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Protein Polymerization into Fibrils from the Viewpoint of Nucleation Theory
Dimo Kashchiev1,*
1Institute of Physical Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
ABSTRACT The assembly of various proteins into fibrillar aggregates is an important phenomenon with wide implications
ranging from human disease to nanoscience. Using general kinetic results of nucleation theory, we analyze the polymerization
of protein into linear or helical fibrils in the framework of the Oosawa-Kasai (OK) model. We show that while within the original OK
model of linear polymerization the process does not involve nucleation, within a modified OK model it is nucleation-mediated.
Expressions are derived for the size of the fibril nucleus, the work for fibril formation, the nucleation barrier, the equilibrium
and stationary fibril size distributions, and the stationary fibril nucleation rate. Under otherwise equal conditions, this rate de-
creases considerably when the short (subnucleus) fibrils lose monomers much more frequently than the long (supernucleus)
fibrils, a feature that should be born in mind when designing a strategy for stymying or stimulating fibril nucleation. The obtained
dependence of the nucleation rate on the concentration of monomeric protein is convenient for experimental verification and for
use in rate equations accounting for nucleation-mediated fibril formation. The analysis and the results obtained for linear fibrils
are fully applicable to helical fibrils whose formation is describable by a simplified OK model.
INTRODUCTION
Polymerization of protein into fibrillar aggregates is much
studied both because protein fibrils are involved in scores
of human diseases (1,2) and because they could be useful
for various technological applications (3,4). Describing the
kinetics of the process is particularly challenging due to
the plethora of possible pathways that could be taken by
the protein monomers in their filamentous self-assembly
(1,2,5–10). Because the description is greatly simplified
by modeling the process as evolving along a single pathway,
most of the theoretical studies on the kinetics of protein
polymerization are based on such modeling. A recent
comprehensive analysis of nucleation-mediated protein
fibrillation with competing off-pathway aggregation is that
of Powers and Powers (11).

In a pioneering article, Oosawa and Kasai (12) considered
protein fibrils resulting from one-dimensional arrangement
of dissolved protein monomers either along a straight line
or along a spiraling line, two cases that they called linear
and helical polymerization, respectively (see also Oosawa
and Kasai (13), Oosawa and Higashi (14), and Oosawa
and Asakura (15)). Although the Oosawa-Kasai (OK) model
(12) has its limitations (16), it became a valuable tool in the
kinetic analysis of protein fibrillation, because it and the
ensuing extended models led to the formulation of rate
equations allowing description of the process at the molec-
ular level (e.g., see the literature (12,14,15,17–35); see also
a review by Gillam and McPhee (36) and references
therein). In their study, Oosawa and Kasai (12) focused on
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the helical polymerization and dealt only briefly with the
linear one. In contrast, this analysis is concerned above all
with linear polymerization in the framework of the OK
model. Helical polymerization within this model can be
treated in a similar fashion, but the problem is mathemati-
cally more complicated and requires a separate study unless
the model is not simplified. The simplification considered
here allows describing the helical polymerization in pre-
cisely the same way as the linear one.

Most generally, the filamentous self-assembly of protein is
a particular case of formation and growth of condensed
phases during first-order phase transitions. Despite that this
was recognized long ago (12,14,15,37), hitherto, general
results of droplet or crystal nucleation and growth theories
have relatively rarely been employed in thermodynamic
and kinetic studies of protein fibrillation (e.g., see the litera-
ture (5,38–51)). In particular, the OK model has not been
analyzed from the viewpoint of nucleation theory to verify
whether it admits of nucleation, and if so, to determine the
fibril nucleation barrier and rate. Such an analysis is much
needed, because both the original (12) and some generalized
(14,15,20,22,27–36) rate equations of the OK model do not
provide a self-contained description of the fibrillation ki-
netics. Namely, they operate with a semiempirical quantity
called the fibril nucleation rate and are introduced ad hoc to
account for the effect of nucleation on the overall fibrillation
process. As it will be seen below, this quantity disappears
from the rate equations of the OK model when fibrillation
is analyzed by employing general kinetic results of the clas-
sical nucleation theory (CNT) (52–54).

