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Abstract
AIM: To investigate the roles of c-Jun N-terminal kinase (JNK)
signaling pathway in vitamin E succinate-induced apoptosis
in human gastric cancer SGC-7901 cells.

METHODS: Human gastric cancer cell lines (SGC-7901)
were treated with vitamin E succinate (VES) at 5, 10, 20 mg/L.
Succinic acid and vitamin E were used as vehicle controls
and condition medium only as an untreated (UT) control.
Apoptosis was observed by 4’, 6-diamidine-2’-phenylindole
dihydrochloride (DAPI) staining for morphological changes
and by DNA fragmentation for biochemical alterations.
Western blot analysis was applied to measure the expression
of JNK and phosphorylated JNK. After the cells were transiently
transfected with dominant negative mutant of JNK (DN-
JNK) followed by treatment of VES, the expression of JNK
and c-Jun protein was determined.

RESULTS: The apoptotic changes were observed after VES
treatment by DNA fragmentation. DNA ladder in the 20 mg/L
VES group was more clearly seen than that in 10 mg/L VES
group and was not detected following treatment of UT
control, succinate and vitamin E. VES at 5, 10 and 20 mg/L
increased the expression of p-JNK by 2.5-, 2.8- and 4.2-
fold, respectively. VES induced the phosphorylation of JNK
beginning at 1.5 h and produced a sustained increase for
24 h with the peak level at 12 h. Transient transfection of
DN-JNK blocked VES-triggered apoptosis by 52%. DN-JNK
significantly increased the level of JNK, while decreasing
the expression of VES-induced c-Jun protein.

CONCLUSION: VES-induced apoptosis in human gastric
cancer SGC-7901 cells involves JNK signaling pathway via
c-Jun and its downstream transcription factor.
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INTRODUCTION
Vitamin E is characterized as a fat-soluble membrane antioxidant[1-3].
RRR-α-tocopheryl succinate (vitamin E succinate, VES), a

derivative of natural vitamin E, does not possess antioxidant
properties unless succinate group is hydrolyzed by specific
ester hydrolase. VES has been shown to be a potent growth
inhibitor of a variety of malignant cell types in vitro and in
vivo, including avian lymphoid cells[4], murine B16 melanoma
cells[5] and EL4 T lymphoma cells[6,7], human monoblastic
leukemia cells[8], prostate[9,10], breast[11-13] and gastric cancer
cells[14,15]. VES has also been shown to suppress tumorigenesis
in hamster buccal pouch[16], mouse forestomach[17] and
mammary gland[18]. These antitumor effects seem to be selective
for tumor cells since VES treatment is not toxic to normal cell
lines[11,19].
       The molecular basis or mechanism for the growth inhibition
activity of VES remains unclear, but it could be attributed to G1
cell cycle blockage[11,20], DNA synthesis arrest[4,7,21], increased
expression of biologically active transforming growth factor-
βs (TGF-βs) and their type II cell surface receptors[4,22], the
induction of differentiation[23,24] and apoptosis[21,25,26]. VES is a
potent inducer of apoptosis in human gastric cancer cells and
it appears that at least two signaling pathways to trigger
apoptosis may be involved. One of the previous studies in our
laboratory have demonstrated that VES activates biologically
active TGF-β and then TGF-β increases the kinase activity of
c-Jun N-terminal kinase (JNK) followed by phosphorylation of
c-Jun, and finally activated c-Jun triggers apoptosis in human
gastric cancer cells[27]. The other shows that one of the death
receptors, Fas plays an important role in VES-induced apoptosis,
in that Fas activates Caspase-8 leading to a proteolytic cascade
of Caspases through FADD[28].
      It is well established that apoptosis or programmed cell death
plays a pivotal role in the development and homeostasis of
metazons by eliminating superfluous or unwanted cells[29-35].
Signals in response to stimulus-induced apoptosis or cellular
stress affect the activity of transcription factors via several
distant signal transduction pathways[36-38]. It is becoming clear
that members of mitogen-activated protein kinase (MAPK)
family have been shown to mediate almost all the cellular
processes from gene expression to cell death[39-42]. In this study,
we chose human gastric cancer cell line SGC-7901 as a model
for VES-induced apoptosis. The roles of JNK, a member of
MAPK family, were determined to further investigate the
mechanism of VES-mediated growth inhibition of human gastric
cancer cells.

