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Abstract

Cancer is a disease characterized by unrestrained cellular proliferation. In order to sustain growth, 

cancer cells undergo a complex metabolic rearrangement characterized by changes in metabolic 

pathways involved in energy production and biosynthetic processes. The relevance of the 

metabolic transformation of cancer cells has been recently included in the updated version of the 

review “Hallmarks of Cancer”, where the dysregulation of cellular metabolism was included as an 

emerging hallmark. While several lines of evidence suggest that metabolic rewiring is orchestrated 

by the concerted action of oncogenes and tumor suppressor genes, in some circumstances altered 

metabolism can play a primary role in oncogenesis. Recently, mutations of cytosolic and 

mitochondrial enzymes involved in key metabolic pathways have been associated with hereditary 

and sporadic forms of cancer. Together, these results suggest that aberrant metabolism, once seen 

just as an epiphenomenon of oncogenic reprogramming, plays a key role in oncogenesis with the 

power to control both genetic and epigenetic events in cells. In this review, we discuss the 

relationship between metabolism and cancer, as part of a larger effort to identify a broad-spectrum 

of therapeutic approaches. We focus on major alterations in nutrient metabolism and the emerging 

link between metabolism and epigenetics. Finally, we discuss potential strategies to manipulate 

metabolism in cancer and tradeoffs that should be considered. More research on the suite of 

metabolic alterations in cancer holds the potential to discover novel approaches to treat it.
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1. Introduction

A non-profit organization called Getting to Know Cancer launched an initiative entitled 

“The Halifax Project” in 2011, which was charged with identifying synergistic molecular 

targets and/or small molecules for each of the areas that are widely considered to be 

hallmarks of cancer [1]. The rationale for this approach is based on the idea that cancers 

harbor significant genetic heterogeneity [2], which is often not addressed with 

monotherapeutic approaches. While efforts have been made to combine therapies to 

overcome resistance, rising drug costs, significant levels of toxicity, and a lack of overall 

success have stymied efforts to effectively treat cancer with multi-drug combinations [3].

Thus, the first aim of the Halifax Project was to produce a series of reviews, including this 

review on cancer metabolism, to broadly assess current knowledge on the biology of cancer. 

The overall goal of the Halifax Project is to identify biological targets and prospective lead 

compounds that could potentially be used to reach each prioritized area, and synergistically 

target multiple hallmarks of cancer. By building this rationale into the approach a priori, the 

problem of heterogeneity might be overcome. In theory, multiple low toxicity approaches 

could be experimentally combined, which then might lead to synergism within a given 

hallmark, such as cancer metabolism. Future studies will build upon these findings and test 

these hypotheses, as well as integrate these concepts into the approaches recommended in 

other hallmark areas in this special issue.
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In this review, we first discuss the relationships between metabolism and cancer. We focus 

on major alterations in nutrient metabolism, as well as the emerging links between 

metabolism and epigenetics. Next, we discuss potential therapeutic strategies that could be 

used to manipulate metabolism in cancer cells or to manipulate host metabolism thereby 

influencing cancer metabolism. Finally, we describe tradeoffs that should be considered 

when leveraging these approaches. Together, this information will be the basis of significant 

future research to fully realize the potential of targeting metabolism in cancer.

2. Classic Metabolic Derangements

The first realization that metabolism is altered in cancer can trace its roots to the work of 

Otto Warburg. During the 1920s, Warburg found that unlike most normal tissues, cancer 

tissues fermented glucose to lactate at high rates regardless of the presence of oxygen [4, 5]. 

This was in contrast to the results that Pasteur had obtained previously studying 

fermentation in yeast, whereby O2 was found to inhibit fermentation [6, 7]. To study the 

metabolism of cancer in vivo, Warburg used Jensen sarcoma cells to form tumors within the 

abdomens of rats. By comparing arterial glucose and lactate concentrations to venous 

glucose and lactate concentrations, Warburg was able to infer the glucose uptake and lactate 

excretion by the tumor. Whereas normal tissues took up 2–18% of arterial glucose, tumors 

consumed 47–70%. Lactate was not significantly changed in blood after perfusion of normal 

tissues, but by Warburg’s calculations, tumors converted 66% of their consumed glucose 

into lactate. Thus, Warburg surmised that tumors take up much more glucose than normal 

tissues and convert a much larger percentage of it to lactate [4].

Warburg’s work on respiration and fermentation in cancer cells ultimately led him to 

propose that “the respiration of all cancer cells is damaged” [8]. In fact, he reasoned that 

known carcinogens, such as arsenic and hydrogen sulfide, likely worked by inhibiting 

respiration. He suggested that the primary oncogenic insult was an inability of cells to 

oxidize glucose carbons, and that X-rays were carcinogenic mainly due to their effect on 

mitochondria [8], which by this time had been shown to be the respiratory center of cells.

The exact molecular mechanisms leading to the Warburg effect and to altered metabolism in 

cancer remain a major unsolved question; for a review, see [9]. Subsequent studies have 

shown that while changes in mitochondrial respiration are sometimes seen in cancer cells, 

these alterations are not likely the driving lesion for most cancer cells. For example, 

Warburg’s follow-up work suggested that oxidative respiration was important in malignant 

tumors, and reported that placing rats in 5% O2 for 40 hours resulted in the death of most 

cancer cells, suggesting that oxygen was needed for viability of those cancer cells [4]. 

Similarly, the work of his contemporaries showed that oxygen consumption is intact in 

many cancers, thereby decoupling the Warburg effect from defective oxygen consumption 

[10, 11]. However, oxygen consumption cannot be a direct measurement of intact 

respiration, because mitochondrial coupling/uncoupling influences the efficiency of oxygen 

consumed to ATP produced. Nevertheless, many cancer cells display increased glucose 

uptake and elevated lactate production, irrespective of oxygen availability – also called 

“aerobic glycolysis” or the Warburg effect [12], and this observation remains a hallmark of 

altered metabolism in cancer cells.
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3. Emerging Metabolic Derangements

While the mechanisms leading to the Warburg effect are under intense investigation, the 

general consensus of the field is that dysregulated metabolism and altered mitochondrial 

structure-function [13] is consistently found in several cancer cell types. These changes may 

occur before, as a result of, or in combination with, the genetic changes driving cancer, 

including oncogene expression or tumor suppressor loss; for recent comprehensive reviews 

on these concepts, see [14, 15]. For example, one well-studied link between oncogenesis and 

glucose metabolism is the phosphoinositide 3-kinase (PI3K) signaling pathway. Activating 

mutations in PI3K or overexpression of the AKT oncogenes, which lie downstream of PI3K, 

can induce high rates of aerobic glycolysis in non-transformed cells. This occurs in part by 

increasing expression and localization of the high-affinity glucose transporter, GLUT1, on 

the plasma membrane [16, 17]. In addition, activation of the PI3K pathway can accelerate 

flux through glycolysis by increasing the activity of hexokinase-2, phosphfructokinase-1 

(PFK1), or phosphofructokinase-2 (PFK-2) [18–120]. The tumor suppressor p53, which has 

a well described role in DNA damage sensing, cell cycle control, and control of apoptosis, is 

also able to oppose the Warburg effect by stimulating respiration and reducing glycolytic 

flux [21–23]. Thus, loss of p53 in cancer cells is another event that can impact glucose 

metabolism in cancer cells.

Given the inextricable relationship between oncogenes, tumor suppressors, and the 

regulation of glycolysis, metabolic alterations including the Warburg effect could provide a 

selective advantage to rapidly proliferating cells [24]. Although fermentation produces 

almost 20 times less adenosine 5′-triphosphate (ATP) per glucose molecule than oxidative 

glucose metabolism, it has been suggested that ATP is never limiting in dividing cells [24, 

25]. Instead, proliferating cells require macromolecular precursors and reducing power in 

the form of reduced nicotinamide adenine dinucleotide phosphate (NADPH) to synthesize 

new biomass. Therefore, one possible advantage of the Warburg effect is that high flux 

through glycolysis allows for more efficient use of glycolytic intermediates for NADPH 

production and biosynthetic pathways including lipid synthesis, nucleotide synthesis, and 

amino acid synthesis, which would be permissive for rapid cellular proliferation.

Although glucose metabolism is important for proliferating cells, it has recently been 

appreciated that other nutrient sources contribute as well. TCA cycle intermediates are 

required for biosynthetic processes, including the generation of citrate for lipid synthesis and 

aspartate for nucleotide synthesis. When these intermediates are removed from the TCA 

cycle, they must be replenished in a process known as anaplerosis. Glutamine has been 

shown to be a key contributor to anaplerotic flux in many cancer cells [26, 27]. Glutamine 

carbon entry into the TCA cycle supports both ATP generation and biosynthesis, and a wide 

variety of cancer cell types are sensitive to glutamine withdrawal [28, 29]. More recent work 

has suggested catabolism of extracellular protein can also contribute carbon to the TCA 

cycle [30], and lipids are scavenged to support proliferation of some cancer cells [31].

Collectively, it is becoming apparent that derangements to metabolism that enable the 

generation of biosynthetic precursors are a key feature in cancer initiation, development, 

and/or growth. Here, we discuss how alterations in key metabolic pathways contribute to 
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biomass generation (Table 1). We discuss some prioritized targets within these pathways, 

their therapeutic potential, and strategies to manipulate metabolism for the prevention or 

treatment of cancer.

4. Glucose Metabolism

4.1 Hexokinase 2 (HK2)

Regulation of glycolysis is exerted by the three important kinases that catalyze discrete 

phosphorylation reactions (Figure 1). Hexokinases are a family of enzymes that catalyze the 

first phosphorylation of glucose to glucose-6-phosphate. Early work on a highly malignant 

AS-30D hepatoma cell line showed that one isozyme of hexokinase was uniquely bound to 

the outer mitochondrial membrane [32, 33], which was later identified as Hexokinase 2 

(HK2) [34].

In a series of experiments in this system, removal of malignant tumor mitochondria 

containing bound hexokinase from the cytoplasm by centrifugation markedly decreased the 

rate of glycolysis. Then, when tumor mitochondria containing bound hexokinase were added 

back to the tumor cytosol, the original glycolytic capacity of the cytoplasm was restored. 

Finally, when solubilized hexokinase alone was added to the liver cytosol, it markedly 

enhanced the glycolytic rate [34]. Therefore, HK2 could be a major contributor to high 

glycolysis and lactate production even in the presence of oxygen. One mechanism by which 

HK2 binds to mitochondria is via the outer membrane protein known as the voltage-

dependent anion channel VDAC [35]. This binding interaction facilitates the 

immortalization of cancer cells [36, 37].

To identify compounds that could selectively inhibit the two main energy-producing 

pathways (glycolysis and mitochondrial oxidative phosphorylation), a limited screen was 

performed in cancer cells. The small molecule 3-bromopyruvate (3BP) was identified as an 

inhibitor of glycolysis and also as an inhibitor of mitochondrial energy production, which 

could be explained by inhibiting HK2 [38]. Follow-up work showed that 3BP has potent 

anticancer activity and has the capacity to eradicate cancers in different animal models [39]. 

Furthermore, 3BP was recently tested in a single human case study and showed promising 

results [40, 41]. Future work will be directed at the role of other HK isoforms in cancer, as 

well as the specificity of 3BP towards HK2. However, these early studies are one proof-of-

principle that targeting energy metabolism of cancer cells can be an effective therapeutic 

approach.

4.2 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3 (PFKFB3)

Another gluco-regulatory kinase is phosphofructokinase (PFK), which catalyzes the 

phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate (Figure 1). PFK is 

regulated by several metabolites, including inhibition by high concentrations of ATP and 

activation by fructose 2,6-bisphosphate. Early studies indicated that phosphofructokinase 

activity correlated with the growth rate of Morris hepatomas transplanted in rats and also 

correlated with lactate production by slices of those tissues [42]. Those observations 

suggested that inhibition of phosphofructokinase activity represented a logical target for 

inhibition of malignant tumor growth. With the discovery that fructose 2,6-bisphosphate is 

Hirschey et al. Page 5

Semin Cancer Biol. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an activator of phosphofructokinase 1 [43], the enzyme activity catalyzing the formation of 

fructose 2,6-bisphosphate became an alternative target for the inhibition of glycolysis and 

cancer growth. Steady state levels of fructose 2,6-bisphosphate are regulated by bifunctional 

enzymes that have both phosphofructo-2-kinase and fructose-2,6-bisphosphatase (PFKFBs). 

