatory M1 macrophages demonstrated a linear relationship with the number of 

axons growing through the injury site [45], suggesting therapeutics that promote the M2 

macrophage polarization would be advantageous for regeneration. Localized delivery of 

stromal derived factor (SDF)-1 or chondroitinase ABC (chABC) induced alternatively 

activated M2 macrophages with increased expression of angiogenic factors and IL-10 [58–

60]. Direct delivery of known anti-inflammatory ILs, such as IL-10 and IL-4, can promote 

M2 macrophage polarization, yet few manuscripts describe local delivery of these cytokines 

(see gene delivery sections; [44, 45]). IL-4 has been incorporated into polymeric nerve 

guidance channels leading to increased pro-healing M2 macrophages which resulted in 

Schwann cell infiltration, reduced pro-inflammatory cytokine release (TNF-α, IL-1ra, 

receptor activator of nuclear factor κB ligand (RANKL)), and re-growth of axons in sciatic 

nerve injury model [45, 46].

Cytokine delivery can also indirectly modulate the immune response through tissue specific 

cells. Fibroblasts inhibit secretion of macrophage inflammatory protein (MIP)-1α from 

activated macrophages [90] and promote GM-CSF release from monocytes [91] following 

injury. Delivery of cytokines to promote fibroblast localization to the wound site could limit 

inflammatory myeloid phenotypes and result in improved tissue regeneration.

2.3 Gene Delivery

The delivery of gene therapy vectors represents a versatile alternative to the direct delivery 

of immunomodulatory factors. Vectors for gene delivery consist of DNA or RNA that may 

be packaged with proteins, polymers or lipids to create particles that can effectively 

overcome the extracellular and intracellular barriers to gene transfer [92]. The delivery of a 

gene can be employed to increase the expression of a target gene, or delivery of siRNA or 

miRNA can be used to decrease expression of a target gene [92, 93], with both strategies 
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potentially useful in increasing or decreasing expression of immunomodulatory factors. 

Gene delivery is highly versatile, as nucleic acids have their “information” encoded in the 

linear sequence of bases, and not a three-dimensional conformation, like proteins [94]. 

Delivery systems can thus be developed based on the vector properties, which are relatively 

independent of the sequence, and thus distinct target genes can be readily delivered using the 

same delivery system. Furthermore, this versatility allows for the delivery of multiple 

constructs that can target various aspects of the immune response. Finally, the delivery of 

gene therapy vectors can provide protein expression for long periods of time, which can be 

challenging for some proteins that have relatively short half-lives, or whose stability limits 

their encapsulation into materials.

Gene delivery of viral and non-viral vectors from biomaterials has generally been 

categorized as occurring by release of genes that had initially been immobilized to a 

substrate. Sustained release is proposed as a means to maintain elevated concentrations of 

the vectors locally for extended periods of time, which may enhance gene transfer and 

enable targeting of cells beyond those that arrive immediately after implantation. The 

immobilization of vectors to biomaterials, which has been termed substrate-mediated 

delivery, solid phase delivery, or reverse transfection, mimics the natural process of virus 

binding to extracellular matrix proteins [95, 96]. Immobilization to the adhesive matrix co-

localizes the vector and adhered cells [97, 98], which can overcome mass transport 

limitations. Importantly, the vector can be immobilized to the scaffold surface following 

fabrication, thereby providing a method for gene delivery from scaffolds formed by 

processes that would normally inactivate the vector during fabrication. The type of vector 

influences the cell types as well as the expression profile. The release of a non-viral vector 

has been associated with relatively rapid expression of the construct, particularly by immune 

cells attracted to the implant. Rapid gene expression with non-viral vectors would be 

appropriate for targeting early infiltrating cells involved in acute inflammation such as 

neutrophils, macrophages, and resident inflammatory cells, such as microglia in the CNS. 

Viral vectors, such as lentivirus, are more efficient than the non-viral vectors, transduce a 

broad range of cell types with localized delivery, and integrate into the genome for long-

term expression. Many viral vectors can have a delay between delivery and expression that 

may limit their ability to influence the early events in an acute response [68]. Despite not 

integrating into the genome, non-viral vector delivery can lead to prolonged expression of 

the transgene, with expression observed rapidly and persisting for weeks to months [99]. 

Additionally, these vectors can transfect immune cells following implantation, which may 

provide a means to directly modulate immune responses.

Similar to protein delivery, gene delivery has been employed to express cytokines or 

chemokines to modulate immune cell infiltration and phenotypes. The sustained expression 

afforded with gene delivery may sustain immune cell phenotypes for longer periods relative 

to protein delivery [67]. Expression of IL-10 or IL-4 have reduced pro-inflammatory 

cytokine secretion, modulated leukocyte infiltration and phenotype, and enhanced the 

recruitment of Tregs to inhibit inflammation [64–66, 68]. IL-10 expression has also 

enhanced the survival of transplanted stem cells [100, 101]. Lentiviral delivery of the 

regenerative neurotrophic factor brain-derived neurotrophic factor (BDNF), was found to 
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promote M2 macrophage polarization, increase IL-10 and IL-13 expression, and reduce pro-

inflammatory IL-1β and TNF-α after SCI [61].