MATERIALS AND METHODS

Materials
VES was purchased from Sigma Co. Ltd. RPMI 1 640 media,
LIPOFECTAMINE PLUSTM reagent and prestained protein marker
were purchased from Gibco BRL, 4', 6-diamidine-2'-phenylindole
dihydrochloride (DAPI) from Roche Diagnostics Co. Proteinase
K from Merch Co. JNK and GAPDH rabbit polyclonal antibodies,
dominant negative mutant construct of JNK were gifts from Dr.
Bob G Sanders and Dr. Kimberly Kline (University of Texas,
Austin, USA). Phospho-JNK mouse monoclonal and c-Jun
(H79) rabbit polyclonal antibody were from Santa Cruz
Biotechnologies.



Methods
Cell culture  Human gastric cancer cell line SGC-7901 was
maintained in RPMI 1 640 medium supplemented with 100 mL/L
fetal calf serum (FCS), 100 kU/L penicillin, 100 mg/L streptomycin
and 2 mmol/L L-glutamine under 50 mL/L CO2 in a humidified
incubator at 37 . SGC-7901 cells were incubated for different
periods in the presence of VES at 5, 10 and 20 mg/L (VES was
dissolved in absolute ethanol and diluted in RPMI 1 640 complete
condition medium correspondingly to a final concentration of
VES and 1 mL/L ethanol). Both succinic acid and vitamin E
dissolved in ethanol were used as vehicle controls and condition
medium only was used as an untreated (UT) control.
DAPI staining and apoptotic evaluation  Cells were treated with
VES at 20 mg/L for 48 h, then harvested, washed with PBS and
stained with 2 mg/L DAPI in 1 000 mL/L methanol for 30 min at
37 . Cells were viewed using a fluorescence microscope with
ultraviolet (UV) excitation at 300-500 nm. Cells with nuclei
containing clearly condensed chromatin or cells with fragmented
nuclei were scored as apoptotic.
DNA fragmentation assay  DNA fragmentation was determined
by extraction of DNA followed by electrophoresis. In brief,
cells were collected in an Eppendorf tube and washed twice
with PBS. Cells were incubated for 1h at 37  in 0.5 mL of
extraction buffer containing 10 mmol/L Tris·Cl (pH 8.0), 0.1 mol/L
EDTA, 20 mg/L trypsin and 5 g/L SDS. The mixture was
reincubated with 20 g/L proteinase K for 3 h at 50 . An equal
volume of buffer saturated phenol was added and the extracted
DNA was collected by centrifugation at 5 000 r/min for 15 min
at room temperature. DNA was precipated by the addition of
sodium acetate and absolute ethanol. DNA was dissolved in
TE buffer and electrophoresed in 10 g/L agarose gel containing
ethidium bromide and photographed under UV light.
Western blot analysis  SGC-7901 cells treated with VES were
harvested, washed with PBS and lyzed in lysis buffer (150 mmol/L
NaCl, 1 mL/L NP-40, 5 mg/L sodium deoxycholate, 1 g/L SDS,
50 mmol/L Tris (pH 7.4), 1 mmol/L DTT, 0.5 mmol/L Na3VO4,
10 mmol/L phenylmethylsulfonyl fluoride (PMSF), 10 mg/L
trypsin, 10 mg/L aprotinin and 5 mg/L leupeptin). Following the
centrifugation of 12 000 g for 30 min at 4 , the amount of protein
in the supernatant was determined using Biorad DC protein
assay. Equal amounts of protein were separated on 100 g/L
SDS-PAGE and transferred to different nitrocellulose filters
(Gibco BRL, USA) overnight. Blocked with 50 g/L defatty milk,
the individual filters were initially  incubated with JNK, or with
c-Jun, or with GAPDH rabbit polyclonal antibodies, or with
phospho-JNK monoclonal antibody and then all were incubated
again with horseradish peroxidase-conjugated IgG. Afterwards
DAB was added to develop the filters.
Transient transfection  SGC-7901 cells were washed twice with
serum-free medium without antibiotics and incubated for 3 h in
2 mL of serum-free medium containing 30 µL of LIPOFECTAMINE
reagent and 2 µg of dominant negative JNK or JNK vector.
After 3 h, the cells were treated with VES.

