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ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs that
have a pivotal role in the post-transcriptional regulation
of gene expression by sequence-specifically targeting
multiple mRNAs. Although miR-33a was recently repor-
ted to play an important role in lipid homeostasis,
atherosclerosis, and hepatic fibrosis, the functions of
miR-33a in tumor progression and metastasis are lar-
gely unknown. Here, we found that downregulated miR-
33a in breast cancer tissues correlates with lymph node
metastasis. MiR-33a expression is significantly lower in
the highly metastatic breast cancer cell lines than the
noncancerous breast epithelial cells and non-metastatic
breast cancer cells. Moreover, the overexpression of
miR-33a in metastatic breast cancer cells remarkably
decreases cell proliferation and invasion in vitro and
significantly inhibits tumor growth and lung metastasis
in vivo, whereas its knockdown in non-metastatic breast
cancer cells significantly enhances cell proliferation and
invasion in vitro and promotes tumor growth and lung
metastasis in vivo. Combining bioinformatics prediction
and biochemical analyses, we showed that ADAM9 and
ROS1 are direct downstream targets of miR-33a. These
findings identified miR-33a as a negative regulator of
breast cancer cell proliferation and metastasis.
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INTRODUCTION

Breast cancer is the leading cause of cancer-related death
for women worldwide, and distant metastasis is the most
common cause of death in breast cancer patients (Hong and
Dong, 2014). Similar to other cancers, the invasion-metas-
tasis cascade of breast cancer consists of multiple steps,
including local invasion, entry into the circulation, arrival at
distant secondary sites, extravasation and colonization in
distant organs (Chaffer and Weinberg, 2011; Wan et al.,
2013; Wang and Ouyang, 2012). Considerable progress in
breast cancer treatment has been made over the past dec-
ades; however, metastatic breast cancer is still difficult to
cure. The lack of curative treatment options for metastatic
breast cancer patients emphasizes the need to better
understand the molecular mechanisms that drive tumor
metastasis.

MicroRNAs (miRNAs) are a class of endogenous small
noncoding RNAs that are typically 18–22 nucleotides in
length. By binding to completely or partially complementary
sites in the 3′-untranslated-region (3′UTR) of target mRNAs,
miRNAs suppress the protein translation of these transcripts
and/or degrade target mRNAs. Currently, miRNAs have
been shown to contribute to regulate tumor onset, growth,
and progression (Aleckovic and Kang, 2015; Ruan et al.,
2009; Volinia et al., 2012). A single miRNA can downregulate
the expression of multiple target genes, thereby coordinately
inhibiting or promoting tumor metastasis. Therefore, miRNAs
may be attractive targets for modulating the invasion-
metastasis cascade. MiR-33a is an intronic miRNA located
in intronic sequences of the sterol-response-element-binding
protein gene SREBF2, and it plays a critical role in the
regulation of cholesterol and fatty acid metabolism (Marquart
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et al., 2010; Najafi-Shoushtari et al., 2010; Rayner et al.,
2011; Rayner et al., 2010). MiR-33a is also involved in liver
fibrosis aggravation in nonalcoholic steatohepatitis in mice
(Li et al., 2014). Interestingly, a recent report demonstrated
that higher miR-33a expression correlates with poor prog-
nosis for GBM patients and promotes glioma-initiating cell
self-renewal via the activation of the PKA and NOTCH
pathways by targeting PDE8A and UVRAG (Wang et al.,
2014). However, little is known about the function of miR-33a
in breast cancer progression. In this report, we revealed that
miR-33a is downregulated in breast cancer tissues. The
expression level of miR-33a in breast cancer tissues is
inversely correlated with lymph node metastasis. MiR-33a
overexpression inhibits breast cancer cell proliferation and
invasion in vitro and suppresses tumor growth and lung
metastasis of breast cancer cells in vivo. Conversely, miR-
33a knockdown significantly enhances breast cancer cell
proliferation and invasion in vitro and promotes tumor growth
and lung metastasis in vivo. Our study demonstrated that
miR-33a plays a tumor suppressor role in breast cancer
metastasis.