Of these enzymes, PFKFB3 has the highest phosphofructo-2-kinase activity [44]. 

Interestingly, PFKFB3 expression, but not other PFKFBs, is markedly elevated in multiple 

aggressive primary cancers, including colon, breast, ovarian and thyroid carcinomas [45].

The role of PFKFB3 in the regulation of glucose metabolism in cancer cells has been 

reviewed previously [46]. An early indication that PFKFB3 might be a regulatory enzyme 

was the identification of multiple copies of the AUUUA instability motif in its 3′ 

untranslated region [44]. Expression of the PFKFB3 gene is induced by hypoxia through 

hypoxia-inducible factor-1 [47]. Low pH, a common feature in malignant tumors, is another 

factor that results in upregulation of PFKFB3. This may be mediated through the metabolic 

stress sensor AMP-activated protein kinase (AMPK) resulting in an increase in serine 

phosphorylation [48]. In breast cancer cells, synthetic progestins activate PFKFB3 

isoenzyme phosphorylation and a long-term sustained action due to increased PFKFB3 

protein levels. An immediate early response occurs through the ERK/RSK pathway leading 

to phosphorylation on S461 followed by activation of transcription via cis-acting sequences 

on the PFKFB3 promoter [49]. In myeloproliferative neoplasms, PFKFB3 expression was 

upregulated via active JAK2 and STAT5 [50], suggesting that specific inhibitors of PFKFB3 

might inhibit JAK2/STAT5-dependent malignancies.

Levels of PFKFB3 are regulated by ubiquitinylation during the cell cycle. PFKFB3 

accumulates in mid to late G1 and breakdown in S phase occurs specifically via a distinct 

S273 residue within the conserved recognition site for SCF-beta-TrCP [51]. Others have 

noted that the activity of PFKFB3 is short lasting, coinciding with a peak in glycolysis in 

mid to late G1 in contrast to glutamine metabolism, which remains high throughout S phase 

[52]. Glycolysis is characteristically associated with cytosolic fractions of cells but PFKFB3 

has a nuclear localization signal. Furthermore, nuclear localization of PFKFB3 was 

associated with increased proliferation by increased expression of cyclin-dependent kinases 

and decreased expression of the cell cycle inhibitor p27 [53]. This brings to mind the more 

recent observation with the pyruvate kinase isoenzyme PKM2 (described below) that has 

been shown to have potential transcription regulatory action in addition to its role in 

glycolysis [54]. Therefore, a dual function may be associated with some regulatory enzymes 

involved in glycolysis.

Molecular modeling studies were the basis for the identification of the first published report 

of a small molecule inhibitor of PFKFB3 [55]. This molecule, 3-(3-pyridinyl)-1-(4-

pyridnyl)-2-propen-1-one known as 3PO became commercially available through 

Calbiochem, EMD Millipore in 2013. 3PO was shown to suppress glucose uptake and 

glycolytic flux and was selectively cytostatic to Ras-transformed human bronchial epithelial 

cells relative to normal cells. Growth of human erythroleukemia cells was inhibited by 3PO 

[50]. Treatment of tumor-bearing mice reduced the intracellular concentration of fructose 

2,6-bisphosphate, glucose uptake and tumor growth. The observation that 3PO suppresses T-

cell activation indicates a potential use for small molecule inhibitors of PFKFB3 in the 
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treatment of autoimmune conditions but might be problematic in combination treatments 

with immunosuppressive cancer chemotherapeutic agents [56]. A more potent derivative of 

3PO designated PFK15 has been identified and a phase I clinical trial is planned [57].

4.3 Pyruvate kinase isoform M2 (PKM2)

Pyruvate kinase (PK) catalyzes the final rate-limiting step in glycolysis (Figure 1), 

transferring a phosphate group from phosphoenolpyruvate (PEP) to ADP and thereby 

generating pyruvate and ATP [58]. Humans have four PK enzymes: PKR is restricted to 

erythrocytes; PKL is found predominantly in liver and kidney; PKM1 is expressed in 

differentiated somatic cells (e.g. muscle and brain) and PKM2 is found in fetal tissues and 

proliferating cells. In cancer cells, expression of PKM2 is up-regulated such that it becomes 

the most predominant PK isoform [59]. Accumulating evidence suggests that PKM2 

expression is elevated in cancer cells, as its enzymatic activity can be regulated by various 

metabolic and signaling inputs [24, 60, 61]. PKM2 influences the fate of glucose carbons 

(Figure 1). In general, PKM2 activity is low in proliferating cells, which creates a bottleneck 

at the terminal step in glycolysis, which results in elevated concentrations of upstream 

glycolytic metabolites. As a consequence, such intermediates are available for the 

biosynthetic reactions that branch off of glycolysis, thereby increasing the generation of 

cellular building blocks needed for proliferation [24]

Current models describing the function of PKM2 in cellular proliferation focus mainly on 

mechanisms that regulate its pyruvate-generating activity as a cytoplasmic component of 

glycolysis [61, 62]. However, recent studies have provided evidence for activities of PKM2 

that extend beyond this canonical role. Namely, several nuclear activities for PKM2, and 

mechanisms that enable the shuttling of PKM2 into the nucleus, have now been described 

[54, 63–70]. Nuclear activity promotes tumor growth through the direct transcriptional 

activation of genes involved in cancer metabolism, including PKM2 itself and the RNA 

splicing factors that repress PKM1 [54, 65, 68]. In this way, PKM2 acts in a feed forward 

loop to promote both its nuclear activities and its metabolic role in cancer metabolism. 

Ongoing studies seek to examine the relative contributions of these two functions in 

oncogensis and growth.

The central principle presented above asserts that inhibiting PK activity facilitates 

proliferation. This can be achieved through the expression of the less active and 

‘regulatable’ PK enzyme, PKM2. Alternatively, PKM2 might be upregulated to eliminate 

PKM1 expression; PKM1 is a constitutively active enzyme, which reduces the generation of 

carbon for anabolic reactions and facilitates the generation of ATP in the mitochondria. 

Recent support for this line of thinking comes from the observation that PKM2 is not 

required for tumor maintenance, where short hairpin (sh)RNA-mediated depletion does not 

affect tumor growth [71]. Furthermore, genetic experiments, in which the PKM2-specific 

exon was deleted in a mouse model of breast cancer using Cre-lox technology, demonstrated 

that the absence of PKM2 increased oncogenesis and negatively affected survival. 

Strikingly, these tumors showed no tissue-specific PK expression. They did, however, still 

produce lactate from glucose, suggesting that alternative and non-canonical methods of 

pyruvate generation were functioning [72]. Collectively, these experiments demonstrate that 
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PKM2 is not required for oncogenesis or growth, and support for the concept that cancer 

cells have a growth advantage by removing PKM1.

Despite potential mechanistic differences between these two models on the role of PK in 

cellular proliferation, they converge on a common point: constitutive PK activity is 

detrimental for proliferation. Consistent with this concept, the first study to examine the 

activity of PK directly in an isogenic context demonstrated that cancer cell lines engineered 

to express PKM1 produce less lactate, consume more oxygen and are less tumorigenic in 

nude mouse xenografts than those expressing PKM2 [73]. Importantly, these results 

demonstrated that less PK activity provided a selective growth advantage for cancer cells in 

vivo.

From a therapeutic standpoint, activation of PK may serve as a promising strategy to slow 

cancer growth. Indeed, numerous research teams in the public and private sectors have 

recently developed drug-like small molecule activators of PKM2 that make it behave more 

like PKM1 [74–79]. Studies using such compounds have shown that activation of PKM2 

results in decreased accumulation of biosynthetic carbon building blocks and reduced cancer 

growth [74]. Interestingly, all compounds described thus far share a high degree of structural 

similarity and bind at the same interface in the PKM2 multimer. The small molecule 

activator binding pocket is distinct from the fructose bisphosphate (FBP) binding pocket, 

where PKM2 activators overcome negative regulation by phosphotyrosine peptides. 

Together, these two activities enable compounds to overcome mechanisms that negatively 

regulate PKM2.

Several of the compounds described above have been investigated in animal models [74, 

75]. In one study, a compound called TEPP-46 activated PKM2 and impaired tumor seeding 

and growth. Subsequent metabolic analyses support the hypothesis that impaired anabolic 

metabolism is responsible for the growth inhibition. Future studies are now aimed at 

exploring the use of these agents in combination with cytotoxic chemotherapies that 

generate oxidative stress. Support for this concept comes from the observation that 

activating PKM2 impairs the metabolic control of redox – specifically the generation of 

reducing equivalents in the form of NADPH and GSH [80] – which sensitizes cancer cells to 

further oxidative stress. Finally, PKM2 activators may prove to be doubly effective, as 

multimer formation prevents the nuclear translocation of PKM2 and thus its activity as a 

protein kinase and activator of gene expression [67].

5. Amino Acid Metabolism

In addition to the well-established role for altered glucose metabolism in cancer, recent 

research highlights the involvement of amino acid metabolism in cancer, especially 

glutamine. In proliferating cells, the tricarboxylic acid (TCA) cycle functions as a source of 

precursors for macromolecular synthesis in addition to generating reducing equivalents for 

oxidative phosphorylation [81]. Citrate, for example, is both the canonical entry point of the 

TCA cycle and a precursor for the acetyl-CoA used in fatty acid/sterol synthesis and 

acetylation reactions. Normally, the withdrawal of citrate to supply these other pathways is 
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matched by an influx of carbon into the cycle to yield oxaloacetate, refilling the pools of 

TCA cycle intermediates and maintaining function of the cycle during growth [26].

In culture, many cancer cells meet their anaplerotic demand through the oxidative 

metabolism of glutamine to oxaloacetate (Figure 2) [26]. Glutamine is an advantageous 

anaplerotic precursor because its conversion to α-ketoglutarate (α-KG) has the potential to 

disperse nitrogen to hexosamines, nucleotides, and non-essential amino acids, all of which 

are required for growth. Furthermore, oxidative metabolism of α-KG to oxaloacetate 

produces reducing equivalents that can be used to generate energy [82]. Alternative 

anaplerotic pathways, such as pyruvate carboxylation, also produce oxaloacetate but do not 

satisfy these other demands, positioning glutamine as a key player in mitochondrial 

metabolism.

5.1 Glutaminolysis

Glutamine is a non-essential amino acid with an amine functional group and is the most 

abundant amino acid in circulation [83]. Glutamine supplies nitrogen for nucleobase 

synthesis and carbon for the TCA cycle, lipid synthesis and nucleotide synthesis [84]. 

Glutamine is involved in both anabolic and catabolic processes. The catabolism of glutamine 

is called glutaminolysis, which can be converted into glutamate, aspartate, CO2, pyruvate, 

lactate, alanine and citrate. The first step of glutaminolysis is the conversion of glutamine to 

glutamate and ammonia via glutaminase (GLS). After glutamine is converted into glutamate, 

the glutamate is oxidized into α-KG. This most often occurs through the enzyme glutamate 

dehydrogenase (GLDH), concomitant with the generation of mitochondrial NADH or 

NADPH and ammonia [85]. This is the first energy-yielding step in glutaminolysis and is 

the link to the TCA cycle (Figure 2).

While glutaminolysis is a normal process for many cells, such as lymphocytes and 

adipocytes, many cancer cells have elevated glutamine flux. In cell culture, human glioma 

and HeLa cells were found to be completely dependent upon glutamine for their survival. 