RESULTS
VES induced apoptosis in SGC-7901 cells
SGC-7901 cells were cultured for 48 h and collected, and DNA
was extracted. Gel electrophoresis of DNA extracted from cells
after exposure to UT control, succinate, vitamin E and VES is
shown in Figure 1. Fragmentation of chromosomal DNA
characterized as a DNA ladder was observed following exposure
to VES at 10 and 20 mg/L. DNA ladder in 20 mg/L VES group
was more clearly seen than that in 10 mg/L VES group. However,
DNA ladder was not detected following treatment of UT control,
succinate and vitamin E. These results suggested that VES
induced human gastric cancer SGC-7901 cells to undergo
apoptosis.

Figure 1  VES induced apoptosis by DNA fragmentation in
SGC-7901 cells. Lane 1: Molecular weight marker; Lane 2: UT
control; Lane 3: succinate; Lane 4: vitamin E; Lane 5: VES at
5 mg/L; Lane 6: VES at 10 mg/L; Lane 7: VES at 20 mg/L.

Effects of VES at different doses on phosphorylation of JNK
The expression of phospho-JNK (p-JNK) and JNK1/2 in the
whole-cell lysates from UT control, succinate, vitamin E and
VES-treated cells for 24 h was determined using Western blot
analysis. The results revealed that VES increased the expression
of p-JNK in an obvious dose-effect relationship. The levels of
p-JNK protein in VES-stimulated cells at 5, 10 and 20 mg/L were
increased by 2.5-, 2.8- and 4.2-fold over those in UT control-
treated cells, respectively (Figure 2A, top panel; Figure 2B).
The expression of JNK1/2 among different groups was not
significantly different (Figure 2A, bottom panel; Figure 2B).

Figure 2  Expression of p-JNK and JNK in SGC-7901 cells follow-
ing treatment of VES for 24 h. Lane 1: molecular weight marker;
Lane 2: UT control; Lane 3: succinate; Lane 4: vitamin E; Lane 5:
VES at 5 mg/L; Lane 6: VES at 10 mg/L; Lane 7: VES at 20 mg/L.

Effects of VES at different time points on phosphorylation of JNK
Since VES elevated the levels of p-JNK, we investigated
whether VES might regulate the expression of p-JNK for 1.5, 3,
6, 12 and 24 h. VES at 20 mg/L induced a prolonged p-JNK
expression starting at 1.5 h, peaking at 12 h and returning to the
UT control level at 24 h after treatment (Figure 3A, top panel;
Figure 3B). The levels of JNK1/2 were not increased by VES
(Figure 3A, bottom panel; Figure 3B).

Effects of blockage of JNK on VES-mediated apoptosis
To further address the role of JNK signaling in VES-mediated
apoptosis, studies were conducted to determine the effects of
specific blockage of JNK with dominant negative mutants. SGC-
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7901 cells were transiently transfected with an expression
construct containing dominant negative JNK (DN-JNK,
pcDNA3-Flag-JNK, tyrosine 185 and threonine 183 required
for phosphorylation activity were replaced with alanine and
phenylalanine, repectively), followed by treatment of VES at
20 mg/L. For DAPI staining, SGC-7901 cells were transfected
with DN-JNK and then treated with VES for 48 h. Then the cells
were collected and stained with DAPI and photographed under
a fluororescence microscope. DN-JNK reduced VES-induced
apoptosis by 52% compared with the apoptotic rate in empty
vector control cells (Figures 4A, 4B). In addition, DN-JNK
significantly increased the levels of JNK by 18-fold (Figure 5,
top panel), while decreasing the expression of c-Jun to a barely
detectable level compared with those in the empty vector cells
(Figure 5, middle panel). GAPDH protein levels served to verify
lane loads (Figure 5, bottom panel).

Figure 3  Expression of p-JNK and JNK in SGC-7901 cells fol-
lowing treatment of VES at 20 mg/L at different time points.
Lane 1: molecular weight marker; Lane 2: UT control; Lanes 3-
7: 20 mg/L VES treatment for 1.5, 3, 6, 12, 24 h.