The objective of this study is to apply the CNT ki-
netic approach to the OK model of linear polymerization
http://dx.doi.org/10.1016/j.bpj.2015.10.010
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to 1) clarify the role of nucleation in the formation of linear
fibrils; 2) derive expressions for the fibril formation work,
size distribution, nucleation barrier, and nucleation rate
(when fibrils appear via nucleation); and 3) reveal the phys-
ical meaning of the semiempirical quantity in the rate equa-
tions of the model.
MATERIALS AND METHODS

In this study, we use standard materials for analytical calculations as well as

a standard personal computer. Our method is very simple: we apply known

general kinetic expressions of CNT to the OK model of linear polymeriza-

tion. These are given and briefly explained below.

As illustrated by the first row of molecular aggregates in Fig. 1, CNT is

based on the Szilard-Farkas model (55) according to which an aggregate of

one-component new phase is characterized solely by the number n¼ 1, 2, 3,

. of its molecules and evolves by randomly attaching and detaching only

single molecules (monomers) with nonvanishing frequencies fn and gn,

respectively (54).

Knowing fn and gn allows determination of the work Wn to form an n-

sized aggregate with the aid of the following exact expression (54):

Wn ¼ W1 þ kT
Xn

m¼ 2

ln
gm
fm�1

: (1)

HereW1 is the value ofWn at n¼ 1 (i.e., the work to form the smallest piece

of the new phase), k is the Boltzmann constant, and T is the absolute tem-

perature. When fn and gn are such that Wn has a maximum at a certain n ¼
FIGURE 1 Schematic of the Szilard-Farkas model of aggregation (first

row) and of the original and modified OK models of linear polymerization

(second and third rows, respectively, with the trimer in the third row as fibril

nucleus). The monomers (the circles) in the first row are clustered into two-

dimensional crystallites with hexagonal symmetry. The monomers in the

second and the third rows are assembled in one-dimension into linear fibrils,

the only difference between the two rows being that in the third row the

monomer detachment frequency for the dimer and the trimer is q times

higher than that for the longer fibrils.
n* > 1, the system is in metastable equilibrium, i.e., it is supersaturated.

The n*-sized aggregate is the nucleus of the new phase, because it requires

maximum work Wn* for its formation.

The monomer attachment to and detachment from aggregates gives rise

to a net flux jn from size n to size nþ 1 along the size axis. This flux is visu-

alized by the open arrows in Fig. 1 and is of the form (54)

jn ¼ fnCn � gnþ1Cnþ1: (2)

Here Cn is the number concentration of n-sized aggregates, and fnCn

and gnþ1Cnþ1 are the forward and backward fluxes from size n and size

n þ 1 (the solid right- and left-handed arrows in the first row in Fig. 1),

respectively.

According to the principle of detailed balance (or microscopic revers-

ibility), the system is in thermodynamic equilibrium when jn ¼ 0. This

occurs when the aggregates have their equilibrium size distribution Ce,n

given exactly by (54)

Ce;n ¼ C1

f1f2:::fn�1

g2g3:::gn
; (3)

where C1 is the monomer concentration. The system is supersaturated if fn
and g are such that C diverges with n tending to infinity. For a solution,
n e,n

this is the casewhenC1> cs, cs being the new-phase solubility, i.e., themono-

mer concentration at which a macroscopically large aggregate neither grows

nor dissolves. For a supersaturated system, because of its divergence, Ce,n is

only a thought size distribution of aggregates. The equilibrium size distribu-

tionCe,n does really exist, however, when the system is saturated or undersat-

urated (for a solution, this is so when C1 ¼ cs or C1 < cs, respectively).