The cells died in the absence of glutamine, despite being in glucose-rich media, which is 

now known as the complete dependence on glutamine for cell survival (a.k.a glutamine 

addiction) [28, 86]. Interestingly, not all cancer cells exhibit glutamine addiction. While the 

complete molecular mechanism of glutamine addiction is not known, several oncogenic 

mutations or alterations have been found to explain glutamine-dependence in cancers. For 

example, Myc is able to increase glutamine metabolism by upregulating GLS expression, 

which leads to glutamate entry into the TCA cycle as α-KG [87].

The ability to use exogenous glutamine is enhanced by the upregulation of glutamine 

transporters [88]. For example, one study found the increase in glutaminolysis was so 

profound that cancer cells accumulated more glutamine than was necessary to meet the 

energy and anabolic requirements of the cell; excess glutamine-derived carbon was secreted 

from the cells in the form of lactate or, to a lesser extent, alanine [28]. Further evidence 

suggests that overexpression of Myc is enough to induce glutamine addiction, due to the fact 

that this mutation causes the metabolism of the mitochondria to be altered in such a manner 

as to rely on glutamine despite available glucose [28]. Interestingly, these glutamine-

addicted cells were found to be keenly sensitive to electron transport chain inhibitors. This 
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observation could indicate that either the potential energy in glutamine is being used in the 

production of ATP [89] or that mitochondrial glutamate uptake by the glutamate/aspartate 

mitochondrial transporter requires a proton-motive force.

In human pancreatic ductal adenocarcinoma (PDAC), the oncogene KRAS contributed to 

glutamine dependency by using glutamine-derived aspartate to produce oxaloacetate via 

aspartate transaminase (GOT1) in the cytoplasm. Oxaloacetate was in turn converted into 

malate and then pyruvate to maintain a high NADPH/NADP+ ratio for redox homeostasis. 

Therefore, disrupting these reactions, and ultimately glutamine metabolism, led to 

suppression of PDAC growth in vitro and in vivo [90].

In a recent study, the use of Nuclear Magnetic Resonance (NMR) Spectroscopy and Mass 

Spectrometry (MS), as well as stable isotope-resolved metabolomics, allowed the fate of 13C 

and 15N from labeled glutamine in B lymphoma cells to be traced under aerobic and hypoxic 

glucose-deprived conditions [91]. In this study, glutamine is the fuel that drives the TCA 

cycle, which is completely independent of the glucose supply. This reprogramming of the 

TCA cycle is particularly advantageous to cancer cells under glucose-deprived and/or 

hypoxic conditions. Where glucose is preferentially converted to lactate under hypoxic 

conditions, glutamine metabolism serves to sustain ATP production and redox homeostasis 

in order to support cancer cell growth and survival. This implies that even hypoxic cancer 

cells can oxidize glutamine through the TCA cycle, and in the absence of glucose, glutamine 

metabolism alone can sustain the TCA cycle and thereby meet the anapleurotic and 

energetic demands of the proliferating cancer cells.

Supporting this idea, Myc-transformed cells were found to rely on a means of α-KG 

synthesis other than that involving GLDH. Aspartate and alanine transaminases reversibly 

convert glutamate into α-KG, along with oxaloacetate to aspartate or pyruvate to alanine, 

respectively (Figure 2). These reactions occur despite the presence of GLDH in the 

mitochondria of cancer cells, which catalyzes the direct conversion of glutamate to α-KG 

[92]. This is especially important considering it was found that Myc-transformed breast 

cancer cells undergo apoptosis when aspartate transaminase is inhibited. This implies that 

this cancer is heavily reliant upon transaminase reactions to produce α-KG [93, 94].

Due to the central nature of glutaminolysis in many cancers, it is becoming an increasingly 

prominent target in cancer therapy. One of the early strategies to suppress glutamine 

metabolism was to reduce the amount of available glutamine by using glutamine analogs. 

Compounds such as 6-diazo-5-oxo-l-norleucine (DON) and acivicin showed cytotoxic 

effects against several malignant tumors types, including leukemia and colorectal cancers; 

however these analogs are no longer clinically available due to patient toxicity [95].

More recent strategies have focused on targeting the enzymes of glutamine metabolism. For 

example, GLS is a potential target for the inhibition of glutaminolysis in cancer cells. The 

kidney isoform, GLS1, is found in many malignant tumors [96] while the liver isoform, 

GLS2, is less often expressed in cancers. The compound bis-2-(5-

phenylacetimido-1,2,4,thiadiazol-2-yl)ethyl sulfide (BPTES) has been shown to inhibit 

growth of a variety of cancers in mouse models and in cell culture, including B lymphoma, 
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which allosterically inhibits GLS1 by altering the conformation of the enzyme [97]. The 

effect is enhanced under hypoxic conditions, often inducing cancer cell death [91].

GLDH is another potential target of glutaminolysis, which when knocked-down by siRNA 

resulted in a marked decrease in the proliferation of glioblastoma cells that were glutamine 

dependent [98]. Green tea polyphenols, hexachlorophene, GW5074, and bithionol may 

inhibit GLDH function. These inhibitors work by restricting enzyme movement, either by 

forming rings around the enzyme or wedging between the enzyme’s subunits. Currently, 

green tea polyphenols have been shown to inhibit lung, colon, and prostate adenocarcinoma 

growth in xenograft models [99]. These compounds also had significant effects on 

glioblastoma, colon, lung and prostate adenocarcinoma cell proliferation [100].

Another strategy to inhibit glutaminolysis is to target alanine transaminase through L-

cycloserine [101] or aspartate transaminase through amino oxyacetate [93] which nearly 

halted the growth of breast cancer in xenograft mice. Similarly, aspartate transaminase 

knockdown in pancreatic cancer is also dramatically growth inhibitory in vitro and in vivo 

and leads to a profound disruption of redox homeostasis [90]. In both of these cases, little to 

no toxicity was observed with transaminase inhibition in non-neoplastic cells. These studies 

suggest that aspartate aminotransferase is a promising cancer target. Finally, given that 

inhibition of aspartate transaminase also leads to a disruption of redox homeostasis, such 

inhibition may synergize with therapies that increase reactive oxygen species (ROS), such as 

chemotherapy and radiation [102].

5.2 Reductive Carboxylation

Not all cancer cells have the ability to perform glutaminolysis. Hypoxia limits the oxidative 

capacity of the TCA cycle, and in particular suppresses production of acetyl-CoA from 

glucose via pyruvate dehydrogenase (PDH) [103, 104]. Furthermore, some cancer cells 

contain severe mutations in TCA cycle enzymes (succinate dehydrogenase, fumarate 

hydratase) or in components of the electron transport chain that prevent efficient production 

of oxaloacetate from glutamine [105]. Yet, both hypoxic cells and cells with defective 

mitochondria require glutamine for growth [106–108]. To address this paradox, metabolic 

labeling experiments were performed using 13C, and revealed that these cells metabolize 

glutamine through an unusual pathway characterized by “reversal” of isocitrate 

dehydrogenase (IDH) enzyme activity (Figure 2, blue arrows) [106, 107, 109, 110]. IDH 

typically acts as an oxidative decarboxylase, converting isocitrate to α-KG and CO2 in the 

presence of an electron acceptor. Indeed, IDH3, the mitochondrial NAD+-dependent IDH 

isoform, functions exclusively in this manner. However, the two other mammalian IDH 

isoforms, IDH1 and IDH2, use NADP+/NADPH as cofactors, and can act either as oxidative 

decarboxylases or reductive carboxylases. In the latter reaction, α-KG is carboxylated to 

produce isocitrate, converting NADPH to NADP+. Isocitrate is readily converted to citrate, 

which can then be cleaved to produce acetyl-CoA. Under conditions of reductive 

carboxylation, glutamine becomes the major source of acetyl-CoA for fatty acid synthesis, 

greatly decreasing the need to produce acetyl-CoA from glucose. Furthermore, citrate 

cleavage yields oxaloacetate, which is converted to other 4-carbon intermediates, meaning 

that essentially the entire cellular pool of TCA cycle intermediates can be derived from 
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reductive carboxylation, in reverse order to their conventional route of production (Figure 

2).

Reductive carboxylation had previously been observed as a minor source of isocitrate and 

citrate in a number of non-transformed mammalian tissues [111–114]. Its importance in 

cancer cell biology is related to its ability to serve as the major source of citrate and acetyl-

CoA when cellular circumstances conspire to inactivate pathways that normally produce 

these metabolites, including hypoxia and genetic reprogramming of mitochondrial 

metabolism. For example, the Von Hippel-Lindau (VHL) tumor suppressor normally 

functions in the oxygen-dependent degradation of the alpha subunits of the hypoxia 

inducible factor (HIF) transcriptional activators. Thus, in cells expressing VHL, oxygen 

facilitates the degradation of HIF1α and HIF2α so that HIF target genes are not expressed. 

In contrast, in malignant tumor cells lacking VHL, HIF target genes are expressed regardless 

of oxygen availability. These genes, which include glucose transporters and glycolytic 

enzymes, are part of the metabolic adaptation to hypoxia. Importantly, hypoxia stimulates 

the expression of PDH kinase-1 (PDK1), which phosphorylates and inactivates the PDH 

complex, impairing its ability to provide acetyl-CoA and citrate from glucose [103, 104]. 

Cancer cells lacking VHL produce a substantial fraction of citrate and fatty acids using 

glutamine-dependent reductive carboxylation in culture, and a small but detectable fraction 

of citrate in vivo [115]. Heterologous expression of wild-type Vhl, or silencing of PDK-1, 

partially reverts metabolism to a phenotype in which citrate and fatty acids are produced 

from glucose/PDH [115].

Regulation of reductive carboxylation is an area of active investigation. Importantly, the 

pathway is stimulated by mutations in the electron transport chain that impair recycling of 

mitochondrial NADH to NAD+, but importantly NADPH is the cofactor for reductive 

carboxylation. This suggested a model in which a low NAD+/NADH ratio in mitochondria 

provides a source of reducing equivalents which are transmitted to NADPH by nicotinamide 

nucleotide transhydrogenase (NNT) [107]. NNT is an inner mitochondrial membrane protein 

that uses the electrochemical proton gradient to transfer reducing equivalents from NADH to 

NADPH [116]. Silencing NNT expression in SkMel5 melanoma cells reduced the 

contribution of glutamine carbon to TCA cycle intermediates through both oxidative and 

reductive metabolism, and decreased the rate of growth of SkMel5-derived subcutaneous 

xenografts [117]. In VHL-deficient 786-O renal carcinoma cells, which produce a large 

fraction of citrate via reductive carboxylation, NNT silencing significantly suppressed 

reductive glutamine metabolism. These findings suggested that NADPH produced by NNT 

is required for reductive carboxylation in VHL-deficient cells.

Reductive carboxylation is also regulated by changes in the abundance of TCA cycle 

metabolites. Citrate levels tend to be low in cells with active reductive carboxylation, and 

maneuvers to suppress formation of citrate from glucose enhance the fraction of citrate 

derived from reductive carboxylation [106, 107, 109, 115]. By contrast, supplying cells with 

exogenous acetate or citrate increases the ratio of citrate/α-KG while reducing the overall 

contribution of reductive carboxylation to TCA cycle metabolism [115].
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Compartmentalization of the reductive carboxylation reaction is not well understood. IDH1 

is cytosolic while IDH2 is localized to the mitochondria, and data suggest that each isoform 

can participate in reductive carboxylation. IDH2 was found to be the crucial isoform for 

reductive carboxylation in hypoxic glioma cells [109], whereas other cell lines required 

IDH1 under hypoxia [106]. Genetic suppression of pyruvate dehydrogenase in lung cancer 

cells is sufficient to induce a net flux of reductive carboxylation, and under these 

circumstances the flux is completely dependent on IDH1 [118]. In cells with mutations in 

the electron transport chain, silencing either isoform reduced activity of the pathway, and 

silencing both together had a maximal effect [107]. The involvement of NNT as a source of 

NADPH argues for mitochondrial localization of the reductive carboxylation reaction, at 

least in those cells that require NNT expression to maintain citrate levels. However, 

cytosolic sources of NADPH, including the oxidative branch of the pentose phosphate 

pathway, may play a more prominent role in cells where IDH1 catalyzes reductive 

carboxylation. Presumably, the choice of isoform is also related to localization of an 

available source of the substrate α-KG, meaning that compartmentalization of glutamine 

metabolism could add another dimension to regulation of this pathway.