RESULTS

Identification of miR-33a as a tumor suppressor gene
in breast cancer

Recent studies demonstrate that miR-33a is highly expres-
sed in osteosarcoma, enhances osteosarcoma cell resis-
tance to cisplatin by targeting Twist1 (Zhou et al., 2014), and
promotes glioma-initiating cell self-renewal in glioma (Wang
et al., 2014). However, miR-33a acts as a tumor suppressor
miRNA in colon cancer by directly downregulating of the
oncogene Pim-1 (Ibrahim et al., 2011; Thomas et al., 2012).
Currently, the function of miR-33a in breast cancer pro-
gression remains unknown. Microarray analysis by Blenkiron
et al. showed that miR-33a expression is often lost in human
primary breast cancers because of chromosome alterations,
indicating that miR-33a may function as a tumor suppressor
(Blenkiron et al., 2007). To determine the exact function of
miR-33a in breast cancer, we performed real-time PCR and
in situ hybridization assays to detect the expression level of
miR-33a in breast cancer tissues and cell lines. As shown in
Fig. 1A, in 23 cases matched breast cancer samples and
normal breast tissues, miR-33a expression was significantly
decreased in the breast cancer samples compared to the
matched normal tissues. In situ hybridization assays con-
firmed that miR-33a was highly expressed in the normal
breast tissue, whereas little signal was observed in tumor
tissue (Fig. 1B). We further determined the correlation
between the miR-33a level and the metastatic status of
patients with breast cancer. We found that the expression of
miR-33a was negatively associated with lymph node
metastasis (Fig. 1C) and the progression of clinical stage
(Fig. 1D) in breast cancer patients. The relevance between
the miR-33a expression level and prognostic factors of

breast cancer is summarized in Fig. 1E. We also observed
that miR-33a expression was significantly lower in the highly
metastatic breast cancer cell lines MDA-MB-231 and BT-549
than in the noncancerous breast epithelial cell line MCF-10A
and non-metastatic breast cancer cell line MCF-7 (Fig. 1F).
These results suggest that the miR-33a level is downregu-
lated in breast cancer tissues and breast cancer cell lines
and that it is negatively correlated with the metastatic ability
of breast cancer cells.

MiR-33a inhibits breast cancer cell growth, migration
and invasion in vitro

To evaluate the biological function of miR-33a in breast
cancer, the highly metastatic breast cancer cell line MDA-
MB-231, which has very low endogenous miR-33a expres-
sion, was stably transfected with miR-33a by lentiviral
infection, whereas endogenous miR-33a was knocked down
in non-metastatic MCF-7 breast cancer cells via a lentivirus-
based antagomir expression system (Fig. 2A). MTT assays
showed that the ectopic overexpression of miR-33a inhibited
the proliferation of MDA-MB-231 cells, whereas sh-miR-33a
promoted MCF-7 cell proliferation (Fig. 2B). Moreover, col-
ony formation assays revealed that miR-33a-overexpressing
MDA-MB-231 cells displayed fewer colonies compared with
the control group. Conversely, the knockdown of miR-33a in
MCF-7 cells increased colony numbers (Fig. 2C). Because
miR-33a expression was inversely correlated with the
metastatic abilities of breast cancer cell lines, the effects of
miR-33a on the migration and invasion of breast cancer cells
were further examined by Transwell assays. As shown in
Fig. 2D, miR-33a overexpression in MDA-MB-231 cells
dramatically inhibited cell migration and invasion. In contrast,
miR-33a knockdown in MCF-7 cells could promote cell
migration and invasion (Fig. 2E). These results demonstrate
that miR-33a can inhibit the proliferation, migration, and
invasion of breast cancer cells in vitro.

MiR-33a suppresses the tumor growth and lung
metastasis of breast cancer cells in vivo

To determine whether miR-33a can inhibit the tumor growth
and metastasis of breast cancer cells in vivo, we generated
luciferase-labeled MDA-MB-231/miR-33a cells, MCF-7/sh-
miR-33a cells, and their control counterparts, and then
injected them into the orthotopic sites or tail vein of nude
mice. Thirty days after injection at orthotopic sites, the mice
injected with MDA-MB-231/miR-33a cells displayed signifi-
cant smaller and lower weight tumors compared with the
mice injected with MDA-MB-231/ctrl cells (Fig. 3A), whereas
the mice injected with MCF-7/sh-miR-33a cells formed larger
tumors with higher weights than mice injected with MCF-7/
ctrl cells (Fig. 3B). Moreover, bioluminescence imaging of
mice injected with MDA-MB-231/miR-33a or MDA-MB-231/
ctrl cells for 30 days showed that the lung metastasis of
MDA-MB-231 cells was significantly impaired by the ectopic
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overexpression of miR-33a (Fig. 3C). However, mice bearing
MCF-7/sh-miR-33a cells after tail vein injection for 42 days
displayed large lung metastases compared with the control

group (Fig. 3D). These data demonstrate that miR-33a
suppresses the tumor growth and lung metastasis of breast
cancer cells in vivo.
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Figure 1. MiR-33a is markedly downregulated in human breast cancer tissues and metastatic breast cancer cell lines.

