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Abstract

AIM: To analyze the influence of cholesterol liposome on
the Ca2+ mobilization of cultured muscle cells in rabbit
sphincter of Oddi’s.

METHODS: New Zealand rabbit was sacrificed and
the sphincter of Oddi (SO) segement was obtained
aseptically. The SO segment was cut into pieces and
cultured in DMEM solution. Then the smooth muscle
cells were subcultured, and the 4th-7th passage
cells were used for further investigation. The
intracellular Ca2+ increase was measured under
confocal microscope after the addition of 20mmol·L-1

KCl,  10 -7mol·L -1 acetylchol ine and 10 -7mol·L -1

cholecystokinin, and different antagonists were
added to analyze the Ca2+ mobilization pathway.
Af ter  the  ce l l s  were  incubated  wi th  1g ·L -1

cholesterol liposome (CL)(molar ratio was~2:1),
the intracellular Ca2+ increase was measured again
to determine the effect of CL on cellular Ca2+

mobilization.

RESULTS: The resting cellular calcium concentration
of cultured SO cell was 108nmol·L-1±21 nmol·L-1. The
intracellular Ca2+ increases induced by 20mmol·L-1 KCl,
1 0 -7 mo l ·L -1 ACh  and  10 -7 mol ·L -1 CCK were
183%±56%, 161%±52% and 130%±43%,
respectively. When the extracellular Ca2+ was
eliminated by 2mmol·L-1 EGTA and 5µµµµµmol·L-1 verapamil,
the intracellular Ca2+ increases induced by KCl, ACh
a n d  C C K  w e r e  2 0 % ± 1 4 % , 8 2 % ± 2 1 %  a n d
104%±23%, respectively. After the preincubation
with heparin, the Ca2+ increases were 62%±23% and
23%±19% induced by ACh and CCK,  as  for
preincubation with procaine they were 72%±28%
and 85%±37% induced by ACh and CCK, respectively.
Pretreatment with CL for 18h, the resting cellular
Ca2+ concentration elevated to 152nmol·L-1±26nmol·L-1,
however, the cellular Ca2+ increase percentages in
response to these agonists were 67%±32%,
56%±33% and 34%±15%.

CONCLUSION: KCl elicite the SO cellular Ca2+ increase
depends on influx of extracellular Ca2+, ACh evoked the SO

celllular Ca2+ increase is through the mobilization of
intracellular Ca2+ pool and influx of extracellular Ca2+

as well, CCK excites the SO cells mainly through
mobilization of intracellular IP3-sensitive Ca2+ store.
After the incorporation with cholesterol liposome,
KCl,ACh and CCK induced cellular Ca2+ increase
percentages decreased.
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INTRODUCTION
Biliary tract diseases are becoming more common in recent
years in China[1-10]. Sphincter of Oddi (SO) is an important part
locatedat the distal part of biliary tract. And it is well accepted
that SO plays an important role in the regulation of biliary system
hydraulic pressure and bile flow[11-13]. SO dysfunction (SOD) is
one of the causes responsible for biliary tract disorders[14-16],
pancreatitis[17-18]and other disorders[19-21]. The mechanism
underlying the occurrence of SOD is controversial, however,
several investigators have noticed the relation between
hypercholesterolemia and SOD[22-24]. Szilvassy et al[23] reported
that patient has an impaired SO relaxation due to high serum
lipids, but normalization of serum lipids improved the sphincter
of Oddi relaxation. Wei et al[24] found the abnormalities in
ultrastructure of SO in rabbits with hypercholesterolemia.
Therefore, hypercholesterolemia might be one of causes of
SOD. Meanwhile, the effect of cholesterol on gallbladder
contractility has been interpreted by many authors[25-27], who
found that the cholesterol incorporated into membrane can
impair the cellular signal transdution and contractility as well.
      The thin optical sectioning capability of laser scanning
confocal microscopy rejects light from out-of-focus planes and
permits imaging of [Ca2+]i in single alive cells in optical sections less
than 1ìm thick, which makes it possible to measure intracellular Ca2+

alteration instantaneously. So, this experiment was designed to
analyze the effect of different agonists on Ca2+ mobilization of SO
cells and cholesterol liposome on this process, in order to explore
the mechanism that hypercholesterolemia affected the SO motility.