6. Lipid Metabolism

Cancers may use a wide variety of substrates and substrate sources to meet their catabolic 

and anabolic needs, including internally- and externally-derived fatty acids (FAs). Indeed, 

FAs are essential for cellular proliferation. In particular, FAs are used as cellular building 

blocks for lipid membrane synthesis, for energy storage and production, as well as for 

cellular signaling. Thus, limiting abundance of FAs could be a therapeutic strategy against 

cancer. Limiting cellular FAs could be achieved by: blocking synthesis (lipogenesis), 

increasing breakdown (oxidation), reducing availability from storage (lipolysis), or by 

increasing FA flux towards storage (re-esterification); these distinct strategies have been 

considered as chemotherapeutic strategies recently [119]. As with other metabolic shifts in 

cancer, characterizing the state of lipid metabolism in unique cancer types and cells lines is 

an important first step. Indeed, successful chemotherapeutic strategies will require 

understanding the specific abnormalities in lipid metabolism for a given cancer type. 

Targeting lipid metabolism in cancer is an emerging idea that warrants further investigation.

7. Epigenetics and Oncometabolites

In addition to alterations in metabolism, metabolic reprogramming mediated by specific 

oncogenes and tumor suppressors can impact dynamic regulation of chromatin via post-

translational modifications. Indeed, increasing evidence indicates that altered metabolism 

can also lead to changes in nutrient-sensitive post-translational modifications. These 

chemical modifications, such as O-GlcNAcylation, methylation, and acetylation, can impact 

the activities of metabolic enzymes, signaling components, transcriptional regulators, and 

chromatin-associated proteins such as histones [120–124]. Furthermore, oncometabolites, 

such as 2-hydroxyglutarate (2-HG), can have profound consequences on the regulation of 

chromatin organization, gene expression, and genome integrity. Improved understanding of 

the links between metabolism and epigenetics is expected to have important therapeutic 
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implications, and intense efforts are currently geared towards targeting both altered 

metabolism and epigenetics [125, 126].

7.1 O-GlcNAcylation

The hexosamine biosynthetic pathway (HBP), a branch of metabolism that diverges from 

glycolysis at fructose-6-phosphate, generates uridine diphosphate N-acetylglucosamine 

(UDP-GlcNAc), a key donor substrate for glycosylation reactions, including the O-GlcNAc 

modification, which is mediated by O-GlcNAc transferase (OGT) [122, 127, 128]. O-

GlcNAcylation is generally elevated in cancer cells and has been linked to malignant tumor 

growth through direct modification of phosphofructokinase (PFK1) and indirect regulation 

of FoxM1 [129–131]. All four histones (H2A, H2B, H3, and H4) are modified by O-

GlcNAc, which is dynamically regulated in response to nutrient availability [132–134]. O-

GlcNAcylation of histone H3 on Ser10 is cell cycle regulated and suppresses mitosis-

specific H3 phosphorylation [135], whereas H2B Ser112 O-GlcNAcylation facilitates 

monoubiquitylation of Lys120 of histone H2B, a mark associated with active transcription, 

indicating a role for O-GlcNAc in gene regulation through chromatin modification [134]. 

OGT can also associate with Ten-Eleven-translocation (TET) family 5-methylcytosine 

hydroxylases and participate in TET-mediated gene regulation [136–139]. Whether cancer 

cells exhibit altered histone O-GlcNAcylation patterns due to metabolic alterations is not yet 

clear. Notably, TET2 function is frequently disrupted in hematopoietic malignancies [140–

142], and future studies will determine whether changes in histone O-GlcNAcylation 

participate in cancer development in these cases.

7.2 Methylation

Alterations in histone and DNA methylation are widely observed in cancer. Many cancer 

types display global DNA hypomethylation compared with normal tissue, while genes 

regulating cell-cycle and DNA damage response are frequently found to be 

hypermethylated, and thus silenced [143]. Histone and DNA methyltransferases utilize the 

methyl donor S-adenosyl methionine (SAM), which is synthesized from methionine and 

ATP. Hence, SAM availability for methylation reactions may be sensitive to levels of 

methionine taken up from the environment or synthesized through one-carbon metabolism 

pathways, discussed in more detail below. In yeast, SAM can serve as a sensor of amino 

acid availability, inhibiting autophagy and promoting growth [144]. While transformed cells 

require growth medium supplemented with methionine [145], knowledge of how cancer 

cells use methionine to regulate histone and DNA methylation is still limited. Notably, the 

enzyme nicotinamide N-methyltransferase (NNMT), which depletes SAM by catalyzing the 

transfer of SAM’s methyl group to nicotinamide, is frequently overexpressed in human 

cancers. A recent study demonstrated that NNMT levels impact methylation in cancer cells, 

with NNMT overexpression associated with reduced levels of SAM and histone methylation 

[146]. Interestingly, metabolic regulation of SAM production has also been implicated in 

modulating histone methylation levels and maintaining pluripotency in mouse embryonic 

stem cells [147]. In addition to overall cellular levels of SAM, localized pools of SAM may 

provide an additional layer of metabolic control. The enzyme methionine 

adenosyltransferase (MATIIα, which produces SAM, has been localized to gene promoters 

and implicated in gene regulation, indicating that enzymatic production of metabolites can 
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be targeted to specific loci and coupled to transcriptional regulation [148]. DNA and histone 

methylation levels are also controlled by rates of demethylation. Metabolic control of 

demethylation is discussed below in the “Oncometabolites” sub-section. Given the 

substantial evidence that DNA and histone methylation abnormalities contribute to cancer 

initiation and growth, further investigation into the role of metabolism in determining 

methylation changes in cancer is needed.

7.3 Acetylation

Lysine acetylation levels are determined by the combined actions of lysine 

acetyltransferases (KATs) and deacetylases (HDACs), both of which may be influenced by 

metabolic state. Histone proteins are acetylated at multiple lysines, and these modifications 

are involved in chromatin-dependent processes, including gene transcription, DNA 

replication, and DNA damage repair. In mammalian cells, nuclear-cytosolic acetyl-CoA, the 

donor substrate for acetylation reactions, is generated either through the cleavage of citrate 

by ATP-citrate lyase (ACLY) or directly from acetate by acetyl-CoA synthetase (AceCS1) 

[122]. Histone acetylation can be regulated by the availability of glucose or acetyl CoA 

[149–152], and in mammalian cells glucose-dependent regulation of histone acetylation 

occurs in an ACLY-dependent manner [149]. Reciprocally, nuclear-cytoplasmic lysine 

deacetylation can be mediated by SIRT1, a member of the NAD+-dependent sirtuin family 

of lysine deacetylases [class III histone deacetylases (HDACs)] [153, 154]. NAD+ levels rise 

under nutrient-restricted conditions, in part mediated by AMP-activated protein kinase 

(AMPK) [155, 156]. In addition, the ketone body β-hydroxybutyrate (βOHB) was recently 

demonstrated to function as an endogenous inhibitor of class I HDACs under ketogenic 

conditions and influence the state of histone acetylation and gene transcription [157].

Metabolic control of histone acetylation is likely to impact cancer growth, although this has 

not yet been directly shown. In yeast, acetyl-CoA acts as a growth signal, promoting histone 

acetylation at and expression of growth-related genes [158]. Levels of ACLY are frequently 

elevated in cancer [159], although the impact of this on overall histone acetylation is not yet 

known. Global histone acetylation levels are highly heterogeneous among cancers, and 

several studies have shown correlations with cancer recurrence and patient survival [160–

164]. Both KAT and HDAC inhibitors have shown promise in cancer therapy [125], 

although mechanisms of action remain poorly understood.

7.4 Sirtuin deacylases (SIRTs)

The sirtuins (SIRT1-7) are a class of conserved NAD+-dependent deacylases that control 

cellular metabolic processes and protect the cell against metabolic and genotoxic stresses. 

Not surprisingly, altered regulation of the sirtuins is associated with many diseases such as 

diabetes, neurodegenerative diseases, obesity, and cancer [165]. Rapidly proliferating cancer 

cells require shifts in metabolism that promote anabolic metabolism, as such the sirtuins 

play an important role in controlling cancer development and progression by maintaining 

normal cellular metabolism. Of the 7 mammalian sirtuins four of them, SIRT1, SIRT3, 

SIRT4, and SIRT6 have been associated with various types of cancer and are generally 

believed to be associated with cancer cell metabolism and control of the Warburg effect as 

well as DNA damage responses. SIRT1, SIRT3, and SIRT6 are strong deacetylases, while 
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the enzymatic activity of SIRT4 is less clear but it has been shown to be a weak ADP-

ribosyltransferase and possibly a weak deacetylase [166]. SIRT1 and SIRT6 serve to mainly 

deacetylate histones and transcription factors in the nucleus, while SIRT3 and SIRT4 are 

mitochondrial, where they act on metabolic proteins [167].

SIRT1 shares the most homology to Sir2 (S. cerevisiae), the first sirtuin identified, and has 

been shown to increase lifespan and protect against age-related diseases. The main targets of 

SIRT1 are the transcription factor peroxisome proliferator-activated receptor gamma 

coactivator 1-alpha (PGC1α), the FOXO family of transcription factors, and the tumor 

suppressor p53 [168]. Studies have found that SIRT1 expression is elevated in certain 

cancers and repressed in others, making the role of SIRT1 in cancer difficult to define [169]. 

It seems as though the main confusion underlying the role of SIRT1 in cancer is the 

complexity behind the SIRT1-mediated inhibitory deacetylation of p53. SIRT1 expression is 

also positively regulated by p53 in an apparent negative feedback loop where loss of p53 

reduces SIRT1 expression, leading to an increase in p53 activity [170]. SIRT1 has been 

described as a tumor suppressor that promotes the DNA damage response, and SIRT1+/− 

p53+/− mice develop cancer in a variety of tissues, particularly sarcomas. Furthermore, 

SIRT1 overexpressing mice are more metabolically efficient, resistant to diabetes, and no 

cancer phenotype has been reported in these mice [171]. SIRT1 expression is reduced in 

various human cancers, particularly breast cancer and hepatocellular carcinoma [172]. 

Activation of SIRT1 has already proven beneficial in BRCA1-associated breast cancers as 

treatment with resveratrol activated SIRT1 and inhibited cell proliferation in vitro and tumor 

growth in vivo [173]. It seems as though activation of SIRT1 may have therapeutic potential 

in certain cancers in order to normalize cellular metabolism and improve the DNA damage 

response.

SIRT3 is the main mitochondrial deacetylase and as such it controls the activities of many 

metabolic enzymes in the mitochondria. SIRT3 deacetylates a long list of mitochondrial 

proteins acting at several nodes of mitochondrial metabolism, including fatty acid oxidation, 

glutamine metabolism, and mitochondrial ROS production. When SIRT3 is lost or ablated, 

metabolic derangements occur [174], which may be the source for the link between SIRT3 

and cancer. The first described link between SIRT3 and cancer reported that SIRT3KO mice 

spontaneously develop mammary tumors after two years [175]. Furthermore, this study 

identified SIRT3 as a tumor suppressor by showing that SIRT3 KO MEFs could be 

transformed in vitro by the addition of a single oncogene, Myc or Ras [175]. A later study 

attributed the elevated level of cellular ROS seen with loss of SIRT3 to the stabilization of 

HIF-1α and activation of HIF-1α glycolytic target genes, leading to altered cellular 

metabolism towards glycolysis [176]. It is possible that SIRT3 deficiency leads to a cancer 

permissive state by coordinating a shift in metabolism to a Warburg phenotype.