The versatility of gene delivery has enabled targeting of processes other than expression of 

soluble cytokines or chemokines. Inducing the expression of antagonists to the receptors for 

cytokines involved in disease progression (i.e.., IL-1, TNF-α) has decreased leukocyte 

infiltration and tissue degeneration [62]. Alternatively, gene delivery has been employed to 

reprogram progenitor cells towards a therapeutic response rather than an inflammatory 

response. Following SCI, glial fibrillary acidic protein (GFAP)+ astrocytes participate in the 

inflammatory response forming a glial scar. Expression of Sox2 under the GFAP promoter 

following SCI converted cells to neuroblasts that can promote regeneration and away from 

astrocytes that can develop into a glial scar [70]. In addition, expressing negative IκB to 

inhibit signaling of nuclear factor (NF)-κB in bone marrow derived macrophages resulted in 

pro-healing M2 macrophage phenotype activation after inflammation [69].

2.4 Cell Delivery

Cell-mediated therapies hold promise in both modulating the immune response and 

repopulating the injury site. Stem cells are widely used for regenerative medicine, as they 

can directly contribute to the regeneration of tissues by repopulating the injury site and 

differentiating into tissue-specific cells that will form the new tissue. Interestingly, these 

cells have the potential to either evade immune recognition or to locally modulate an 

immune response. Embryonic stem cells are less susceptible to immune rejection than adult 

cells due to an absence of major histocompatibility complex (MHC)-II and CD80/CD86 and 

very low levels of MHC-I expression [102, 103], however, these cells cannot confer this 

tolerance to local cells through secretion of anti-inflammatory cytokines. MSCs and NSCs 

have the ability to modulate the local immune response, such as macrophage polarization 

and T cell phenotype, in the context of inflammatory, autoimmune, and alloimmune 

responses [72, 74, 75, 104–110]. One caveat to cell mediated therapies is that there can be 

source-dependent variability in the efficacy of the immunomodulatory properties of the stem 

cells. For example, immortalized MSCs produce more IL-6 and are less effective at 

suppressing T cell proliferation than primary human MSCs [104]. MSCs taken from 

multiple donors can result in altered induction of M2 macrophage polarization, indicating 

significant variably in the efficacy of MSC immunomodulation in patients [111]. Similar 

variability in source has also been documented for NSCs [112]. Understanding this variation 

in efficacy could enhance the ability to modulate local environments. To address this 

variability, researchers are constraining the source of immunomodulatory cells, such as 

MSCs, and have proven clinical grade multipotent adult progenitor cells are equally 

efficacious as nonclinical grade (i.e., less constrained) MSC sources [113].

MSCs and NSCs modulate myeloid leukocytes and lymphocytes involved in the immune 

response via multiple mechanisms, including direct cell-cell contact and indirect contact via 

cytokines and signaling molecules [72–75, 104–110, 114, 115]. Relative to the drug delivery 

strategies, transplantation of MSCs or NSCs results in the secretion of numerous proteins 

that modulate a response [72, 74, 75, 105, 109, 110]. NSCs release soluble factors such as 

TGF-β1, prostaglandin E (PGE)2, nitric oxide (NO), and HO-1 that increase Treg 
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populations at the expense of effector T cells (Teff) [73–75]. NSCs can also effect these 

changes directly through contact with T cell populations using intracellular adhesion 

molecule (ICAM) and B7 cell surface proteins [73]. Through direct contact and local 

cytokine release, NSCs promoted an increase in Treg populations, increased expression of 

anti-inflammatory cytokines, decreased pro-inflammatory cytokines, improved neurological 

function in the case of intracerebral hemorrhage, and supported long-term graft function in 

the case of cell transplantation [110, 116].

MSCs have also been demonstrated to reduce inflammation and confer tolerance to cell 

transplants (reviewed in [72, 114, 115]). Within the context of inflammation, MSCs injected 

into a contused spinal cord reduced macrophage infiltration, restored the blood spinal cord 

barrier, led to alternative polarization of macrophages and microglia, and improved hind-

limb motor function [71]. A decrease in the pro-inflammatory cytokines (TNF-α, IL-6), 

mediators of vascular permeability (MMP-9), and macrophage recruitment factors (CCL2, 

CCL5, and CXCL10) coupled with an increase in GM-CSF within the first 24 hours after 

SCI likely contributed to the improved functional outcomes [71]. Similarly, MSCs co-

transplanted with allogeneic cells suppressed T cell activity and improved graft survival 

[117].