MATERIAL AND METHODS
Materials
The fluo 3/AM was obtained from Molecular Probes (USA),
trypsin, HEPES, cholecystokinin-octopeptide (CCK) and bovine
serum albumin (BSA) were from Sigma Chemicals (USA), and
Dulbecco’s modified Eagle’s medium (DMEM) was from Gibco
Laboratories(USA). The ethylene glycol-bis(β-amino ethyl ether
)-N,N,N’-tetraacetic acid (EGTA), verapamil, procaine, egg
phosphatidylcholine and cholesterol were obtained from Shanghai
Chemical Co. (China), and the acetylcholine from Suzhou Chemical
Co. The dimethyl sulfoxide (DMSO) was purchased from Beijing



Chemical Co. All other chemicals were commercial products of the
highest available grade of purity.

Cells preparation
The New Zealand rabbits(<30d) were euthanized by intravenous
injection of ketamine (20mg·kg-1), and the segment of Oddi was
removed quickly and washed by PBS solution containing
penicillin(500×103u·L-1). The experiments were conducted in
accordance with the institutional ethical guidelines. Mucosa and
serosa were dissected carefully, then washed twice with culture
medium. The sphincter strip was cut into 1-2 mm3 squares and
placed into culture chamber, the chamber was everted and added
into 3mL DMEM medium, and pH was adjusted to 7.4 by addition
of 24mmol·L-1 NaHCO3 before the use. After 3 h incubation at
37 , when the tissue squares sticked to the chamber then turn
over the chamber, replaced the medium every 4-5 d.
      Subculture: Cells migrated from the explants 10-15d, as the
chamber was confluenced with cells, then subcultured by
addition with 2.5g·L-1 trypsin at 37  for 10 min. The trypsin
was inactived by bovine serum, and the cell suspension was
centrifuged at 1000r·min-1 for 7 min. The supernant was removed
and cell pellet resuspended in fresh medium to a concentration
of 5-7×105·mL-1 and repassaged into several chambers.
      Differentiation: Three glass cover slips (18mm×18mm) placed
into a 6cm diameter chamber, then cell suspension was added
and incubated for 48 h. The slips covered with cells and fixed
with 950mL·L-1 ethanol for 30min, washed with PBS for 5min
and desiccated naturally. The β-actin staining was performed
with immunohistological kits. The positive stain was localized
in long, straight, noninterrupted fibrils scattered densely along
the longitudinal axis. Under phase-contrast microscope, the
cultured cells showed a characteristic “hill- and - valley” growth
pattern, and the 4th-7th passage cells were used in this experiments.

Preparation of cholesterol liposome
Liposomes were prepared as described previously[28,29].
Cholesterol (200mg) and phosphatidylcholine (100mg) were
added into 5mL chloroform and soluted completely. After the
organic solution was evaporated, the container was placed in
the desiccator overnight at 4 . Then PBS (pH 7.2) was added
into the container, the finalconcentration of CL was 10g·L-1. After
the sonication, the mixture was centrifuged at 21 000×g for 30min
to sediment the undispersed lipid, then the supernatant was
collected. The cholesterol-to-phospholipid molar ratio (FC/ PL)
of the liposome was ~2:1. Control liposome (Cholesterol 100mg
and phosphatidylcholine 200mg) was prepared in the same way,
FC/PL molar ratio was ~0.5:1. Both liposomes were sterilized by
filtration through a 0.45µm filter and mixed with sterile DMEM
(Dulbecco’s modified Eagle’s medium) at a concentration of 1g·L-1,
which is in accordance with the serum concentration of rabbit
model with hypercholesterolemia[57], pH was adjusted to 7.4,
control and cholesterol-rich media were determined to be isomolar
before experimentation.

Calcium measurement
A 10mm hole was made in a plastic chamber ( Made in Denmark),
then a 22mm glass coverslip was used to seal the hole tightly
from the bottom. Then it was cleaned thoroughly and sterilized
by ultra-violet lamp for 2h. The cell suspension was added into
the chambers and incubated for 48h, they were incubated with
or without CL overnight.
     Preparation of fluo-3/AM: The concentration of free cytosolic
Ca2+ in SMCs was determined using the fluorescent Ca2+ indicator
fluo-3/ AM. Fifty µg fluo-3 was dissolved in 50µL dimethyl sulfoxide
(DMSO) (about 885µmol·L-1), and mixed thoroughly. Then it was

subdivided into ten vials and stored at -20 . Five µL of vial of
stock solution was diluted by D-Hanks with a proporation of
1:200(V/V). The final concentration of fluo-3 was about 4.
5µmol·L-1. This loading solution should be used in 3 h, to
maximize loading efficiency. Ca2+ measurement: The SO cells
culture media was removed and washed for 10 min with D-
Hanks solution. Remove the final wash solution, add the loading
solution, incubate about 50 min at 37 . Then remove the loading
solution, wash the cells with D-Hanks, measure the fluorescence
soon after loading. The measurement was performed under
Bio-Rad MRC 1024 laser scanning confocal microscope, select
cellular Ca2+ indicator from the method menu, then select the
button for fluo-3, numerical aperture being 1.3, and pixel 512.
The data was treated at Compaq Pentium 90. The peak
excitation was about 506nm and the peak emission was
about 526nm.