Cancer cells also rely heavily on the metabolism of glutamine as a nitrogen source for 

protein and nucleotide synthesis necessary for proliferation [28]. SIRT4 was previously 

found to inhibit the activity of glutamate dehydrogenase (GDH) activity by ADP-

ribosylation. More recently, one study showed that genotoxic stress causes an induction of 

SIRT4 expression leading to a repression of glutamine metabolism [177]. SIRT4 KO MEFs 

had higher glutamine uptake in response to UV damage and increased glutamine-dependent 
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proliferation compared to wild type cells. Finally, SIRT4KO mice had increased incidence 

of various types of cancer, particularly lung cancer compared to wild type mice [177].

Finally, SIRT6 controls cancer metabolism and SIRT6 ablation activates aerobic glycolysis 

and leads to oncogenesis, in the absence of oncogene activation [178]. This study showed 

that when aerobic glycolysis was inhibited by inhibition of PDK1, an inhibitor of pyruvate 

dehydrogenase (PDH), the SIRT6 deficient cells failed to form tumors, showing a reliance 

on glycolytic metabolism of glucose. Further, SIRT6 expression is also low in pancreatic, 

colon, and liver cancers in humans [178, 179]. Overall, it seems as though SIRT6 suppresses 

cancer growth by regulating aerobic glycolysis and that a mutator phenotype is not required 

for SIRT6-dependent tumor formation.

Collectively, these studies show that the loss of an individual sirtuin can promote 

oncogenesis by creating a state that is favorable to cancer cells, such as increasing DNA 

damage, inhibiting DNA repair mechanisms, or altering cellular metabolism towards a 

Warburg-like phenotype. Modulating sirtuin expression may be a way to alter substrate use 

by cancer cells and slow or prevent their growth. Many of the sirtuins are known to be 

regulated by nutrient status, therefore it may be beneficial to modulate sirtuin expression by 

diet and/or exercise. SIRT1 and SIRT3 expression are induced with calorie restriction and 

fasting, and SIRT3 expression is reduced with high fat diet (HFD) feeding [180, 181]. 

Modulating sirtuin expression through diet, and possibly exercise, may be useful in 

combination with conventional cancer therapy. By combining chemotherapy with calorie 

restriction or exercise (described below), sirtuin expression may be elevated leading to a 

more normalized cellular metabolism and better control of the cancer, possibly increasing 

the efficacy of the drug therapy. Along these lines, efforts aimed at identifying calorie 

restriction mimetics, similar in action to resveratrol, have the overall goal of increasing the 

expression or activity of the sirtuins. However, resveratrol, other CR mimetics, and dietary 

manipulations are not selective for a particular sirtuin and may have undesired or off-target 

affects, and most importantly may not activate the sirtuins robustly. More investigation into 

the sirtuins in cancer is clearly needed, and better ways to selectively target individual 

sirtuins will be key moving forward.

7.5 One-carbon metabolism

The folate cycle in combination with the methionine cycle are collectively referred to as the 

one-carbon metabolism, since carbon units are circulated through multiple enzymatic 

reactions. The one-carbon cycle forms a critical component of the cellular metabolic 

network, which is linked to nearly all of the major biosynthetic pathways. The main sources 

that put carbon units into this cycle are serine and glycine biosynthetic pathways. 

Importantly, the fate of the carbons (i.e. outputs) of the one-carbon cycle consist of a variety 

of critical metabolic pathways; for example, some outputs include nucleotide metabolism 

[182], protein translation [183], lipid metabolism [184], methylation metabolism [121, 123, 

185–187], protein sulfhydration, glutathione production. Therefore, the activity of the one-

carbon cycle is important in regulating the biosynthesis of the building blocks of a cell as 

well as its epigenetic status. Furthermore, the redox state of the cell is regulated by this cycle 

at two levels: through the folate cycle by the function of tetrahydrofolate (THF), and also 
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through the glutathione production via the transulfuration pathway that mediates the levels 

of ROS in cells. Both of these mechanisms serve to regulate the balance of NADPH/NADP+ 

levels in the cell [24]. Recently, a variety of cancers exhibiting the Warburg effect were 

shown to divert carbons from glycolytic metabolism into the one-carbon cycle, providing a 

link from the Warburg effect to the activity of one-carbon metabolism [188, 189].

Studies have shown that phosphoglycerate dehydrogenase (PHGDH) is hyperactivated in a 

subset of cancers, resulting in over-production of serine in these cancers [190, 191]. 

Furthermore, the gene encoding PHGDH was shown to have undergone significant copy 

number gain in some cancers and cancer cell lines, and these cell lines were dependent on 

the PHGDH amplification for rapid proliferation [192].

A second instance where one-carbon metabolism has shown correlations with cell 

transformation is the metabolism and generation of glycine. A metabolomics study on 

cancer cell lines reported a strong association between glycine uptake and catabolism with 

cancer cell proliferation [193]. Also another study found that ectopic expression of glycine 

dehydrogenase (GLDC, decarboxylating), phosphoserine aminotransferase (PSAT), and 

serine hydroxymethyltransferase (SHMT), all enzymes important in glycine uptake and 

catabolism, could induce cell growth in NIH 3T3 cells, thus conferring to these cells 

properties indicative of the hallmarks of cancer [194].

Additional levels at which the one-carbon cycle and its output pathways have been linked to 

cancer include nucleotide metabolism, epigenetic modifications, polyamine metabolism, and 

the regulation of the oxidative state of the cell. Multiple genes involved in nucleotide 

metabolism have been shown to be able to cause transformation by reducing the genomic 

integrity [195]. Also, through the transfer of methyl groups to proteins, DNA, and RNA, S-

Adenosyl Methionine regulates protein activity as well as epigenetic marks on DNA and 

proteins in cells which are all broadly implicated in cancer.

Targeting one-carbon metabolism using folate antagonists has long been used as a major 

class of cancer therapeutic agents [196]. Historically, aminopterin was the first one of such 

drugs, and methotrexate and pemetrexed are still being used as common chemotherapeutic 

agents in a variety of cancers acting to inhibit di- and tetrahydrofolate reductase activities, 

thereby disrupting the one-carbon cycle. In addition to this class of compounds, another 

major group of chemotherapeutic agents linked to the one carbon cycle are inhibitors of 

nucleotide metabolism. These include 5-fluorouracil (5-FU) and gemcitabine [197].

Furthermore, several novel anti-cancer drugs that are currently being tested in clinical trials 

also target specific components of the one carbon cycle. These agents mostly target the 

epigenetic state of the cancer cells through inhibiting SAM or DNA methyltransferases or 

polyamine synthesis [198]. Difluromethylornithine (DFMO), methylglyoxal 

bis(guanylhydrazone) (MGBG), and an inhibitor of S-adenosylmethionine decarboxylase 

called SAM486A are examples of such agents.

One carbon metabolism consists of enzymes that are in principle druggable [199]. 

Therefore, several promising drug targets include PHGDH, PSAT, PSPH, GCAT, GLDC, 

and glycine N-methyltransferase (GNMT). A recent study has shown that reduction in serine 
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and glycine intake in diet can significantly reduce cancer cell proliferation in mice, 

suggesting that one carbon metabolism can potentially be targeted through dietary 

adjustments [200]. Finally, due to the prevalence of anti-metabolite chemotherapeutic agents 

that are somehow involved with the one carbon cycle, expression levels of some of the 

components of this pathway could potentially be used as biomarkers for drug selection and 

outcome prediction in several types of cancers [201, 202].

7.6 Oncometabolites

IDH1 and IDH2 are frequently mutated in several cancer types, including glioma, acute 

myeloid leukemia, and chondrosarcoma [203–205], resulting in significant changes to the 

epigenetic landscape in cancers harboring these mutations [120, 141, 206, 207]. The 

products of wild type IDH1 and IDH2 enzymes, NADPH and α-KG, play broad functions in 

regulating cellular metabolism. The mutant IDH proteins lose their wild type function and 

instead convert α-KG into (R)-2-hydroxyglutarate [(R)-2HG], a structural analog of α-KG 

[208]. IDH mutant cancer cells can accumulate millimolar levels of this normally 

undetectable metabolite [208, 209]. Recently, mouse models with altered IDH2 activity have 

shown the capacity of IDH mutations to facilitate malignant tumor development and 

maintenance [210, 211].

(R)-2HG is thought to act by competitively inhibiting certain enzymes that require α-KG as 

a cofactor, including Jumonji-C domain histone demethylases (JHDMs) and TET proteins, 

which are implicated in DNA demethylation [212, 213]. IDH mutant tumors display a 

hypermethylation signature, associated with a block in cellular differentiation [120, 141, 

212]. A similar hypermethylation signature is associated with IDH mutations and TET2 

mutations, which occur in a mutually exclusive manner in AML, indicating that these 

mutations likely target the same pathway [141]. Moreover, either treatment with (R)-2HG or 

silencing of TET2 was sufficient to promote growth factor-independent growth of TF-1 

leukemia cells [214]. However, the epigenetic alterations mediated by (R)-2HG may not 

fully explain its cancer promoting effects, since (S)-2HG, which is not produced by mutant 

IDH but serves as an even more potent inhibitor of TET2 than (R)-2HG, fails to transform 

TF-1 cells. One possible explanation is that (R)-2HG, but not (S)-2HG, can act as an agonist 

for EGLN prolyl hydroxylases, which promote hypoxia-inducible factor (HIF) degradation; 

hence regulation of HIF proteins may also be a part of the malignant tumor-promoting 

activity of (R)-2HG [214, 215]. Indeed, EGLN1 silencing impaired the ability of IDH1 

R132H to transform TF-1 cells.

2HG has emerged as a useful diagnostic marker for patients with IDH mutant tumors. 

Patients with IDH mutant AML exhibit elevated serum 2HG levels, and those with the 

highest levels of 2HG had shorter overall survival [216]. Moreover, 2HG can be detected 

noninvasively by magnetic resonance spectroscopy in patients with IDH mutant glioma 

[217]. Substantial interest has also arisen in therapeutic targeting of mutant IDH enzymes, as 

a cancer-specific metabolic alteration. Inhibitors to mutant IDH1 and IDH2 were recently 

reported. For example, an IDH2/R140Q inhibitor promoted the differentiation of leukemia 

cells containing that mutation [218]. An IDH1/R132H inhibitor likewise promoted 

differentiation and reduced histone methylation in glioma cells. Growth of glioma 

Hirschey et al. Page 19

Semin Cancer Biol. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



xenografts was also impaired. Notably, the tumor growth inhibitory effects of the drug were 

observed at lower doses than were required to stimulate histone demethylation and 

differentiation, further suggesting that additional mechanisms may contribute to mutant 

IDH-mediated malignant tumor growth [219].

In addition to (R)-2HG, succinate and fumarate also have the potential to act as 

oncometabolites. In specific cancer types, loss-of-function fumarate hydratase (FH) and 

succinate dehydrogenase (SDH) mutations are observed, resulting in build-up of fumarate 

and succinate, respectively. Similar to 2HG, fumarate and succinate can competitively 

inhibit α-KG-dependent dioxygenases. As such, succinate has been known for several years 

to promote HIF1α stabilization via inhibition of prolyl hydroxylases [220]. More recently, it 

has been identified that succinate and fumarate also inhibit histone demethylases and TET 

proteins [221]. Both SDH mutant gastrointestinal stromal tumors and paraganglioma were 

shown to exhibit a hypermethylation phenotype [222, 223].

7.7 Lactate

As described above, lactate is made from pyruvate by the enzyme lactate dehydrogenase 

(LDH) during normal cellular metabolism (Figure 1). Cancer cells produce high levels of 

lactate, as described above. More recently, a new role for lactate has been described wherein 

some cancer cells use lactate to enable proliferation. For example, in a cancer 

microenvironment, excess lactate is secreted and contributes to an extracellular environment 

that promotes cancer progression [224]. Thus, lactate, which was previously considered a 

waste product of cancer cells, has now been identified as a key metabolite that plays a direct 

role in promoting cellular growth. The concept of the role of lactate as a signal or as a fuel in 

cancer is often called the “reverse Warburg effect” [225].