Tregs have also been transplanted as a means to promote long-term survival and function of 

transplanted cells without systemic immunosuppression [76, 77]. Two types of CD4+ Tregs, 

thymic-derived natural Tregs (nTregs) or Tregs induced in the periphery (iTregs) in 

response to Ag, have been described in promoting peripheral tolerance [118]. The innate 

ability of Tregs to induce tolerance provides a viable platform on which to develop cell-

based therapeutics for treatment of autoimmune and alloimmune responses. Multiple 

mechanisms are used by Tregs to reduce Teff and DC activity, including modulating DC 

activity with co-stimulatory receptors, competition for APCs with Teff, and release of 

cytokines. Tregs are reported to affect their immunosuppressive actions through secretion of 

TGF-β1, IL-10, IL-35, and galectin-1, and through cell-cell interactions involving 

glucocorticoid-induced TNFR related protein (GITR), cytotoxic T lymphocyte associated 

protein (CTLA)-4, CD39, CD73, and lymphocyte activation gene (LAG)-3 [118]. Tregs co-

transplanted with islets in PLG scaffolds within diabetic mice prevented autoimmune 

rejection and allowed for restoration of normoglycemia [76]. Interestingly, the transplanted 

Tregs were Ag specific, yet led to the recruitment of Tregs with alternative specificities to 

islet grafts. Furthermore, the local delivery of Tregs also protected cells at distal sites, 

indicating the potential for systemic protection with localized delivery.

An alternative approach to protect cells has been modifying cells with FasL, either through 

genetic engineering or chemical modification of cell surfaces [78–80, 119]. The covalent 

modification of cells was accompanied with short-term rapamycin treatment to yield long-

term engraftment of allogeneic and xenogeneic islets for the treatment of type 1 diabetes 

(T1D) [119]. Although the surface conjugated protein does not permanently reside on the 

cells, only transient immunosuppression is needed. The genetic modification of cells to 

express FasL has been reported to prevent CD4+ T cell-mediated rejection in cardiomyocyte 

and hematopoietic cell transplants [79, 80]. Additionally, FasL overexpressing myoblasts 
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have been co-transplanted with islets, either in the ipsilateral or contralateral kidney, and 

induced site-specific and systemic tolerance to restore normoglycemia [78].

3. SYSTEMIC STRATEGIES

The long-term protection of allogeneic cells and tissues transplanted following injury or 

chronic inflammation is expected to require either a tolerogenic approach or systemic 

immunosuppression. Although immuno-privileged sites are naturally present in the body 

(brain, eye, testes), synthetic mimics of these sites that provide local immunomodulation 

cannot currently provide indefinite protection. Even mild local responses can induce 

adaptive responses such as effector cell priming, differentiation, and trafficking. Similarly, 

autoimmune responses can arise due to T cell dysfunction, resulting in chronic Ag-specific 

inflammation, a characteristic that has also been shown to develop following traumatic 

injuries such as SCI [3, 120–122]. Techniques to modulate the adaptive response often target 

T cells, either directly or indirectly through modifications to the innate immune response. 

Current strategies for autoimmune and alloimmune responses utilize non-specific down-

regulation of the immune system through immunosuppressants such as rapamycin or 

blocking antibodies that reduce the ability of the body to fight infections as well as dampen 

the regenerative benefits of tissue remodeling by leukocytes after injury. The development 

of targeted approaches to modulate the immune response that can be administered 

systemically will alleviate these undesirable side effects while promoting Ag-specific 

immune tolerance. More recently, host-microbiome interactions have been identified as a 

powerful player in systemic responses, yet is beyond the scope and readers can be referred 

to a recent review [123]. Systemic strategies to target and modulate the immune response are 

described below and in Table 2.

3.1 Inflammatory Response

A wave of inflammatory monocyte recruitment into inflamed tissues leads to differentiation 

into multiple effector cells, including DCs, macrophages, and microglia [158, 159], 

depending on the prevailing milieu (recall Figure 1). These cells normally play important 

house-keeping functions (i.e., digest and clear tissue debris prior to remodeling). However, 

these cells may express high levels of NO via induced expression of NO synthase (NOS)2, 

as well as increased levels of nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase, cathepsins, myeloperoxidase, all of which may demonstrably contribute to further 

tissue damage, such as the case with myocardial infarction and SCI [153, 160, 161]. 

Monocyte management has emerged as a treatment modality to limit damage associated 

with the acute phase of inflammation. Damage can also be limited by modulating the 

immune cells responsible for the early, acute, and chronic phases of inflammation leading to 

treatments that are applicable for each phase of diagnosis.

Early inflammation is characterized by increased vascular permeability leading to neutrophil 

infiltration and recruitment of other leukocytes through the release of IL-1β, TNF-α, IFN-γ, 

and IL-12 [6]. Vascular permeability and neutrophil infiltration can be limited in CNS 

injuries through the use of statins, granulocyte colony stimulating factor (G-CSF), CXCL10, 

or antibody blockades for IL-6 or the α4 integrin subunit necessary for α4β1-dependent 
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neutrophil extravasation [124, 127, 128, 134, 143]. G-CSF results in increased vascular 

endothelial growth factor (VEGF) and aquaporin-4 (AQP4) via c-Jun and ERK pathways, 

respectively, that limited vascular permeability in a dose dependent manner [134].