Solution
HEPES buffered solution (in mmol·L-1): 134 NaCl, 6 KCl, 2 CaCl2,
1 MgCl2, 10 HEPES, 10 Glucose, 0.49 EDTA; D-Hanks: 138
NaCl, 5.4 KCl, 0.37 Na2HPO4·H2O, 0.44 KH2PO4, 4.17 NaHCO3.
PBS: 138 NaCl, 2.7 KCl, 10 Na2HPO4·H2O, 1.6 KH2PO4; High
K+ solution contained the following (in mmol·L-1): 120 NaCl,
20 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 10 Glucose. Heparin was
diluted by D-Hanks with 7×105U·L-1, procaine concentration
was 10mmol·L-1.

Statistical analyses
Results were expressed as x±Sx. Student’s test or an analysis
of variance (ANOVA) was performed to test the statistical
significance as necessary,P<0.05 was regarded as significant.

RESULTS
Cultured SO cells showed a typical smooth muscle cell
characteristics which presented as “hill-and -valley” and α-
SM actin positive staining, filament was demonstrated along
the longitudinal axis of the cells(Figure 1).Loading with fluo-3/
AM for 50min, the fluorescence distributed inhomogenously
under LSCM, which may represent the Ca 2+ pool,  is
inhomogenous. All experiments were conducted at room
temperature(21 -23 ). The value of Ca2+ concentration was
calculated and based on the following equation:[Ca2+]i =Kd×(F-
Fmin)/(Fmax-F), where Kd is the dissociation constant for Ca2+

(316nmol·L-1), Fmax is fluorescence maxima which was obtained
by saturating intracellular signal values; Fmin is fluorescence
minima which represented zero-Ca2+ signal. The resting cellular
Ca2+ concentration was 108±21nmol·L-1.

Figure 1 Cultured SO cells characterized with á-SM actin positive staining,
filament were demonstrated along the longitudinal axis of the cells.
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Distinctive agonists induced alteration of intracellular
fluorescence
At the presence of extracellular Ca2+, intracellular Ca2+ concentration
changed under the LSCM after the addition of agonists, and it
showed spatially heterogeneous alteration of fluorescent intensity
in SO cells (Figure 2).

Figure 2  At the presence of extracellular Ca2+, intracellular Ca2+ concentra-
tion changed under the LSCM(1 image·s-1) after the addition of agonists,
and it shows spatially heterogeneous alteration of fluorescent intensity in
SO cells.

      After the addition of 20mmol·L-1 KCl, the increase of
intracellular fluorescence was 183±56% (n=4), 10-7 mol·L-1 ACh
caused fluorescence increase was 161±52 % (n=4), 10-7 mol·L-1

CCK agonized an increase of 130±43 % (n=4), the maximum
Ca2+ concentration were 297±66nmol·L-1, 275±58nmol·L-1 and
251±45nmol·L-1, respectively.(n=4, Figure 3).

Figure 3  Intracellular fluorescence increases induced by different agonists.
Ca2+ Concentration increased from resting level of 108±21nmol·L-1 to
297±66nmol·L-1, 275±58nmol·L-1 and 251±45nmol·L-1, respectively. ANOVA
was performed for the analysis, F=0.9184, no significant difference be-
tween three groups (n=4).

    The elimination of extracellular Ca2+ was performed by
incubation of 2mmol·L-1 EGTA and 10µmol·L-1 verapamil for
10min. The extracellular Ca2+ was chelated by EGTA (a highly
specific chelator for free Ca2+ ions) and inward Ca2+ current was
inhibited by verapamil (inhibitor of L-type Ca2+ channels).
Compared with the presence of extracellular Ca2+, under this
circumstance, the cellular fluorescence decreased from the peak
rapidly.
      At absence of extracellular Ca2+ treated by EGTA and
verapamil, 20mmol·L-1 KCl induced an Ca2+ increase of 20%±14%
(P< 0.01, vs control, t= 4.882), with maximal Ca2+ concentration
of 131±17nmol·L-1, which indicated the induction of KCl
depends on the presence of extracellular Ca2+. Under the same
condition, ACh increased the cellular Ca2+ by 82%±21%, with a

maximal Ca2+ concentration of 192nmol·L-1±22nmol·L-1. After
pretreatment of heparin ( inhibitor of IP3-sensitive Ca2+ release
channel ) and procaine(inhibitor of IP3-insensitive Ca2+ release
channel), the cellular influoscence increase by 62%±23 % and
72%±28%, respectively, the maximal cellular calcium was
175nmol·L-1±26nmol·L-1 and 186nmol·L-1±30nmol·L-1, and there was
no significant difference from that of untreated cells (Figure 4).