(A) qRT-PCR analysis of miR-33a expression in human breast cancer tissue samples and their matched normal breast tissues from

23 breast cancer patients. (B) In situ hybridization analysis of miR-33a expression in human breast cancer tissues and matched

normal tissues. (C) Correlation between miR-33a expression and the lymph node metastasis status of breast cancer. (D) Correlation

between miR-33a expression and the progression of the clinical stage of breast cancer. (E) Correlation between clinicopathological

features and miR-33a expression in 23 breast cancer tissues. (F) qRT-PCR analysis of miR-33a expression in noncancerous human

mammary epithelial cells and breast cancer cell lines with different metastatic potential. Scale bars = 100 μm; *P < 0.05; **P < 0.01;

***P < 0.001.
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ADAM9 and ROS1 are direct targets of miR-33a

To reveal the underlying mechanism by which miR-33a
inhibits the tumor growth and lung metastasis of breast
cancer cells, we used four in silico algorithms (Targetscan,
miRanda, mirwalk, and Pictar) to predict the target genes of
miR-33a and then used real-time PCR to detect the
expression of putative miR-33a targets. We found four can-
didate targets with greater than 30% decreased expression
upon ectopic miR-33a overexpression in MDA-MB-231 cells
(Fig. 4A and 4B). To examine whether these four predicted
oncogene targets were true targets of miR-33a, we con-
structed luciferase reporter vectors containing wild-type or

mutant 3′UTRs of these candidate target genes. Luciferase
activity assays revealed that miR-33a suppressed the
expression of luciferase containing the 3′UTRs of ADAM9
and ROS1 compared with controls (Fig. 4C). We also per-
formed Western blot analyses to examine the levels of
ADAM9 and ROS1 proteins. As shown in Fig. 4D, the levels
of ADAM9 and ROS1 were markedly decreased in MDA-MB-
231/miR-33a cells compared with MDA-MB-231/ctrl cells.
Conversely, the levels of ADAM9 and ROS1 were increased
in MCF-7/sh-miR-33a cells compared with MCF-7/ctrl cells.
We found two putative binding sites of miR-33a in the
ADAM9 3′UTR and one putative binding site in the ROS1
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Figure 2. MiR-33a inhibits breast cancer cell growth, migration, and invasion in vitro. (A) The miR-33a expression level in

MDA-MB-231 cells after ectopic expression of miR-33a and the knockdown efficiency of miR-33a in MCF-7 cells were detected by

real-time PCR; (B) The effect on cell proliferation of miR-33a overexpression in MDA-MB-231 cells or knockdown in MCF-7 cells was

determined by the MTT assay; (C) Representative images show the colony formation of MDA-MB-231/miR-33a and MCF-7/sh-miR-

33a and their control cells (left panel). Average colonies in each well for each group were counted from three independent

experiments (right panel); (D) The effects of miR-33a overexpression in MDA-MB-231 cells on cell migration and invasion were

analyzed by Transwell migration and Matrigel-coated Transwell invasion analyses; (E) The effects of miR-33a knockdown in MCF-7

cells on cell migration and invasion were analyzed by Transwell migration and Matrigel-coated Transwell invasion analyses.

*P < 0.05; **P < 0.01; ***P < 0.001.
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3′UTR, and we then obliterated these miR-33a binding sites
in the 3′UTRs of ADAM9 and ROS1 by QuickChange PCR
(Zheng et al., 2004). As shown in Fig. 4E, the mutation of
binding site 1, binding site 2, or both sites in the ADAM9
3′UTR reversed the miR-33a-induced downregulation of
luciferase activity. Mutation of the binding sites of miR-33a in
the ROS1 3′UTR also abrogated the suppressive effect of
miR-33a overexpression. Immunohistochemical staining
showed that breast cancer tissues with high miR-33a
expression have low expression of ADAM9 and ROS1,
whereas breast cancer tissues with low miR-33a expression
exhibit high expression of ADAM9 and ROS1 (Fig. 4F).
Taken together, these results indicate that ADAM9 and
ROS1 are direct targets of miR-33a in breast cancer cells.