A supersaturated system is in stationary state when jn ¼ J for any n ¼ 1,

2, 3,. , where J is the stationary nucleation rate. Then, rather than Ce,n, the

corresponding stationary size distribution Cst,n of aggregates is what is

really established in the system. For a system with numberM of monomers

that is large enough to allow usingM¼N, this distribution is given exactly

by (54)

Cst;n ¼ JCe;n

XN
m¼ n

1

fmCe;m

: (4)

Here Ce,n is specified by Eq. 3, and J is expressed by the exact Becker-Dör-

ing formula (56), which can be represented as (54)
J ¼
"XN

n¼ 1

1

fnCe;n

#�1

: (5)

All Ce,n, Cst,n, and J from Eqs. 3–5 are t-independent when neither the

monomer concentration C1 nor the frequencies fn and gn change with

time t. If this is not the case, Ce,n and Cst,n are the quasi-equilibrium and

quasi-stationary size distributions of aggregates, and J is the corresponding

quasi-stationary nucleation rate (53,54).

Finally, with jn from Eq. 2, the rate equations of the Szilard-Farkas model

can be expressed in the form (n ¼ 2, 3, 4,.) (54)

dCn

dt
¼ jn�1 � jn: (6)

Importantly, these rate equations are self-contained in the sense that the

only parameters in them are the monomer attachment and detachment fre-

quencies fn and gn inherent to the model.
RESULTS AND DISCUSSION

Before proceeding further, let us introduce some of the
terms and symbols used hereafter. This seems expedient,
Biophysical Journal 109(10) 2126–2136
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as they may differ from those employed in the biophysical
literature.

In formation of single-component protein fibrils at a
given concentration C1 of monomeric protein, the supersat-
uration ratio S h C1/cs characterizes the thermodynamic
state of the protein solution when this is not too concen-
trated and activity effects are negligible. While for S < 1
the solution is stable because of the thermodynamically pro-
hibited appearance of macroscopically long fibrils in it, for
S > 1 the solution is metastable due to the thermodynami-
cally favored formation of such fibrils in it. At S¼ 1, the so-
lution is in phase equilibrium, as then it can coexist with the
bulk fibrillar phase. The fibril solubility cs (termed also crit-
ical concentration (12,15,18,19,25)) is, therefore, simply the
phase-equilibrium concentration of monomeric protein.

Within the OK model, the protein fibril itself is a one-
dimensional straight or spiral chain of any number n ¼ 1,
2, 3, . of protein monomers. The model is so simple that
there is no need of specific terms for the short and the long
protein chains, such as the often used protofibril and mature
fibril, respectively. When S> 1, among the fibrils of all sizes
there may be special ones, the fibril nuclei, each of them
comprising n* monomers and requiring maximum work for
its formation. Accordingly, the fibrils of sizes n < n* and
n > n* are the fibril subnuclei and supernuclei, respectively.
The subnuclei could be called oligomers (25), but we shall
refrain from employing this term here, because rather than
designating the short fibrils in relation to the nucleation pro-
cess, it usually refers to idiosyncrasies in the physical struc-
ture and/or biological properties (such as cytotoxicity) of the
smallest protein aggregates.
OK model of linear fibrils

The OK model (12) of protein fibrillation is a special case of
the Szilard-Farkas model (55) of new-phase formation.
Indeed, similar to what was done by Farkas (55) with respect
to droplet nucleation, Oosawa and Kasai (12) considered the
formation of fibrils as resulting solely from random attach-
ment and detachment of monomers to and from them (other
possible processes such as fibril fragmentation and associa-
tion were not taken into account). Thus, the whole fibrilla-
tion process is controlled only by the frequencies fn and gn
of monomer attachment to and detachment from the two
ends of an n-sized fibril.

In the OKmodel of linear fibrils (the second row of aggre-
gates in Fig. 1), fn and gn are considered as n-independent
and are expressed as (12)

fn ¼ 2kaC1 (7)

gn ¼ 2kd ¼ 2kacs: (8)

FIGURE 2 Size dependence of the workWn to form a linear fibril accord-

ing to (a) the original and (b) the modified OK models: (lines) 0.5, 1, 2, 10,

and 20 from Eqs. 9, 15 and 16 at S ¼ 0.5, 1, 2, 10 and 20, respectively.