Figure 4  Effect of different antagonists on ACh induced cellular Ca2+

increase (x±Sx, n=4). Maximal Ca2+ concentration increased to 192±22nmol·L-

1,175nmol·L-1±26nmol·L-1 and 186±30nmol·L-1, respectively. ANOVA was
performed for the analysis, F= 1.324, with no significant difference be-
tween the three experimental groups (n=4 ).

      CCK induced an cellular Ca2+ increase of 104%±23% after
the elimination of extracellular Ca2+. After incubation of heparin and
procaine, CCK induced calcium increase were 23%±19% and
85%±37%, which was different from that of acetylcholine(Figure 5).

Figure 5  Effect of different antagonists on CCK induced cellular Ca2+

increase (x±Sx, n=4). Maximal Ca2+concentration increased to 220±26nmol·L-1,
133±21nmol·L-1 and 201±40nmol·L-1, respectively. SNK-q test was performed,
there was a statistical difference between heparin treated group and other
two groups, P<0.01.

Intracellular calcium increase after the incubation of cholesterol
liposome
After the incubation of 1g·L-1 CL for 18h, many CL incorporated
into the membrane, the cells changed slightly as mentioned by
others[45]. The intracellular calcium concentration of control
liposome(FC/PL molar ratio with~0.5:1) treated cells were
117±19nmol·L-1, there was no significant difference as compared
with untreated cells. However, the resting cellular Ca2+

concentration was elevated obviously by incubation of CL(FC/PL
molar ratio with ~2:1 ), which was 152±26nmol·L-1. But, after addition
of agonists, the Ca2+ concentrations increased to 257±54nmol·L-1,
238±57nmol·L-1 and 204nmol·L-1±26nmol·L-1, respectively, the
calcium increase percentages were significantly decreased, the
celllular influorescence increases induced by KCl, ACh and
CCK were 67±32%(t=3.597), 56±33% (t=3.410) and 34±15%(t=
4.216), respectively,(P<0.05,vs control) (Figure 6).
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Figure 6  Effect of cholesterol liposome on cellular Ca2+ mobilization (x±Sx,
n=4). Agonists induced cellular influorescence increase percentages were
markedly less than that of control group.

DISCUSSION
The present study shows that Ca2+ mobilization of SO cells
evoked by potassium, acetylcholine and cholecystokinin were
impaired after the cells incubated with cholesterol liposome
(CL). And it also indicated that CL affects the different
pathways of Ca2+ mobilization, for our results demonstrated
that KCl induced intracellular Ca2+ increase depe nds on the
extracellular Ca2+ influx, acetylcholine may agonize the Ca2+

increase through both intra- and extracellular pathway, while
CCK elicited SO cells via mobilizing intracellular Ca2+ store.
These observations agree with other authors’ in gallbladder
muscle cells[30-34].
      Based on literatures and our results, potassium excited the
smooth muscle cells depend on Ca2+ influx through L-type
voltage-dependent Ca2+ channel which could be inhibited by
verapamil. As for acetylcholine and cholecystokinin, 2mmol·L-