Lactate levels are governed by a number of factors, including differential expression of LDH 

isoforms, the lactate monocarboxylate transporter (MCT) levels, and oxidative capacity of 

tissues. LDH is the primary enzyme catalyzing lactate turnover, which interconverts 

pyruvate and lactate, with concomitant interconversion of NADH and NAD+, respectively. 

LDH is involved in the metabolism of both glucose and glutamine carbon, as well as in 

determining malignant tumor pH and the activity of the TCA cycle [226]. LDH is further 

classified into five different subtypes (LDH1-5), which structurally conform into homo- or 

hetero-tetramers of M protein subunits encoded by LDH isoform A (LDHA) and H protein 

subunits encoded by LDH isoform B (LDHB) genes. These subtypes vary based of tissue 

distribution. For example, in normal tissue, LDH1 has high expression in the brain, heart, 

and kidney; LDH5 is found in glycolytic tissues, such as liver or skeletal muscle [227].

Recently, LDHA was shown to be required for the maintenance and progression of many 

cancers [228–231], but the mechanisms by which LDHA facilitates cancer progression 

remain poorly understood. Indeed, targeting lactate metabolism is re-emerging as a 

therapeutic strategy [232]. Given the correlation between LDHA levels and poor outcomes, 

LDHA has attracted attention as a cancer target. Reducing LDHA levels (by shRNA) in cells 

leads to decreased proliferation and suppressed oncogenicity [228]. Furthermore, inhibition 

of LDHA pharmacologically (FX11) or by siRNA reduces ATP levels and results in cellular 

death [229]. A follow-up study examining the combination treatment of FX11 (LDHA 
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inhibitor) and FK866 (an NAD+ synthesis inhibitor) resulted in lymphoma regression in a 

xenograft model [229]. Another study identified that LDHA plays a role in chemoresistance 

in breast cancer [233]. Specifically, paclitaxel-resistant breast cancer cells have high 

expression and activity of LDHA compared to paclitaxel-sensitive cells. Importantly, 

downregulation of LDHA restores chemosensitivity, indicating that lactate dehydrogenase, 

and more broadly lactate levels, play a key role in cancer drug resistance and may serve as a 

therapeutic target.

In addition to LDH, MCTs have come under increased scrutiny for their ability to import 

and export lactate. This family of transporters moves lactate and a proton down a 

concentration gradient, which determines the directionality of transport. Similar to LDH, 

different MCT isoforms are expressed in tissue types according to their oxidative capacity 

[234, 235]. For example, MCT1 is high in oxidative cell types like muscle sarcolemma 

[236], and increases with training. MCT4, on the other hand, is found in cells with high rates 

of glycolysis, such as fast-twitch muscle cells. Consistent with this idea, its expression is 

increased during hypoxia.

MCTs have also garnered interest as regulators of lactate metabolism. Indeed, inhibition of 

MCT1, either pharmacologically with α-cyano-4-hydroxycinnamate (CHC), or by RNA 

interference, shifted metabolism from lactate consumption to glucose consumption in 

normoxic cells. Interestingly, this also revealed a metabolic flexibility of cancer cells. Some 

studies have also tested MCT1 inhibition in vivo. In one mouse model of lung cancer and in 

a xenograft of human colorectal adenocarcinoma, CHC administration reduced hypoxia, 

induced tumor necrosis, and slowed overall growth. In another study, CHC was able to 

induce anti-tumoral and anti-angiogenic activity in gliomas, as well as to potentiate the 

effect of the alkylating agent temozolomide [237].

To conclude this section on emerging metabolic derangements contributing to cancer cell 

growth, we end with lactate – Warburg’s original observation. Collectively, these studies 

support a model where metabolites, like lactate, which facilitate malignant tumor 

development and/or survival, have the potential to be targeted therapeutically.

8. Therapeutic Strategies

Metabolism is a recent addition to the hallmarks of cancer, and the nature of these changes 

and their significance for the etiology of the disease are areas of intense investigation. As in 

other reviews of ‘hallmarks of cancer’ in this special issue, both molecular targets and small 

molecules were evaluated as lead candidates to influence different aspects of cancer 

metabolism. Each of the priority targets was outlined in the preceding sections and together 

are summarized in Table 1. These areas were chosen for their known or emerging 

mechanisms to contribute to cancer metabolism.

Next, a team of researchers consisting of specialists in each hallmark area performed an 

extensive literature search to determine if any studies had been performed addressing the 

effect of each molecular target on other hallmarks. The ‘Target Validation Team’ also 

looked for any possible reports of effects by the identified therapeutic approaches on other 

hallmarks. Given the interest in future research that will focus on combination approaches, 
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this effort was primarily aimed at highlighting any evidence of contrary effects in other 

hallmark areas. However, any potential for complementarity or synergy were also 

considered as well.

Remarkably, many targets described above as having potential to manipulate different 

aspects of cancer metabolism have not been directly tested in the context of other hallmarks. 

In particular, compounds need to be tested for their influence on other hallmarks, 

independent of their effects on metabolism; this is the current major gap in knowledge. We 

primarily attribute this to the recent resurgence in metabolic studies, especially in the 

context of cancer. Indeed, less is known about if and how to effectively target cancer 

metabolism as a therapy than is known about targeting other hallmarks of cancer. Thus, our 

analysis at this time shows that prioritized targets and lead compounds that might affect 

these targets need further investigation. With more research, a broad-spectrum approach to 

target metabolism and to synergize with other hallmarks of cancer could be achieved.

In the interim, based on current knowledge, we consider from a drug development 

perspective the unique environment of mitochondria, which needs to be considered to target 

mitochondrial function, and ultimately manipulate metabolism. Because of the challenges 

associated with targeting mitochondria, we also take a step back from the cellular and 

biochemical mechanisms of metabolism and discuss how alterations in host metabolism 

could more broadly manipulate cancer metabolism in an efficacious way. Together, 

considering both cancer (direct) and host (indirect) metabolism could uncover novel 

therapeutic strategies or information that could be leveraged to target metabolism.

8.1 Strategies To Target Mitochondria In Cancer

Traditionally, mitochondria were not thought of as a ‘druggable target’ due to significant 

challenges unique to mitochondria, including selective delivery to this organelle, specific 

mitochondrial uptake within a targeted organ, and how to enhance the selective delivery to 

mitochondria within cancer cells; however, recent work is changing this view [238, 239]. In 

part, this is due to the growing realization that mitochondrial function contributes to multiple 

cellular functions, beyond energy metabolism, and these aspects could be targeted. The 

development of strategies to target different aspects of mitochondrial biology has led to the 

emergence of a new field called mitochondrial pharmacology [238, 239].

In mitochondrial pharmacology, development of drugs designed to affect mitochondria 

require the following considerations. Foremost, mitochondria originate from the 

coordination of two genomes, with 37 genes in the mitochondrial DNA and approximately 

1,500 proteins being imported into the mitochondria following their transcription and 

translation from nuclear genes [240]. The expression of the two genomes is coordinated by a 

number of nuclear transcription factors [241]. Targeting nuclear- versus mitochondrial-

derived proteins could be important. Furthermore, the mitochondria themselves continually 

join and separate through fission/fusion processes that are linked to the turnover and 

degradation of damaged, defective or surplus mitochondria [242]. Thus, one way for drugs 

to alter mitochondrial function is through interaction with the cellular machinery that 

controls overall mitochondrial biogenesis. For example, drugs such as 5-aminoimidazole-4-

carboxamide ribonucleotide (AICAR) that interact with the AMP-activated protein kinase 
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(AMPK) [243] may lead to upregulation of global mitochondrial biogenesis. Furthermore, 

agonists for PGC1α, a transcriptional co-activator that regulates gene expression of nuclear 

encoded mitochondrial proteins may do the same [244]. Such strategies may globally alter 

mitochondrial nutrient oxidation or function in therapeutically useful ways in cancer.

More direct strategies have been demonstrated by using drugs that act on particular targets 

within mitochondria. For example, dichloroacetate has been explored as an anticancer agent 

by blocking the activity of the inhibitory kinase that inactivates pyruvate dehydrogenase, 

thereby enhancing mitochondrial pyruvate oxidation [245]. Generally, in these examples, a 

drug acts on an aspect of metabolism that is mitochondrial and the selectivity comes from 

the interaction of the drug with its target, which happens to be in the mitochondrion. 

However, emerging methods are available to target compounds to mitochondria [238], and 

these may have a number of advantages. In particular, the concentration of a compound 

within mitochondria greatly enhances the potency of the therapy, meaning far less of a 

compound might be required. The localization of the compound within the mitochondria 

also minimizes metabolism and toxicity associated with reactions elsewhere in the body.

An important attribute in designing targeted therapies for mitochondria is the distinct 

mitochondrial compartments, with dramatically different properties. Most of energy 

metabolism occurs in the matrix and on the mitochondrial inner membrane. The 

intermembrane space has limited metabolic activity, although it is important in protein 

import; this compartment contains many of the proteins that are released into the cytoplasm 

during activation of apoptotic pathways. The mitochondrial outer membrane is also a key 

component in the regulation of apoptosis. Furthermore, many of the complexes involved in 

the propagation and stabilization of inflammatory pathways are assembled on the 

cytoplasmic-facing surface of the mitochondrial outer membrane [246].

Overall, the role of mitochondria in cancer is becoming better understood, suggesting that 

therapies targeted to the organelle may be useful [247, 248]. Drugs could be designed to 

affect mitochondrial function directly by binding to targets within mitochondria, or 

indirectly by altering mitochondrial biogenesis. Recent developments have also led to robust 

strategies to target bioactive compounds to mitochondria. These approaches may selectively 

modify mitochondrial metabolism in cancer cells to generate therapeutically beneficial 

outcomes, such as enhancing the selective killing or inhibiting growth of cancer cells. While 

many limitations and uncertainties with these approaches remain, modifying mitochondrial 

function could become a therapeutically useful extension of current cancer treatments.

8.2 Strategies To Target Metabolic Interactions Between Cancer And Host

Cancer metabolism might be manipulated specifically through host metabolism. This 

rationale is based on the concept that pharmacological mimetics of weight loss, calorie 

restriction, and/or targeting the associated hormonal systems and intracellular signaling 

pathways are emerging pathways for novel cancer therapeutics. Indeed, one of the possible 

mechanisms underlying known efficacy of fasting, CR, exercise, or weight loss on cancer 

could be multi-faceted, synergistic effects of these “treatments”. Thus, manipulating 

metabolism in these ways could be a successful therapeutic strategy. Additionally, further 

studying physiological approaches that influence a broad-spectrum of targets and/or 
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hallmarks could inform more effective design of pharmacological approaches aimed at a 

broad-spectrum of targets.

8.3 Calorie Restriction, Fasting, and Cancer

Calorie restriction (CR), usually referring to a 20%–40% reduction in the daily intake of 

calories without malnutrition has been shown to extend lifespan and healthspan in multiple 

species, in part by delaying or preventing the occurrence of many age-related disorders 

including cancer [249–251]. CR has been also demonstrated to reduce the frequency of 

spontaneous and inducible tumors in mice and primates [252–257]. However, CR induces 

significant weight loss, which has limited its efficacy and has prevented its wide-spread 

clinical use. In some studies, CR delayed but did not stop tumor growth progression, and 

some tumors including those carrying a mutation in oncogenes such as PI3K and 

phosphatase and tensin homolog (PTEN) have been shown to be resistant to CR [258]. In 

addition, CR would be predicted to be incompatible with the treatment of most cancer 

patients including those malnourished or at risk for severe weight loss, or affected by 

immunosuppression or cachexia [259]. In fact, long-term CR can impair immune functions 

and delay wound healing repair [260, 261]. Thus, while CR might not be compatible with 

cancer therapy in humans, several lessons could be learned from the molecular pathways 

activated by CR and/or CR mimetics.

More recently, periodic fasting has emerged as a viable strategy to protect normal cells from 

toxicity associated with chemotherapy, while sensitizing cancer cells to treatment. 