Strategies to limit acute inflammation target monocyte recruitment, macrophage phenotype, 

and local cell response to prevent further damage and begin to promote a regenerative 

microenvironment. Administration of factors that inhibit inflammatory cytokines, such as 

macrophage migration inhibitory factor (MIF) and IL-6, have been implemented to reduce 

inflammation after injury. MIF inhibitors, such as gremlin-1 and liposome encapsulated 

Chicago sky blue can alleviate inflammation by limiting monocyte recruitment from the 

bone marrow/spleen through the vasculature to sites of inflammation and by promoting M2 

macrophages [136, 162]. Intravenously administrated nanoparticles can also target 

monocytes responsible for acute inflammation. One approach, involving the combination of 

siRNA with liposomes has shown some promise in animals models [154]. Nanoparticles can 

target these cells through specific scavenger receptors, to reduce circulating inflammatory 

monocytes. Immune modifying nanoparticles (IMP), i.e., NPs with a highly negative surface 

charge, bind with high specificity to inflammatory monocytes, marking them for 

sequestration by the spleen and thereby preventing migration to sites of inflammation and 

subsequent differentiation and participation in pathogenic immune responses [153]. 

Sequestered monocytes either undergo caspase-3-mediated apoptosis or differentiate into 

CD11b+CD11c+CD103+ DCs [153, 154].

Therapies that target both the innate and adaptive immune responses to promote 

regenerative M2 macrophages and Tregs aim to remediate chronic inflammation. Directly 

injecting Tregs can alleviate the chronic inflammation characteristic of multiple sclerosis 

(MS) [163]. Non-cell based approaches to limit chronic inflammation include the delivery of 

various proteins. Within the context of SCI, G-CSF and GM-CSF have been shown to limit 

inflammation in the acute and chronic phases [55]. G-CSF promotes monocyte 

differentiation into tolerogenic DCs that promote Treg-dependent anergy, which may 

contribute to the reduced chronic inflammation seen following G-CSF infusion into SCI 

models [135]. An increase in M2 macrophages and IL-4+ microglia leading to enhanced 

axon sparing can be achieved following SCI with an IL-6 blockade, as increased IL-6 

expression leads to inflammation following injury [128]. Conversely, an increase in some of 

the ILs can prevent secondary damage and promote regeneration. IL-25 has been shown to 

reduce the detrimental release of Il-6, IL-23, TNF-α, and IL-1β by local macrophages that 

shift towards an M2 polarization [138]. Interestingly, IL-33 is released by glia following 

injury and can promote M2 macrophages [140]. Use of exogenous IL-33 infusion reduces 

cavitation, demyelination, astrogliosis, and TNF-α expression leading to enhanced recovery 

of hind-limb locomotor function, as well as increase DC-derived IL-2 that induces Tregs to 

prevent SCI-induced experimental autoimmune encephalomyelitis (EAE; mouse MS model) 

[3, 140–142]. IL-33 can also recruit neutrophils, yet this has led to a decreased systemic 

immune response [139].
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3.2 Ag specific tolerance

Allogeneic immunity following cell transplantation and autoimmunity arise in response to 

the presence of specific Ags leading to T cell activation. Numerous therapies have utilized 

intravenous delivery of soluble proteins and antibodies for broad immune suppression that 

are capable of dampening humoral immunity, primarily through manipulation of the DC and 

T cell populations (Table 2). Systemic delivery of proteins may result in off target effects in 

other cell populations, making the co-stimulatory factors necessary for complete T cell 

activation an attractive target for modulating Th1 and Th2 diseases. The co-stimulatory 

factor CD40L is necessary to activate T cells, while PD-1 and CTLA-4 are necessary to 

inhibit T cell activity. Infusion of soluble CTLA-4 and/or CD40L blocking antibodies can 

reduce pro-inflammatory cytokine expression and T cell activation, while increasing anti-

inflammatory cytokine expression and inhibitory T cell co-stimulatory factors [125, 126, 

129, 131, 164–166]. Delivery of proteins, whether pleotropic or T cell-specific, provides 

some reduction in disease progression and symptoms through the use of non-Ag)-specific 

approaches. Unfortunately, these therapies may elicit off-target effects and initiate a 

systemic decrease in humoral immunity, increasing the host to infections, much like the use 

of immunosuppressants.

3.2.1 Cell based approaches

Cell-mediated immunomodulation can be performed by intravenous delivery of ex vivo 

expanded Tregs. Tregs have been isolated and expanded, or can be produced from naïve 

CD4+ T cells that are induced and expanded in vitro. Intravenous infusion of Tregs 

following islet graft transplantation are capable of suppressing alloimmunity by first 

migrating to the injury site where they inhibit local Ag-specific Teff cell accumulation and 

proliferation [145]. A subset of these Tregs also migrates to the draining lymph nodes to 

suppress systemic Teff populations and inhibit DC migration through secretion of TGF-β1 

and IL-10 [145].