(Arrows) Nucleus size n* and nucleation barrier E*.
Here ka is the n-independent frequency (per unit monomer
concentration) with which monomers from the protein solu-
Biophysical Journal 109(10) 2126–2136
tion are attached to one of the fibril ends, kd is the n-indepen-
dent frequency of monomer detachment from one of the
fibril ends, and the factor 2 accounts that a fibril has two
ends. The solubility cs is defined by Oosawa and Kasai
(12) as cs ¼ kd/ka and is the C1 value at which the solution
is saturated, for then fn ¼ gn and the fibrils cannot lengthen
or shorten.

Now, substituting fn and gn from Eqs. 7 and 8 in Eq. 1, we
readily obtain the equality Wn þ nkT ln S ¼ W1 þ kT ln
S, which tells us that the sum Wn þ nkT ln S has the same
value for any n ¼ 1, 2, 3,. . Denoting this value by ε, we
thus arrive at the exact result (n ¼ 1, 2, 3,. , S > 0):

Wn ¼ �nkT ln Sþ ε: (9)

Here, S is the supersaturation ratio, and the n-independent
energy parameter ε can be determined by thermodynamic
considerations showing that it is the sum of the energies
of the two fibril ends (13,15,43).

Equation 9 gives the workWn to form an n-monomer-long
linear fibril according to the OKmodel. This equation shows
that when S > 1, i.e., for supersaturated solutions, Wn de-
creases linearly with the fibril size n. This is seen in Fig. 2
a in which lines 2 and 10 visualize Wn from Eq. 9 at S ¼
2 and 10, respectively, when ε ¼ 10 kT. Because nucleation
is operative only when Wn has a maximum at n ¼ n* > 1,
this decrease implies that the OK model of linear polymer-
ization does not involve nucleation. Indeed, as the maximal
Wn value is at n ¼ 1 and, hence, each monomer in the
solution is formally a nucleus, the nuclei are in the solution
already at the very beginning of the polymerization process
so that, at any S > 1, the process occurs in the so-called
metanucleation (termed also supercritical (25)) regime
(43,47). This important feature of the OK model of linear
fibrils is due to the n-independence of the monomer attach-
ment and detachment frequencies fn and gn. For the
linear protein polymerization to be nucleation-mediated,



FIGURE 3 Equilibrium (Ce,n) and stationary (Cst,n) size distributions

of linear fibrils for (a) undersaturated or saturated, and (b) supersaturated

solutions: (dashed lines) 0.7 and 1 – Ce,n from Eq. 10 of the original OK

model at S ¼ 0.7 and 1, respectively; (solid lines) 0.7 and 1 – Ce,n from

Eqs. 19 and 20 of the modified OK model at S ¼ 0.7 and 1, respectively;

(dashed lines) EQ and ST, Ce,n from Eq. 10 and Cst,n from Eq. 11 of the orig-

inal OK model at S ¼ 2; (solid lines) EQ and ST, Ce,n from Eqs. 19 and 20

and Cst,n from Eqs. 21 and 22 of the modified OK model at S ¼ 2.
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according to CNT, at least one of these frequencies should
depend on n in a way leading to a maximum of Wn from
Eq. 1 at n > 1. Fig. 2 a shows also that, within the OK
model, no work is done on elongating or shortening the
linear fibrils in saturated solutions (line 1), and that the
formation of such fibrils in undersaturated solutions is not
thermodynamically favored because of the unlimited
increase of Wn with n (line 0.5). These two lines are drawn
according to Eq. 9 with S ¼ 1 and 0.5, respectively, and the
above exemplary value of ε.

Employing fn and gn from Eqs. 7 and 8 in Eqs. 3–5
and invoking the geometric series formulae

Pn
m¼1x

m ¼
xð1� xnÞ=ð1� xÞ and PN

m¼1x
m ¼ x=ð1� xÞ, the latter be-

ing valid for jxj > 1, it is also a simple matter to determine
Ce,n, Cst,n, and J for linear fibrils corresponding to the OK
model. The exact result for Ce,n is (n ¼ 1, 2, 3,. , S > 0),

Ce;n ¼ csS
n (10)

and for Cst,n and J is (n ¼ 1, 2, 3,. , S R 1)