Remarkably, fasting protects normal cells from oxidants, common chemotherapeutic agents, 

and radiotherapy in several in vitro and in vivo models [262–264]. Specifically, glucose and 

serum starvation in vitro and a 48–72 hour food deprivation (short-term starvation or STS) 

in mice activated several stress-response pathways that conferred resistance to oxidative 

stress induced by chemotherapy. The latter effect was termed “differential stress resistance” 

(DSR) [265], and is based on the concept that normal cells can adapt to stressors but not 

cancer cells [266]. The mechanisms responsible of starvation-induced DSR in mammals 

include reduced circulating insulin-like growth factor 1 (IGF-1) levels and possible down-

regulation of growth pathways [265]. In addition, in normal mammalian cells, starvation has 

been demonstrated to induce AMPK which stabilized p53 and p21 thereby resulting in cell 

proliferation arrest [263].

In model organisms, including bacteria and yeast, the switch from nutrient rich media to 

water or buffer extends longevity and also increases resistance to a variety of toxins, 

including ROS [262, 267, 268]. In yeast cells, the molecular mechanisms responsible for 

fasting-mediated protection involve the reduced activity of components of the glucose-

response Ras/cAMP/PKA pathway and of the amino acids response Tor/S6K pathway [267, 

269, 270]. Similarly, fasting increases resistance to oxidative stress and prolongs life-span in 

model organisms, such as worms and flies, by down-regulating analogous nutrient-sensing 

pathways such as (PI3K/AKT/TOR) [271, 272].

Cancer cells are characterized by the presence of oncogenic mutations in the same growth 

signalling pathways including IGF1 receptor, PI3K, PTEN, Ras, and PKA that prevent the 

activation of protective systems in response to starvation (DSR) [1]. In addition to the 

Hirschey et al. Page 24

Semin Cancer Biol. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



absence of a stress resistant response to starvation, the set of mutations and chromosomal 

rearrangements prevent malignant cells from being able to adapt to a wide variety of 

conditions but particularly to those that involve broad and extreme changes such as 

starvation. Thus, “differential stress sensitization” (DSS) takes advantage of the fact that 

most mutations reduce the ability of cells to withstand changing environments. In one study, 

48 to 60 hours of fasting retarded malignant tumor growth, similar to chemotherapy, and 

acted in synergy with chemotherapeutic drugs in killing a wide variety of cancer cells [265]. 

In mouse models for breast cancer, neuroblastoma, mesothelioma, and lung carcinoma, the 

combination of fasting and chemotherapy promoted 20–60% cancer free survival, whereas 

neither one of them alone resulted in any cancer free survival [263, 265]. Investigation of the 

molecular mechanisms underlying the STS-mediated biological effects indicate that breast 

cancer cells attempt to compensate for the nutrient deficiency caused by fasting by 

hyperactivating the AKT and mTOR/S6K pathways, increasing translation and, as a result, 

consuming even more energy and causing oxidation-dependent cell death [265]. A recent 

study in lung cancer cells, instead showed that starvation activated ATM/Chk2/p53 which 

sensitized cells to cisplatin treatment [263]. Many different mechanisms are likely 

responsible for the effects of fasting in the sensitization of different types of cancer cells. 

However, some of these mechanisms could to be shared by all cancer cell types.

The side effects caused by chemotherapeutic toxicity to normal cells and tissues are a major 

limitation of these agents. Consequently, these toxicities can limit chemotherapeutic dose 

intensity and compromise its overall efficacy. The need to maintain chemotherapeutic doses 

within this treatment range could be contributing to the survival of a sufficient number of 

cancer cells and lead to recurrence. Thus, reducing toxicity of chemotherapeutics by 

protection of normal cells and tissues, in combination with sensitizing of cancer cells, during 

fasting represents a promising strategy to enhance current treatments.

The safety of this intervention has been demonstrated in studies of a large cohort of patients 

affected by rheumatoid arthritis, who did not reveal any major adverse effect and presented 

clinical improvement after undergoing prolonged fasting [273]. Similarly, hypertensive 

patients, who fasted with only water for 10–11 days, showed normalization of systolic blood 

pressure values and no major side effects [274]. These studies provide a proof-of-principle 

for fasting in human studies.

The first clinical test of fasting in patients during chemotherapy was reported in a study 

where 10 patients affected by different malignancies voluntarily fasted 48–140 hours prior 

to and during chemotherapy. This study reported that fasting may reduce the side-effects 

induced by chemotherapeutic toxicity in humans [275]. Notably, these patients receiving 

different chemotherapeutic drugs in combination with fasting reported hunger and light-

headedness as significant side-effects, and reported fewer toxicities associated with 

chemotherapy, including weakness, fatigue, and gastrointestinal distress [275]. Importantly, 

fasting did not appear to interfere with chemotherapeutic efficacy [275].

The combination of fasting with chemotherapy has gained clinical interest as a therapeutic 

approach for cancer patients [276]. Several clinical trials are now exploring fasting as a way 

to reduce the toxicity of chemotherapy and increase its efficacy in humans (e.g. 
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ClinicalTrials.gov numbers, NCT00757094, NCT00936364, NCT01175837, 

NCT01304251). Taken together, fasting is a promising therapeutic strategy for cancer 

patients, with the potential to be useful in combination with several chemotherapeutic drugs 

and across many cancer types. Future studies will determine whether fasting may potentiate 

the efficacy of non-toxic cancer therapies, including antibody- or immune-based strategies.

8.4 Exercise and Cancer

Growing evidence shows that chronic exercise reduces the risk of certain forms of 

malignancies (i.e, prevention) compared with sedentary lifestyles [277, 278]. In addition, 

emerging evidence indicates that chronic exercise may also be inversely correlated with 

cancer-recurrence as well as cancer-specific mortality (i.e., prognosis) [279, 280]. While 

data are not currently available from randomized trials testing the role of exercise in either 

prevention or prognosis, the combination of the unique metabolic features of malignant 

tumor cells and exercise-induced perturbations in whole-body and intracellular metabolic 

substrate use suggests that exercise might directly influence cancer prognosis and survival 

[280, 281].

Investigation into the effects of metabolic perturbations in a chemically induced rat model 

breast cancer showed that both CR and voluntary wheel running reduced tumor incidence 

and burden [282]. This reduction occurred in conjunction with reductions in circulating 

plasma levels of metabolic factors such as IGF-1, insulin, leptin, and increased plasma levels 

of IGF-binding protein 3 (IGFBP-3) and adiponectin. Further studies using the same breast 

cancer model showed that CR combined with voluntary wheel running inhibited tumor 

growth, and was associated with downregulation of mTOR-related targets including pAkt 

[283]. Plasma insulin and leptin were strongly correlated with intratumoral pAkt levels. In 

contrast, another study found tumor growth was similar between sedentary control groups 

and voluntary wheel running in animals orthotopically implanted with human breast cancer 

or prostate cancer [284, 285]. More work needs to be done in this area to determine if and 

how exercise effects tumor growth in these models.

Several studies in humans have investigated the effects of structured exercise training 

interventions on changes in metabolic parameters in subjects at-risk or with a confirmed 

diagnosis of cancer. For example, the Physical Activity for Total Health (PATH) Study 

found that structured moderate-intensity exercise training had no effect on circulating levels 

of IGF-1, IGFBP-3, or the ratio [286]. However, in these at-risk patients, training was 

associated with improvements in insulin and leptin [287]. In patients diagnosed with cancer, 

several studies have found that exercise training is associated with favorable changes in 

circulating levels of these same metabolic growth factors. For example, moderate intensity 

aerobic training (defined as 60–75% of baseline VO2peak, 3 times per week, for 30–45 

minutes per session, over 15 weeks) lead to alterations in IGF-1, IGFBP-3, and the 

IGF-1:IGFBP-3 ratio compared to a sedentary controls [288]. This is consistent with larger 

studies on aerobic exercise and resistance training in patients with breast cancer [289–291]. 

In another study, sedentary early-stage breast cancer patients were randomly assigned to a 

home-based aerobic and resistance exercise program for 16 weeks or a control group [292]. 

Another study using aerobic exercise found a trend toward decreased fasting insulin [293].

Hirschey et al. Page 26

Semin Cancer Biol. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Indeed, the potential of exercise to alter host–tumor metabolic interactions may not only 

cause a shift towards a less aggressive phenotype but could also alter sensitivity to 

anticancer therapies. Based on current knowledge, it is difficult to predict the complex and 

multifaceted interaction between the host, exercise, tumor, and antineoplastic index of 

current therapeutics. However, exercise may affect tumor cell sensitivity in at least two 

ways. First, solid tumors have an abnormal vascular system that impairs effective oxygen 

and drug transport [294, 295], which is associated with therapeutic resistance [294, 296]. In 

contrast, exercise leads to favorable vascular adaptations in preclinical models of cardiac 

and hindlimb ischemia, as well as improvements in peripheral vascular function [297–301]. 

Similarly, tumors from exercised mice had significantly increased intratumoral perfusion 

and vascularization (i.e. physiologic angiogenesis) in orthotopic models of breast and 

prostate cancer [284, 285]. One study recently reported that the combination of exercise 

(voluntary wheel running) and chemotherapy (cyclophosphamide) was associated with 

significantly prolonged tumor growth delay compared with chemotherapy alone in a mouse 

model of murine breast cancer. Although the molecular mechanisms remain to be 

elucidated, hypoxia is intricately linked with tumor metabolism and exercise may effect 

vascularization and chemosensitivity. Second, as described above, short-term calorie 

restriction and/or fasting induces a stress response adaptation in normal cells that provides 

protection against oxidative injury from chemotherapy [262, 265]. Importantly, cancer cells 

have an impaired ability to respond to CR-induced stress, and may increase the therapeutic 

index. Exercise is also a potent form of both host and intracellular stress that may also 

confer similar effects to caloric restriction.

The data from these early studies, coupled with the powerful influence of exercise on 

metabolic homeostasis, suggest that more research in this area is needed. Specifically, 

investigations that adopt a translational approach are required to determine how exercise 

influences metabolic milieu in conjunction with biomarkers of tumor metabolic phenotypes 

using tissue and imaging modalities. Overall, careful elucidation of the molecular 

mechanisms by which exercise influences cancer metabolism could lead to rational 

pharmacologic agents to optimize clinical outcomes. Indeed, several lessons can be learned 

from interactions between cancer and fasting, cancer and CR, as well as cancer and exercise. 

Such research has the potential to provide new therapeutic opportunities.

8.5 Obesity and Cancer

At the other end of the metabolic spectrum, the obese phenotype is characterized by 

profound metabolic dysregulation, and can especially disrupt the endocrine system [302–

305]. The 2007 World Cancer Research Fund/American Institute for Cancer Research 

(WCRF/AICR) report and subsequent epidemiological studies show that obesity is 

associated with a number of different cancers, including colorectal, kidney, liver/gall 

bladder, pancreatic, esophageal, stomach, prostate, postmenopausal breast, endometrial, 

uterine and ovarian cancers [306]. Factors associated with weight gain and obesity, excess 

calorie intake/or low energy expenditure, were concluded to increase obesity-related 

cancers, while those protecting against weight gain were also protected against developing 

cancers [306]. Recent statistical modeling of data from the American Cancer Society cohort, 

which provided early evidence of obesity-cancer links [307], estimated that 20% of cancer 
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deaths are attributable to being overweight or obese [308]. Consequently, obesity and 

obesity-associated morbidities, such as diabetes, have been intensively investigated to 

determine the signaling pathways involved that lead to increased carcinogenesis [309–311] 

and if anti-obesogenic therapies are effective for cancer treatment and/or prevention.

Several manifestations of the obese phenotype overlap with cancer phenotypes and provide 

insights into approaches for metabolic modulation and possible strategies for cancer therapy. 