T cells can also be regulated indirectly by either systemic or intraportal infusion of modified 

or primed DCs. Autologous tolerogenic DCs delivered with CD3 antibodies can promote 

islet allograft acceptance by preventing T cell infiltration into the graft and promoting an up-

regulation of Tregs, both locally and systemically, that promote donor-specific suppression 

[146]. Furthermore, Ag-pulsed DCs have also been shown to improve motor function after 

SCI through a reduction in inflammation (as reviewed by [3]).

The induction of Ag-specific immune tolerance has also been investigated through the 

intravenous infusion of donor splenocytes (SP) chemically treated with 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (ECDI-SP) [147–149, 151, 167–169]. ECDI is 

employed to affix Ags to, and induce apoptosis of, donor splenic leukocytes to promote 

tolerance to the bound Ag following intravenous administration. This strategy derives, in 

part, from observations that intravenously delivered peptide is able to induce tolerance; 

however, free peptide in the blood has a risk of inducing anaphylaxis. Approaches such as 

Ag-SP can minimize the amount of free peptide in the blood, while also delivering the Ag to 

APCs that can mediate immune tolerance. Tolerance by this strategy is dependent on 
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marginal zone (MZ) APCs that process the infused apoptotic ECDI-SP cells, their 

elaboration of negative co-stimulatory molecules (i.e., PD-L1), and subsequent phasic 

tolerogenic effects on Ag-specific T cells including[170] anergy, deletion, and induction of 

Tregs [147–150]. Ag-SP have been employed to prevent and treat the relapsing EAE model 

of MS [171], and T1D in the non-obese diabetic (NOD) mouse [172]. A recent publication 

presented the results of a phase I trial in MS patients in Germany using apoptotic ECDI-

fixed peripheral blood mononuclear cells (PBMCs) pulsed with a cocktail of myelin 

peptides, illustrating the safety and efficacy of this procedure in human autoimmune disease 

[173]. Importantly, the mechanistic aspects of this study provided an important proof-of-

principle that induced peripheral tolerance can be successfully employed to induce 

unresponsiveness in human autoreactive T cells as responses to 4 of the 7 tolerated myelin 

epitopes were significantly reduced (with no effect on tetanus responses) in the four MS 

patients treated with >109 autologous Ag-coupled PBMCs while having no effect in the nine 

patients receiving <5×108 Ag-PBMCs. These studies provided the first definitive 

demonstration of induced tolerance to autoantigens in humans and serve as the basis for Ag-

PLG tolerance.

Within the context of allogeneic tolerance, intravenous delivery of ECDI-SP has shown 

robust efficacy in multiple murine models of allogeneic and xenogeneic islet cell transplant 

[168, 174]. Note that in these studies donor SPs are treated with ECDI to induce apoptosis. 

No Ags are coupled to the particles as the donor cells contain the allogeneic or xenogeneic 

Ags. This strategy was also effective for allogeneic islets transplanted on biomaterial 

scaffolds [167]. Interestingly, tolerance induction was more efficacious for islets 

transplanted on PLG scaffolds within the epididymal fat pad compared with those 

transplanted intra-portally [167], suggesting that the local environment influences the ability 

to promote tolerance.

Similar to apoptotic SPs, apoptotic erythrocytes are cleared from the blood fairly regularly 

and are a potential cell source to induce Ag-specific T cell deletion. Unlike intravenous 

delivery of ECDI-SP, erythrocytes do not need to be expanded ex vivo, but rather a small 

peptide (ERY1) conjugated to ovalbumin (OVA) Ag is delivered intravenously and binds 

specifically to glycophorin-A on erythrocytes [152]. The localization of OVA to 

erythrocytes using a targeting peptide resulted in increased tolerogenic DCs and PD-1+ T 

cells preventing the onset of T1D and promoting tolerance in OVA-expressing graft [152]. 

This “piggybacking” of Ag on the cells offers a distinctive cell-mediated therapy to deliver 

Ag and promote Ag-specific T cell deletion.

In addition to local MSC immune modulation, intravenous injection of MSCs immediately 

following transplantation has promoted allogeneic tolerance when delivered with the 

immunosuppressant mycophenolate mofetil (MMF) through an initial MSC-dependent 

increase in Th17 cells that are converted to Tregs by MMF [108]. Systemic delivery of 

MSCs 7 days prior to transplantation has been shown to promote allograft tolerance without 

immunosuppressants by up-regulating Tregs systemically rather than MSCs localizing to the 

injury site leading to increased inflammation with some local delivery techniques [144]. 

MSCs have also been used to confer autoimmune tolerance in mice with MS [107] and 
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human patients suffering from systemic lupus erythematosus [175] and Crohn’s disease 

[176].