Figure 4  Effect of DN-JNK on VES-induced apoptosis. A: SGC-7901
cells were stained with DAPI; B: The apoptotic rate.

Figure 5  Effect of DN-JNK on expression of JNK and c-Jun
when DN-JNK was transfected into SGC-7901 cells following
treatment of VES for 24 h.

DISCUSSION
Apoptosis has been found to be an active and physiological
process characterized by a series of morphological and
biochemical alterations, including condensation of cytoplasm,
loss of plasma membrane microvilli, fragmentation of nucleus
and extensive degradation of chromosomal DNA into oligomers
of 180 bp by endonuclease[43,44]. Characteristic DNA ladder can
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be seen on agarose gel by electrophoresis. In this study, evident
DNA ladder appeared in VES-treated SGC-7901 cells, especially
at 20 mg/L VES. Therefore, VES can induce SGC-7901 cells to
undergo apoptosis.
      MAPKs are serine-threonine protein kinases that could be
activated by diverse stimuli ranging from cytokines, growth
factors, neurotransmitters, hormones, cellular stress and cell
adherence[45-47]. MAPKs are evolutionarily conserved from
yeast to human. MAPK activity is regulated through a three-
tiered cascade composed of a MAPK kinase kinase (MKKK), a
MAPK kinase (MKK/MEK) and a MAPK. Activated MAPKs
could phosphorylate corresponding substrates, the majority
of which are transcription factors[48]. Mammalian MAPKs can
be subdivided into five groups, namely extracellular signal-
regulated kinase (ERK) 1/2, c-Jun amino-terminal kinase (JNK),
p38, ERK3/4 and ERK5.
       JNK, also known as stress-activated protein kinase (SAPK),
is phosphorylated by MKK4/7 activated by various MKKKs.
Activated JNK in turn could phosphorylate transcription
factors, c-Jun and ATF-2, which are components of the dimeric
activating protein (AP)-1[49-51]. Here, we determined the
expression of phospho-JNK and JNK in VES-stimulated SGC-
7901 cells. The data showed that VES obviously increased the
expression of p-JNK with a dose-effect relationship. The p-JNK
levels were also elevated for a prolonged period after VES-
treatment. VES induced activation of JNK beginning at 1.5 h after
VES treatment and produced a sustain increase for 24 h with peak
level at 12 h. The duration of JNK activation is critical in determining
cell fate. Persistent activation of JNK has been shown to induce
apoptosis. Thus, our results indicated a key role of JNK in VES-
mediated apoptosis of human gastric cancer cells.
       c-Jun transcription factor, a major target of JNK, belongs to
an immediate early gene and could be rapidly and transiently
induced in response to multiple extracellular stimuli[52-54]. Its
expression can form homodimers or associate with other
transcription factor partner, including members of Jun, Fos and
ATF-2, to form heterodimeric complexes. Its activation through
phosphorylation by JNK has been implicated in a variety of
processes including embryomic developments, cellular
transformation and initiation of apoptosis in response to
various stresses[55-59]. JNK could phosphorylate c-Jun on
serines 63 and 73 at the NH2-terminal activating sites. This
results in increased stability of c-Jun and an increase in its
transactivation potential and DNA binding affinity. Our
previous studies showed that VES upregulated the expression
of c-jun mRNA and protein in SGC-7901 cells[60]. In this study,
transient transfection of dominant negative mutants of JNK
(DN-JNK) blocked VES-triggered apoptosis by 52%. In addition,
DN-JNK significantly increased the level of JNK, while
decreased the expression of VES-induced c-Jun protein,
indicating that JNK plays an important role in the regulation of
c-Jun upstream.
     Taken together, JNK is phosphorylated and activated in
VES-induced apoptosis. JNK regulates the expression of c-
Jun, a downstream transcription facor. All the data suggest
that JNK plays a critical role in VES-induced apoptosis in human
gastric cancer SGC-7901 cells. MAPK pathways are involved
in a variety of responses affecting cell fate, such as cell
proliferation and differentiation, adaptation to environment
stress and apoptosis. None of the MAPK pathways including
JNK is acting alone in cellular response, they are integrated
with many other metabolic changes in the cells. Therefore,
additional studies should provide insights into the interactions
and significance among MAPK pathways.
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