1 EGTA and 10ìm verapamil could not inhibit the cellular Ca2+

increase completely, demonstrating that both Ach and CCK
elicit SO cells do not depend on influx of extracellular calcium.
However, heparin could inhibit the cellular Ca2+ increase
induced by CCK, which indicate a CCK evoked Ca2+ increase of
SO cells through IP3-sensetive pathway.
      The normal function of SO is the precondition of biliary
tract homeostasis, and the motility was under the coordination
of hormone and innervation[35-38]. SOD is responsible for many
disorders including gallbladder stasis,stone formation and
unexplainable upper abdominal ache post-cholecystectomy[13].
Additionnally, it was proved that the occurrence of SOD was
correlated with intestinal dysmotility[20,39,40] and it was also
correlated with recurrent and chronic pancreatitis[41,42]. On the
other hand, most researches on SO were concentrated on the SO
manometry, in such a situation, the results and conclusions were
always full of discrepancy due to the complex effect of hormone
and nerve or differences in species[12,13]. Therefore, isolated and
cultured SO cells were used to study its characteristics in order
to rule out complex influences in vivo[43-46].
      It was well known that motility regulation of smooth muscle
cells depends on several mechanisms, including: influx of
extracellular Ca2+, intracellular Ca2+ mobilization and
sensitivity modulation of intracellular Ca2+. If this process
was inhibited, the contractility will be impaired. In our
previous experiments, high molar ratio CL (molar ratio~2:1)
impaired the SO muscle cell contractility[43], whereas, low
molar ratio CL(0.5:1) had no effect on cells contractility.
According to previous literatures,cholesterol enrichment of the
SMC membrane occurs rapidly, and the aortic smooth muscle cells
in hypercholesterolemic rabbit has impaired relaxation[47-49],
and reduced contraction as well[50]. Cholesterol incorporation into

membrane could also result in an alteration of membrane conduction of
ions[51,63]. Because the cholesterol liposome was readily incorporated
into cells membrane, that the duration, CL and cells incubation
needed, was not a routine one. In another previous experiment,
we used 2h for incubation[43]. Broderick et al used 3h in the
study of CL effect on arterial smooth muscle[50].
      Our aim was mainly to observe the Ca2+ mobilization alteration
affected by CL. There are many evidence in vivo and in vitro
showing an impaired contractility in human and animal
gallbladders with cholesterol stones[28,52]. Li et al[53] measured
the actin and myosin isoform in gallbladders smooth muscle
following feeding in prairie dogs and found that cholesterol
feeding induced a shift in actin isoforms, but whether it is really
responsible for the decreased contractility is uncertain. It was
proved that cholesterol could alter smooth muscle membrane
and cell function by changing the physical state of the
membrane phospholipid bilayer[54], and therefore affect the
function of integral membrane proteins, such as Ca2+ and
potassium channels, as well as transmembrane receptors[26].
Membrane fluidity decreased with excessive cholesterol
incorporation and subsequently restricted optimal function of
membrane proteins, such as receptor binding of ligands,
receptor coupling with G proteins and activation of enzymes[55,

56]. Thus, it could explain the impaired activation of signal
transduction pathways responsible for contractile responses
to receptor-dependent agonists, such as CCK and ACh. It has
been shown that muscle cell contraction, membrane fluidity,
membrane cholesterol and phospholipid content are reversible
after the membrane cholestrol was leached out by incubation
of cholesterol-free liposomes for several hours[27,28]. Whether
the effects of cholesterol liposome observed in this study were
due to cytotoxicity Other authors reported that high
concentration of CL might have influence to cultured muscle
cells[46]. The similar procedures had been done by many
reseachers[27,29,64], and the cholesterol was within the serum
concentration range of hypercholesterolemia rabbit model[57].
So, the cytotoxicity of liposomes to cells in this study, if any,
might be unconsiderable.
      The effect of cholesterol on SO has not been elucidated
yet. SO manometry of hypercholesterolemic rabbit shows that
abnormal SO motility had been observed before the formation
of gallstone[57], basal pressure rose and amplitude of phasic
contraction decreased that represented an impaired relaxation
and decreased contraction, too. Szilvassy et al[58] observed
that the SO of hypercholesterolemic rabbits restored the
nitrergic transmitter mediated relaxation by farnesol treatment.
The SO segments of rabbits, prairie dogs and guinea pigs
belong to extraduodenal type[59-61] and were able to pump fluid
from the bile duct to duodenum. Therefore, it could be concluded
that cholesterol affected the SO contractility which was
responsible for a reduced peristaltic function to pump bile into
duodenum. CCK receptors located in SO neurons and muscle
cells were G-protein coupled receptors[62] which could be
affected by excessive cholesterol incorporation resulting in
decreased release of neural mediators or an impaired contraction.
Therefore, we can conclude that hypercholesterolemia
could not only impair relaxation but also contraction of
rabbits sphincter of Oddi, which could lead to the occurance
of SO dysfunction.
     In summary, the present study shows that potassium induced
rabbits SO cells Ca2+ increase depends on Ca2+ influx through L-
type channel; acetylcholine induces SO cells Ca2+ increase from
both intra- and extra-cellular Ca2+ release; cholecystokinin evokes
the SO cells by mobilizing IP3-sensitive Ca2+ stores; and cholesterol
liposome could affect the intracellular Ca2+ increase induced by
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different agonists.
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