DISCUSSION

Recent studies have revealed that the aberrant expression
of miRNAs is involved in tumor progression; these miRNAs
function by inhibiting their target genes, and they play critical
roles in the coordination of tumor cell proliferation, invasion,
intravasation, survival, extravasation, and/or colonization.
Therefore, the identification of specific miRNAs and their
targets involved in tumorigenesis and metastasis would
provide important clues for identifying new diagnostic and
therapeutic targets for cancer prevention and treatment.
Interestingly, the microarray analysis by Blenkiron et al.
revealed that miR-33a is often lost in human breast cancer
(Blenkiron et al., 2007). Here, we found that miR-33a
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exhibits a decreased expression level in breast cancer tis-
sues compared with matched normal tissues. Moreover, in
patients with breast cancer, a correlation is observed

between lower miR-33a expression and increased lymph
node metastasis. MiR-33a inhibits breast cancer cell prolif-
eration, migration, and invasion in vitro and suppresses
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tumor growth and lung metastasis in vivo. Therefore, our
study identifies miR-33a as a tumor-suppressive gene in
breast cancer metastasis.

Members of the ADAM family are involved in tumor
metastasis (Rocks et al., 2008). One member of this family,
ADAM9, is overexpressed in breast cancer (O’Shea et al.,
2003). Silencing ADAM9 inhibits breast cancer cell invasion
(Micocci et al., 2013). ROS1 is a newly identified receptor
tyrosine kinase, and its chromosomal rearrangement results
in constitutively active ROS1, which has potent transforming
ability. ROS1 rearrangement can be used as a predictive
marker for response to crizotinib, a tyrosine kinase inhibitor, in
patients with advanced non-small cell lung cancer (NSCLC)
(Bergethon et al., 2012; Shaw et al., 2014). Recently, a
ROS1-rearranged NSCLC patient who had choroidal metas-
tases that did not respond to initial chemotherapy but showed
a rapid and complete response to crizotinib was reported (Lu
et al., 2015). These reports demonstrate that ADAM9 and
ROS1 are oncogenes that may contribute to tumor metasta-
sis. In this report, using Targetscan, miRanda, miRwalk, and
Pictar databases, we found that there are highly conserved
miR-33a binding sites in the 3′UTRs of ADAM9 and ROS1.
Moreover, the miR-33a level is inversely associated with the
expression of ADAM9 and ROS1 in breast cancer tissues,
indicating that miR-33a may inhibit breast cancer cell prolif-
eration and metastasis, at least in part, by downregulating the
levels of ADAM9 and ROS1.

Collectively, our study provides evidence that miR-33a is
a novel tumor suppressor gene in breast cancer progression.
MiR-33a expression is negatively correlated with lymph node
metastasis in patients with breast cancer. MiR-33a might
inhibit breast cancer cell proliferation and metastasis by
suppressing ADAM9 and ROS1. Therefore, our findings
provide a potential diagnostic and prognostic marker for
breast cancer metastasis.

MATERIALS AND METHODS

Cell lines and clinical samples

MCF-7, MCF-10A, and 293T cells were obtained from Dr. Kunxin

Luo (University of California at Berkeley, Berkeley, CA). MDA-MB-

231 cells were provided by Dr. Guohong Hu (Institute of Health

Sciences, Shanghai Institute for Biological Sciences, Shanghai).

293T cells were cultured in DMEM supplemented with 10% fetal

bovine serum. MCF-7 and MDA-MB-231 cells were maintained in

RPMI 1640 media supplemented with 10% fetal bovine serum.

Thirteen matched breast cancer, normal adjacent tissues, and

lymph node metastases were collected from the First Affiliated

Hospital of Xiamen University, Xiamen, China. Specimens were

obtained with informed consent and the study was performed in

accordance with the approved guidelines by the Ethics and Scientific

Committees of Xiamen University.

Plasmid construction and generation of stable cell lines

An hsa-miR-33a-containing flank region was amplified from human

genomic DNA and inserted into pCDH-CMV-EF1-GFP+puro

(System Biosciences). The entire lengths of the 3′UTRs of ADAM9

and ROS1 were cloned into the pMIR-REPORT miRNA Expression

Reporter Vector (Ambion). To generate a miR-33a-expressing

stable cell line, a lentivirus-mediated packaging system containing

four plasmids, pCDH-miR-33a or control plasmid, pMDL, REV, and

VSVG, was used. To stably knock down miR-33a in MCF-7 cells,

pLL3.7-puro containing anti-miR-33a or anti-pre-miR-33a shRNA

was co-transfected with pMDL, REV, and VSVG. The transfection

and lentiviral infection processes were similar to those previously

described (Fang et al., 2011).

Western blotting

Western blotting was performed as described previously (Fang et al.,

2011). Cell lysates were separated on SDS–polyacrylamide gels and

immunoblot analysis was performed with primary antibodies against

ADAM9 (Invitrogen), ROS1 (Cell Signaling), and β-actin (Millipore).