3.2.2 Nanoparticles

The translational challenges associated with Ag-SP cell-based therapy has motivated the 

development of nanoparticles for Ag-specific tolerance. Nanoparticles with properties 

similar to apoptotic cell debris may function as an alternative Ag carrier for tolerance 

induction. Intravenous injection of 500 nm ‘non-biodegradable’ carboxylated polystyrene 

(PS) particles coupled with peptides were able to prevent the onset of disease in EAE 

prevent epitope spreading, and to ameliorate progression of pre-established EAE [155]. 

Interestingly, these studies using PS nanoparticles identified that particles with diameters 

ranging from 500 to 1000 nm were most effective, and tolerance was dependent on particle 

uptake by the macrophage receptor with collagenous structures (MARCO) scavenger 

receptor. MARCO has been shown to be responsible for uptake of PS beads which have an 

anionically charged surface [156].

More recently, PLG particles were able to induce Ag-specific tolerance for prevention and 

treatment of EAE [155, 157, 177]. Administration of particles results in significantly 

reduced CNS infiltration of encephalitogenic Th1 (IFN-γ) and Th17 (IL-17a, GM-CSF) cells 

as well as inflammatory monocytes/MΦs. Tolerance is most effectively induced by 

intravenous infusion of Ag-PLG [155, 178], though intraperitoneal and subcutaneous 

delivery was able to attenuate disease scores. Efficacy of the route of administration is likely 

due to altered trafficking to the lymph tissue as particles delivered intravenously traffic 

directly to the spleen and liver, while subcutaneous particle delivery targeted the draining 

lymph nodes [150, 153, 157].

Similarly, PLG particles containing Ag peptides and rapamycin have been shown to induce 

Agspecific tolerance through inhibition of CD4+ and CD8+ T cell activation in autoimmune 

models [157]. Development of Ag-specific therapies for treatment of autoimmune diseases 

benefits from the Ag-specific response being well characterized, such as myelin peptides 

(myelin oligodendrocyte glycoprotein (MOG) and myelin basic protein (MBP)) in EAE 

models. In the case of alloimmune responses, the Ags and their epitopes are not well 

characterized, thus making the development of alloimmune tolerance therapies more 

challenging. One approach is to lyse donor cells for coupling to PLG particles in order to 

confer tolerance to full MHC mismatch islet allografts [147]. Mechanistic studies 

investigating full MHC mismatch islet allografts with Ag-PLG have shown that while 

ECDI-SP can confer tolerance of direct- and indirect-activated T cells resulting in anergy 

and deletion, whereas Ag-PLG can only modulate T cells with indirect donor specificity and 

require transient immunosuppression using rapamycin (up to 2 days post-transplantation) to 

support long term graft survival [147].

4. CONCLUSION

This review describes multiples approaches for immunomodulation that are being employed 

within the field of tissue regeneration. Local and systemic approaches to modulate the 
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immune response are being applied based on the type of host response incurred (injury, 

autoimmune, or alloimmune), stage of inflammation (early, acute, chronic), and extent of 

inflammatory response that is being targeted. Combinatorial approaches, such as the local 

delivery of cytokines and chemokines to synergize with systemic immunomodulation, may 

ultimately be needed to address the complex interplay of the innate and adaptive responses. 

This combination of local and systemic effects reflects a strategy currently being 

investigated for cancer therapies [179–181] that could be extended to tissue regeneration 

following injury or autoimmune inflammation. Figure 1 lists several interventions, and 

combinations of them may be useful in targeting multiple aspects of the immune response. 

For example, following SCI, the local delivery of therapeutic factors to promote alternative 

macrophage polarization and tissue regeneration, such as IL-33 and GM-CSF [55–57, 140–

142], coupled with systemic nanoparticle approaches to modulate monocyte trafficking 

[153, 157] and limit the chronic myelin-specific T cell response may provide a synergistic 

approach to promote regeneration after SCI. Similarly, therapeutics that limit local 

inflammation while systemic therapies that promote Ag-specific tolerance could enable cell 

engraftment and long term function. Understanding the mechanisms by which the 

microbiome exerts immunomodulatory properties could lead to new therapies or 

complement the local and systemic approaches described in this review.
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Abbreviations

Ag Antigen

APC antigen presenting cell

AQP4 aquaporin 4

BDNF brain-derived neurotrophic factor

CD cluster of differentiation

CCL C-C ligand

chABC chondroitinase ABC

CNS central nervous system

COX cyclooxygenase

CTLA-4 cytotoxic T lymphocyte associated protein-4

CXCL C-X-C ligand

DC dendritic cell

Dkk3 dickkopf related protein 3

EAE experimental autoimmune encephalomyelitis

ECDI 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide

EPO erythropoietin

FasL Fas ligand
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FBGC foreign body giant cell