Cst;n ¼ csS (11)

JðSÞ ¼ 2kac
2SðS� 1Þ: (12)
s

We note that at time-dependent monomer concentration C1
FIGURE 4 Dependence of the fibril stationary nucleation rate on the

supersaturation ratio at q ¼ 1, 5, 10 and 20 (as indicated): (solid lines)

Eq. 23 (line 1 represents also Eq. 12); (dashed lines) Eq. 24; (dotted lines)

Eq. 26; (inset) the dependence in linear coordinates.
(i.e., supersaturation ratio S), these three expressions repre-
sent the quasi-equilibrium and quasi-stationary fibril size
distributions and the quasi-stationary fibril nucleation (or,
rather, metanucleation) rate. Also, Eq. 10 was obtained
already by Oosawa and Kasai (12), and Eq. 12 coincides
with that derived elsewhere (47) for formation of amyloid
fibrils in metanucleation regime.

In Fig. 3, the dashed lines 0.7, 1, and EQ graph the func-
tion Ce,n from Eq. 10 for undersaturated (S ¼ 0.7), saturated
(S ¼ 1), and supersaturated (S ¼ 2) solution, respectively,
for which cs ¼ 1 mM (¼ 6 � 1020 m�3). In the latter case,
as evidenced by line EQ in Fig. 3 b, Ce,n diverges with n
so that it has no physical reality. The actually existing fibril
size distribution then is Cst,n from Eq. 11: it is depicted by
the dashed line ST in Fig. 3 b. This line shows that, accord-
ing to the OK model, when the concentration C1 of mono-
meric protein in a supersaturated solution is maintained
the same and the solution is in stationary state, regardless
of their size, the linear fibrils in the solution are equally
numerous. As to the S dependence of the corresponding
fibril metanucleation rate J from Eq. 12, with exemplary
ka ¼ 103 M�1 s�1 (34) and the above cs value, it is displayed
by line 1 in Fig. 4.

The above analysis shows that, within the OK model,
nucleation plays no role in the formation of linear fibrils,
a result fully consonant with the CNT prediction for
absence of one-dimensional nucleation when the end en-
ergy ε of the one-dimensional aggregates is n-independent
(54). From a kinetic point of view, this independence of ε is
equivalent to n independence of the monomer detachment
frequency gn, because both ε and gn are functions of the
binding energy of the aggregate end monomers. Thus, the
question arises: can the OK model be modified in a way
making it possible for nucleation to be involved in the for-
mation of linear fibrils? The answer to this question is
positive, and one such simple modification is considered
below.
Modified OK model of linear fibrils

In the modified OK model of linear fibrils considered
here, the attachment frequency ka remains unchanged and
fn is therefore again specified by Eq. 7. The detachment
frequency kd, however, is regarded as being q times higher
Biophysical Journal 109(10) 2126–2136
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for the short fibrils (those not surpassing a certain maximum
size nm) than that for the long ones. The third row of
aggregates in Fig. 1 illustrates the model in the case of
nm ¼ 3. Rather than by Eq. 8, gn is thus given by (nm ¼ 1,
2, 3,.)

gn ¼ 2qkacs ðn%nmÞ (13)

gn ¼ 2kacs ðn> nmÞ; (14)
where the factor q R 1 is the n-independent ratio be-
tween the frequencies of monomer detachment from short
and long fibrils. The so-modified OK model is either the
Hofrichter-Ross-Eaton model (37) or the Goldstein-Stryer
model (18), each in the particular case of fn having the
same value for all n ¼ 1, 2, 3,. , or the Powers-Powers
model (25) with nonvanishing gnmþ1, which is set equal to
the size-independent gn of the longer fibrils.