Cell growth assay

For the MTT assay, cells were seeded and transfected in a 96-well

plate. After transfection for 1, 2, 3, or 4 days, MTT was added to the

cells, and the absorbance at 490 nm was measured. For colony

formation assays, cells were seeded in 6-well plates and maintained

in RPMI 1640 medium containing 10% FBS for 15 days. Colonies

were fixed with 4% PFA, stained with 0.1% crystal violet for 15 min,

and photographed using a digital camera. Experiments were repe-

ated three times.

Real-time quantitative PCR

Total RNA was extracted from the cultured cells or frozen tissues

using TRIzol reagent (Invitrogen, Carlsbad, California, USA). For

miRNA reverse transcription, cDNA was synthesized using Taq-

Man® MicroRNA Reverse Transcription Kit (ABI) with 100 ng total

RNA. The mRNA was reverse-transcribed by an RT-PCR kit (Invit-

rogen, Carlsbad, California, USA) according to the manufacturer’s

instructions. Quantitative PCR was then performed with primers for

miR-33a, ADAM9, EGR3, ROS1, SOX9, WNT10B, CCND1, and

MAP3K1 using SYBR Green PCR Master Mix (Invitrogen, Carlsbad,

California, USA) in a real-time PCR System (Applied Biosystems,

Carlsbad, California, USA) following a standard quantitative PCR

procedure. Primer sequences were as follows: miR-33a, 5′-GGGGG

TGCATTGTAGTTG-3′ and 5′-TGCGTGTCGTGGAGTC-3′; ADAM9,

5′-GCTAGTTGGACTGGAGATTTGG-3′ and 5′-TTATTACCACAGGA

GGGAGCAC-3′; EGR3, 5′-CTGCCTGACAATCTGTACCC-3′ and 5′-

GTAGGTCACGGTCTTGTTGC-3′; ROS1, 5′-ATGGGCTCCTGTATT

GGTTG-3′ and 5′-CATCAGTGCATTCTGGGAAA-3′; SOX9, 5′-GAG

GAAGTCGGTGAAGAACG-3′ and 5′-GGAGTGCACCTCGCTCAT-

3′; WNT10B, 5′-TGGGATGTGTAGCCTTCTCC-3′ and 5′-CCCAGC

CAAAAGGAGTATGA-3′; CCND1, 5′-CCCTCGGTGCCTACTTCAA-

3′ and 5′-CTCCTCGCACTTCTGTTCCT-3′; MAP3K1, 5′-TGATGTAT

GGAGTGTTGGCTG-3′ and 5′-AATGTGAAGGGATCGATGGAG-3′;

GAPDH, 5′-GCACCGTCAAGGCTGAGAAC-3′ and 5′-TGGTGAAG

ACGCCAGTGGA-3′. Relative quantification was performed by nor-

malization to the amount of GAPDH.
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MiRNA reporter luciferase assay

For luciferase reporter assays, 293Tcells were seeded into a 24-well

plate and co-transfected with 3′UTR-luciferase and either miR-33a

or control plasmids. Cells were harvested after two days and

assayed using the Dual-Glo Luciferase Assay System (Promega) to

determine the relative luciferase activity. The luciferase activity was

measured by a luciferin enzyme detection assay kit (Promega) and

normalized to Renilla luciferase activity. Each treatment was per-

formed in triplicate in three independent experiments.

Cell motility and invasion assay

Migration and invasion assays were performed as described previ-

ously (Liu et al., 2014). All experiments were performed at least

three times in triplicate.

Animal studies

All experiments using animals were performed in accordance with a

protocol approved by the Animal Care and Use Committee of Xia-

men University. For orthotopic assays, 5 × 106 MDA-MB-231 or

MCF-7 cells in Matrigel (BD, Biosciences) plus growth media were

injected into the mammary fat pads of nude mice (n = 3–4 per

group). Mice were euthanized 30 days after orthotopic injection, and

the growth of subcutaneous tumors was examined by live animal

Lumina II system (Xenogen IVIS system). For tail vein metastasis,

1 × 106 MDA-MB-231 cells or 3 × 106 MCF-7 cells were injected into

the tail veins of nude mice (n = 3 per group). Mice were euthanized

30 (MDA-MB-231) or 42 (MCF-7) days after tail vein injection, and

the lung metastases were examined by live animal Lumina II system

(Xenogen IVIS system) and further detected by H&E staining.

Statistical analysis

All of our experiments were performed 3 biological repeats. All data

were expressed as the mean ± SD. Statistical analysis was per-

formed with Student’s t test. A P value less than 0.05 was consid-

ered statistically significant.
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