G-CSF granulocyte colony-stimulating factor

GFAP glial fibrillary acidic protein

GITR glucocorticoid-induced TNF receptor related protein

GM-CSF granulocyte macrophage colony-stimulating factor

HGF hepatocyte growth factor

HO hemoxygenase

ICAM intracellular adhesion molecule

IDO indoleamine 2,3-dioxygenase

IMP immune modifying nanoparticle

IFN-γ interferon gamma

IκB inhibitor of kappa B

IL interleukin

iTreg induced Treg

LAG-3 lymphocyte activation gene 3

M1 pro-inflammatory macrophage polarization

M2 alternative macrophage polarization

MARCO macrophage receptor with collagenous structures

MBP myelin basic protein

MHC major histocompatibility complex

MIF migration inhibitory factor

MIP-1α macrophage inflammatory protein-1 alpha

MMF mycophenolate mofetil

MMP matrix metalloproteinase

MOG myelin oligodendrocyte glycoprotein

MS multiple sclerosis

MSC mesenchymal stem cell

NADPH nicotinamide adenine dinucleotide phosphate

NF-κB nuclear factor kappa B

NO nitric oxide

NOD non-obese diabetic

NOS nitric oxide synthase
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NSAID non-steroidal anti-inflammatory drug

NSC neural stem cell

nTreg natural Treg

OVA ovalbumin

PBMC peripheral blood mononuclear cell

PD-L1 programmed death ligand-1

PEG poly(ethylene glycol)

PGE prostaglandin E

PLG poly(lactide coglycolide)

PS polystyrene

PVA poly(vinyl alcohol)

RANKL receptor activator of nuclear factor kappa B ligand

ROS reactive oxygen species

SCI spinal cord injury

SDF-1 stromal derived factor 1

SP splenocyte

T1D type 1 diabetes

Teff T effector cell

TGF-β1 transforming growth factor beta 1

Th T helper

TIM3 T cell immunoglobulin mucin-3

TNF-α tumor necrosis factor alpha

Treg regulatory T cell

VEGF vascular endothelial growth factor
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Figure 1. 
Immunomodulatory intervention is time and cell dependent and tissue-specific 

considerations may need to be made. Tissue-specific immune cells can initiate the 

inflammatory cascade, followed by infiltration of traditional immune cells that work with 

local immune populations. The innate immune system responds to the initial trauma through 

macrophage and neutrophil activation to prevent infection, but results in increased 

inflammation and recruitment of other inflammatory cells through the release of 

inflammatory cytokines and reactive oxygen species. The release of inflammatory factors 

and cellular debris activates Ag presenting cells (APCs) and results in secondary damage in 

some tissues, such as the spinal cord. The adaptive immune response is characterized by 

APC activation of helper T cells (CD4+) that in turn activate cytotoxic T cells (CD8+) 

responsible for chronic inflammation following injury. Although cell transplantation is a 

promising treatment strategy, non-autologous cells can also activate the adaptive immune 

response. Regulatory T cells (Tregs) help to inactivate the APCs and helper T cells, 

preventing chronic inflammation following injury and protecting therapeutic cells delivered 

to treat the injury. Cell infiltration following injury is depicted to the right and the numbers 

correspond to therapeutic interventions that would modulate the immune response and 

promote tissue regeneration. Adapted from [6].
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Table 1

Local delivery of therapeutic agents utilizing biomaterials, protein and gene delivery, and cell delivery can 

modulate the response of target immune cell populations such as monocytes (m), neutrophils (N), 

macrophages (M), dendritic cells (DC), T cells (T), and tissue specific inflammatory cells such as microglia 

(μ) and astrocytes (a). Arrows indicate increased (↑) and decreased (↓) expression of factors or changes to cell 

expression that have been studied in vivo with further validation of the immunomodulatory mechanism studies 

in in vitro assays.

AGENT TARGET IMMUNOMODULATORY EFFECT REF.

BIOMATERIALS

Hydrophilicity M, m ↓ adhesion and differentiation; ↓ FBGC [28, 29]

Porosity (30–40 µm) m M2 > M1 polarization; ↓ FBGC
↑angiogenesis, tissue repair

[17, 18]

Nanotopography m M2 > M1 polarization [35]

Electrospun fiber orientation m
a

Aligned fibers ↓ inflammation and fibrous capsule size
↑ integration;
↓glutamate excitotoxicity to ↑Treg infiltration

[32]
[36, 37]

Electrospun fiber diameter M nanofibers ↓ release of pro-inflammatory cytokines compared to microfibers [31]

FasL T ↑ T cell apoptosis [38]

PROTEIN DELIVERY

Anti-MMP-9 N, m ↓ vascular permeability, infiltration [39]

IL-1R antagonist nanoparticles M ↓ IL-1R/IL-1β induced NF-κB activation
↑ retention at injection site

[40]

TGF-β1 N, m ↓ infiltration [41]

IL-4 T, M M2 > M1 polarization; ↑ Th2;
↓Th1 cell recruitment; ↓TNF-α, RANKL, IL-1ra

[42, 43]
[44–46]

IL-10 N, M M2 > M1 polarization ; ↓ H2O2, NO, superoxide, MIP-2 [44, 47]