In particular, both cancer and obesity are associated with activation of cellular signaling 

pathways. Therefore, strategies to prevent synthesis or secretion of the signaling molecules 

dysregulated by obesity, or alternatively hindering their interaction with target receptors, 

may be a useful strategy for cancer preventative therapies. For example, therapeutic 

targeting of the intracellular pathways, such as JAK/STAT and PI3K/Akt/mTOR, which are 

often activated in both cancer and obesity, presents opportunities to intervene in 

carcinogenesis. Additionally, cancer and obesity activate anabolic processes, and small 

molecules that disrupt macromolecule biosynthesis, such as with metformin and orlistat, two 

drugs that lower glucose and inhibit cellular FA synthesis, respectively, might have the 

ability to restore homeostatic control and cellular defense systems with potential to impact 

cancer cells within the body [312, 313]. Indeed, metformin has received significant attention 

recently as a novel chemotherapeutic; for a recent review, see [314]. Finally, weight loss and 

reduced calorie consumption have been demonstrated to normalize altered adipokine 

profiles, reduce oxidative stress, and lower growth factors linking obesity and cancer, 

suggesting that synergistic manipulation of these pathways along with metabolism holds 

therapeutic promise.

In conclusion, most targets and/or compounds identified above as having potential to 

manipulate different aspects of cancer metabolism have not been directly tested in the 

context of other hallmarks. Thus, our analysis shows that more work needs to be done on 

cancer metabolism to identify targets or compounds that could have synergistic effects with 

other hallmarks against cancer. However, the emerging efficacy of physiological strategies 

to manipulate cancer outcomes, such as fasting/CR and exercise, and weight loss could be 

attributed, in part, to their ability to influence cancer metabolism as well as several other 

hallmarks of cancer. Future studies in this area will determine if and how dysregulated 

metabolism in cancer can be targeted directly or indirectly through host metabolism.

9. Tradeoffs

The recognition that cancer cells have altered metabolic pathways from their normal 

counterparts has opened a new opportunity to treat cancer [315]. Identification of altered 

metabolic enzymes and regulation of metabolism through oncogenic signals may render 

cancer cells highly dependent on specific pathways and metabolic programs. Mutations in 

some enzymes can force alternate metabolic pathways or oncogenes can drive specific 

metabolic programs while limiting alternatives. Targeting these pathways, therefore, may 

directly lead to cancer cell death or may provide opportunities to generate synthetic lethality. 

The challenge in targeting cancer metabolism, however, is that even if cancer cells are 

highly dependent on specific metabolic pathways, normal cells use these same pathways. To 
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what extent cancer cells and normal cells differentially rely on specific metabolic pathways 

will be crucial to determine the therapeutic window of any treatment [126].

A key benefit of aerobic glycolysis is the generation of metabolic intermediates for 

biosynthesis and cell growth [24]. Of course, normal cells also undergo rapid cell growth in 

development and upon stimulation. It is now evident that oncogenic signals can mimic 

normal growth factor signaling mechanisms. That these signals are sufficient to directly 

promote aerobic glycolysis has implied that normal cells also utilize these same metabolic 

pathways. Indeed lymphocytes transition from a quiescent metabolic state that is 

characterized by oxidative metabolism to one that is highly glycolytic upon stimulation with 

antigen in appropriate inflammatory conditions. Key pathways to drive this transition 

include the PI3K/Akt/mTORC1 and cMyc pathways—each of which are well established to 

drive aerobic glycolysis in cancer, as described above. The purpose of this glycolytic 

phenotype in lymphocytes is, as in cancer cells, to drive cellular growth [316]. In addition, 

however, aerobic glycolysis may also have a signaling role to promote expression of 

inflammatory cytokines.

Interestingly, not all activated lymphocytes use aerobic glycolysis. Depending on the 

cytokine environment, some CD4 lymphocytes develop into inflammatory effectors while 

others develop into suppressive regulatory T cells (Treg). The signaling pathways that drive 

these different CD4 T cell fates are also key metabolic regulators, and mTORC1 is essential 

to develop effector T cells but represses Treg [317]. Accordingly, the metabolism of these 

subsets differs. Effector T cells, like cancer cells with activated mTORC1, are highly 

glycolytic [318, 319]. Treg, however, have low mTORC1 and instead have high levels of 

activity in the tumor-suppressive AMPK pathway, a key inhibitor of mTORC1 and driver of 

oxidative metabolic pathways. Rather than favor aerobic glycolysis, therefore, Treg utilize 

lipid oxidation as a primary metabolic mechanism [318]. Similarly, memory T cells that 

return to quiescence following an immune response revert from the glycolytic phenotype of 

effector T cells to a lipid oxidative metabolism [320]. Suppressing lymphocyte glycolysis 

and promoting oxidative metabolism, therefore, inhibits the primary effector response but 

can enhance the generation and survival of memory T cells [321].

The metabolic implications of these distinct metabolic transitions of cells moving from 

quiescence to proliferation are manifold and go well beyond fundamental aspects of 

immunology. Firstly, lymphocytes are not unique in these transitions. Rather, it appears to 

be a general feature of the transition from quiescence to proliferation that cells undergo a 

metabolic reprogramming. Endothelial cells also undergo metabolic reprogramming [322], 

as do smooth muscle cells [323] and a variety of other cell types. Second, lymphocytes in 

the tumor environment may have difficulty competing for nutrients such as glucose. This 

nutrient limitation, in turn, would suppress effector lymphocytes that may play roles in anti-

tumor immunity while at the same time promoting the development and activity of Treg that 

can maintain malignant tumors. Thirdly, efforts to target metabolism in cancer metabolism-

directed therapies may have inadvertent effects to suppress normal cell proliferation. In the 

case of the immune system, blocking aerobic glycolysis can suppress the immune system 

[319, 324]. While this strategy could potentially be helpful to relieve inflammatory diseases, 

targeting cancer metabolism could have a tradeoff of immune suppression. In this setting, 
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immune suppression may increase susceptibility to infection, and inhibit the potential 

benefit of an anti-tumor immune response.

A key question now is not only to discover how cancer metabolism itself is programmed and 

functions to advance cancer, but also to understand the metabolism of normal proliferating 

cells. The similarities may be useful to exploit new developments in cancer metabolism to 

target cells in other settings. In particular, anti-inflammatory treatments may become evident 

from cancer metabolism drugs. Differences in the metabolic programs of normal and cancer 

cells will also be highly useful, as these distinctions will provide directions to target cancer 

metabolism, while sparing other highly proliferative cells. In some cancers, mutations will 

make it clear how to selectively target cancer metabolism. For most cases, however, it will 

be important to target cancer metabolism, while maintaining metabolic pathways regulating 

normal cellular function. This ongoing challenge will be critical for establishing the 

therapeutic window for cancer metabolism treatments as well as opening new opportunities 

to understand normal biology.

10. Conclusion and Future Perspectives

The energy requirements of cancer cells vary greatly from those of quiescent, terminally 

differentiated cells. Mammalian cells require external cues from growth factors to take up 

nutrients from their surroundings and in the absence of these signals they are programmed to 

die by apoptosis [325]. Cells must compete for limiting amounts of growth factors that direct 

nutrient uptake in order to survive. Under these conditions it is advantageous to maximize 

energy production from nutrients such as glucose, fatty acids and amino acids. This is 

accomplished by complete oxidation of nutrients to carbon dioxide (CO2) and efficient 

coupling of ATP production though oxidative phosphorylation by the electron transport 

chain.

In contrast, cancer cells are characterized by growth factor-independent nutrient uptake, 

apoptosis evasion, and uncontrolled growth and proliferation [1]. The metabolic profile of 

cancer cells reflect these changes with increased nutrient uptake supplying the raw materials 

to synthesize the lipids, nucleotides, and proteins necessary for cell growth and proliferation 

[326]. The metabolic reprogramming which occurs during oncogenesis is similar to that 

which occurs in other cells transitioning from a quiescent to proliferative state such as 

induced pluripotent stem cells, embryonic stem cells and immune cells [327, 328]. This 

process involves a dramatic reworking of intermediary metabolism from that of a catabolic 

to an anabolic state. A key feature of this transition is a shift away from oxidative 

metabolism towards glycolytic metabolism, the net effect of which is to provide additional 

biosynthetic precursors for macromolecule synthesis [24]. Increased glycolytic intermediates 

are used to generate nucleosides, amino acids and reducing equivalents in the form of 

NADPH. Additionally, while levels of oxidative metabolism may be reduced, functional 

mitochondria are essential to cancer cell survival. In cancer cells, mitochondria function not 

only in energy production but also in modulation of redox status, generation of ROS, 

maintenance of calcium homeostasis, inhibition of apoptosis and contribute biosynthetic 

precursors to fuel macromolecule synthesis [247].
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An important question that remains about the metabolic reprogramming which occurs in 

cancer is whether it is a driving force or a secondary effect of oncogenic mutations. Until 

recently, it was believed that metabolic reprogramming occurred secondarily to mutations in 

oncogenes or tumor suppressors that activate proliferation and survival signals [1]. 

However, a number of recent findings highlight the importance of metabolic reprogramming 

in driving oncogenesis (see Oncometabolites section), which provide strong evidence that 

altered metabolism is a key event that is selected for early in the oncogenic process.

Metabolic reprogramming in cancer cells is characterized by altered expression, mutation, 

post-translational modification, and/or changes in enzyme isoform expression. Regardless of 

the stage of oncogenesis during which metabolic reprogramming occurs, these unique 

changes could be specifically targeted to treat cancer. For these strategies to be useful, the 

metabolic phenotypes of several cancer types will have to be determined; techniques to do 

so are being developed and becoming more common [329]. Once the metabolic phenotype 

of a cancer is known, therapies can indirectly target upstream regulatory pathways, or 

directly target aberrant biosynthetic, anabolic pathways. Importantly, many cancers become 

resistant to radiotherapies and chemotherapy because of their altered metabolism [330]. 

Thus, a targeted therapy that serves to revert cancer cell metabolism back to a more 

catabolic state may re-sensitize a tumor to other therapies.

Much additional work is required to make targeted metabolic cancer therapies a reality. 

Several recent analyses, ranging from biochemical to omic-levels, have greatly increased our 

understanding of cancer metabolism. However, these techniques are sometimes limited to 

use in cell culture systems that do not account for contributions from the tumor 

microenvironment, the immune system, or all hallmarks of cancer. Thus, future work will be 

directed at measured alterations in metabolism directly in the context of other hallmarks. 

Together, targeting metabolism specifically or synergistically holds the potential for 

effectively treating a variety of cancers.
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Figure 1. 
Schematic of glycolysis. Enzymes altered in cancer are shown in bold. Color scheme: 

carbon, gray; oxygen, blue; phosphate, yellow; adenosine, A; NAD+/NADH, orange; single 

bonds, thin; double bonds, bold.
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Figure 2. 
Schematic of the TCA cycle and glutaminolysis. Enzymes altered in cancer are shown in 

bold. Reductive direction of the TCA cycle shown with blue arrows. Color scheme: carbon, 

gray; oxygen, blue; phosphate, yellow; nitrogen, brown; adenosine, A; coenzyme A, light 

gray; NAD+/NADH, orange; NADP+/NADPH, brown; FAD/FADH2, blue; single bonds, 

thin; double bonds, bold.
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Table 1

Prioritized pathways to target cancer metabolism

Target Known Pathways Predicted Manipulation

Hexokinase 2 (HK2) Glucose Metabolism Reduce glucose uptake and metabolism

6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3 (PFKFB3) Glucose Metabolism Reduce glycolysis

Pyruvate kinase isoform M2 (PKM2) Glucose Metabolism Activate pyruvate oxidation

Glutaminolysis Amino Acid Metabolism Inhibit glutamine anaplerosis

Reductive Carboxylation Amino Acid Metabolism Inhibit reductive carboxylation

O-GlcNAcylation Epigenetics Unknown

Methylation/One-carbon metabolism Epigenetics Unknown

Acetylation/Sirtuin deacylases (SIRTs) Epigenetics Unknown

Oncometabolites Epigenetics Inhibit oncometabolite formation and 
signaling

Lactate Glucose Metabolism Inhibit use of lactate as a fuel
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