CXCL12 N, T ↓ recruitment, Teff; ↑ Tregs, vascularization [48]

CCL5-CXCL4 block N ↓ recruitment; ↑ vascularization [49]

CXCL3 block T ↓ recruitment [50]

CCL22 Tregs, DC ↑ targeted recruitment of Tregs, IDO; ↓ Teff [51–54]

GM-CSF M, DC, µ ↑ recruitment;
↑ BDNF promoting M2 polarization

[55–57]

SDF-1 M M2 > M1 polarization; ↑angiogenesis, IL-10 [58, 59]

chABC M M2 > M1 polarization [60]

GENE DELIVERY

BDNF m M2 > M1 polarization; ↑IL-10, IL-13; ↓ IL-1β, TNF-α [61]

IL-1 + TNF-α N, m ↓ recruitment [62]

IL-2 T ↑ Tregs [63]

IL-4 M, T M2 > M1 polarization
↑ Tregs

[64]

IL-10 M, DC, T M2 > M1 polarization; ↓ TNF-α, NF-κB, infiltration [65–68]

IκB M M2 > M1 polarization; ↓ NF-κB [69]

GFAP a Direct conversion to regenerative neuroblasts [70]
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AGENT TARGET IMMUNOMODULATORY EFFECT REF.

CELL DELIVERY

MSCs M M2 > M1 polarization; ↑GM-CSF;
↓ infiltration, TNF-α, IL-6, MMP-9, CCL2, CCL5, CXCL10

[71, 72]

NSCs T Treg > Teff; ↓T cell proliferation
↑TGF-β1, PGE2, NO, HO-1

[73–75]

Tregs T ↑ tolerance of implanted cells and materials [76, 77]

FasL-bound cells T ↑ T cell apoptosis [78–80]
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Table 2

Systemic delivery of therapeutic agents (proteins, cells, and nanoparticles) can modulate the response of target 

immune cell populations such as monocytes (m), neutrophils (N), macrophages (M), dendritic cells (DC), T 

cells (T), regulatory T cells (Tregs) and tissue specific inflammatory cells such as microglia (μ). Arrows 

indicate increased (↑) and decreased (↓) expression of factors or changes to cell expression that have occurred 

in vivo with further validation of the immunomodulatory mechanism studies in in vitro assays.

AGENT TARGET IMMUNOMODULATORY EFFECT REF.

PROTEIN DELIVERY

Anti-α4 N ↓cell infiltration [124]

Anti-CD40L T ↓IFN-γ, T activation ↑CTLA-4 [125, 126]

Anti-CXCL10 N, M ↓ cell infiltration [127]

Anti-IL-6 N, M, µ ↓ cell infiltration; M2 > M1 polarization, IL-4+ µ [128]

Anti-IL-18 T ↑CTLA-4, TGF-β1, ↓Th1, CD40L [129]

CTLA-4 T ↓IFN-γ, T activation [130, 131]

Dkk3 T ↑ MHC-1 mismatch protection; ↓ IFN-γ [132]

EPO DC, T ↓DC, Th17, IL-6, TNF-α, IL-2; ↑Tregs [133]

G-CSF N, M, DC, T ↑VEGF, AQP4, tolerogenic DCs, Tregs;
↓vascular permeability, cell infiltration

[55, 134, 135]

Gremlin-1 m, M M2 > M1 polarization; ↓monocyte migration, MIF [136]

HGF DC, T ↑tolerogenic DCs, TregsIL-10, IL-4;
↓IFN-γ, IL-12p70, Th17

[137]

IL-25 M M2 > M1 polarization; ↓IL-6, IL-23, TNF-α, IL-1β [138]

IL-33 N, M, DC, T M2 > M1 polarization; ↑IL-2, Tregs, neutrophil infiltration;
↓TNF-α, gliosis, demyelination

[139–142]

Statins N, M ↓vascular permeability, cell infiltration [143]

CELL DELIVERY

MSCs T ↑IDO, PGE2, NO, Th17, Tregs [72, 107, 108, 144]

Tregs T, DC ↓Teff, DC migration; ↑TGF-β1, IL-10 [145]

Ag-DC + αCD3 T ↑Tregs; ↓Teff, T cell infiltration [146]

ECDI-SP DCs, T ↑T anergy, Ag-tolerance [147–151]

ERY1-OVA erythrocytes DCs, T Peptide targets erythrocytes: ↑tolerogenic DCs,PD-1+ T [152]

NANOPARTICLES

IMPs M, DC ↓ monocyte migration and differentiation;
↑tolerogenic DCs

[153, 154]

Ag-PS DCs, T ↑ MARCO uptake, autoimmune tolerance [155, 156]

Ag-PLG m, DCs, T ↑ autoimmune tolerance ↓Th1, Th2, inflammatory m [153, 155]

Ag-PLG + rapa T ↑ autoimmune tolerance, alloimmune tolerance;
↓Teff proliferation

[147, 157]
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