Physically, the increased detachment frequency of the
short linear fibrils is a kinetic manifestation of the fact
that, due to fewer next-nearest, next-next-nearest, etc.,
neighbors, an end monomer of such a fibril is less strongly
bound than an end monomer of a long enough fibril. The
situation is analogous to that leading to increase in the evap-
oration rate of sufficiently small droplets. Also, the higher
detachment frequency gn of the short fibrils may have a
structural origin, e.g., such conformation and/or packing
of the protein monomers in these fibrils that results in
less strong binding of the fibril end monomers than in the
long fibrils. A similar structural difference between short
and long fibrils characterizes the helical polymerization
(12,25) when all fibrils of size n % nm are linear, and those
of size n > nm are helical. From a more general perspective,
formation of helix is merely one of many possible scenarios
to physically explain the increase in stability of large pro-
tein aggregates compared with small ones. The steplike
change of gn represented by Eqs. 13 and 14 is a simplifying
approximation to the expected gradual decrease of gn with
increasing n. As seen from these equations (see also
Fig. 1), at either q ¼ 1 or nm ¼ 1 the modified OK model
passes into the original OK model in which, according to
Eq. 8, all linear fibrils lose monomers with the same fre-
quency gn.

We can now find the work Wn to form a linear n-sized
fibril according to the modified OK model. Employing fn
and gn from Eqs. 7, 13, and 14 in Eq. 1 leads to Wn þ nkT
ln (S/q) ¼ W1 þ kT ln (S/q) ¼ εshort for 1 % n % nm and
to Wn þ nkT ln S ¼ Wnm þ nmkT ln S ¼ ε for n R nm.
Here εshort and ε are the n-independent summary end en-
ergies of a short and a long fibril, respectively, the latter
being equal to that in Eq. 9, because the long fibrils of the
modified and the original OK models are identical. As
according to the first of the above equations we have
Wnm ¼ �nmkT lnðS=qÞ þ εshort, from the second of them it
follows that εshort ¼ ε � nm kT ln q. Thus, using this expres-
Biophysical Journal 109(10) 2126–2136
sion for εshort and the above equations for Wn yields the
exact result (S > 0)

Wn ¼ �nkT lnðS=qÞ þ ε� nmkT ln q
ð1%n%nmÞ; (15)

Wn ¼ �nkT ln Sþ ε
ðnRnmÞ: (16)

Comparison of these two equations reveals that, via

the detachment frequency ratio q, the increased frequency
gn of monomer detachment from the short fibrils translates
thermodynamically into: 1) decreased supersaturation ratio
S/q at which these fibrils form, and 2) decreased summary
end energy ε � nmkT ln q of these fibrils. Alternatively, it
could be said that all fibrils form at the same supersaturation
ratio S, but have n-dependent summary end energy εn: it in-
creases linearly with n for the short fibrils (εn ¼ (n � nm)kT
ln q þ ε for 1 % n% nm) and stays fixed for the long fibrils
(εn¼ ε for nR nm). We see also that at q¼ 1 or nm¼ 1, as it
should be, Eqs. 15 and 16 reduce to Eq. 9 of the original OK
model.When q> 1 and nm> 1, however, Eqs. 15 and 16 show
thatWn is a broken linear function of nwith a break at n¼ nm.
This is seen in Fig. 2 b in which lines 0.5, 1, 2, 10, and 20 are
drawn according to Eqs. 15 and 16 at S¼ 0.5, 1, 2, 10, and 20,
respectively, and exemplary nm ¼ 3, q ¼ 10, and ε ¼ 10 kT.
We note that similar broken linear dependences of Wn on n
were discussed in Powers and Powers (25) and Xue et al.
(26), and that the minima of the amyloid fibril formation
work in Fig. 2 b in Auer et al. (5) can be connected approxi-
mately also by a broken straight line with break at n ¼ 2.

Importantly, when the protein solution is supersaturated
and the S values are in the range between unity and q, Wn is
maximal at its breaking point (the circle on line 2 in
Fig. 2 b). As the Wn maximum is a hallmark of nucleation,
this means that when 1 < S < q, according to the modified
OKmodel, the formation of linear fibrils is nucleation-medi-
ated. In Fig. 2 b, the nucleation range corresponds to the area
between lines 1 and 10 (¼ q). When S > q, Wn has no
maximum (see line 20 in Fig. 2 b) and the fibril formation
is barrierless, i.e., as for the original OK model, the process
occurs inmetanucleation regime. Thus, the kinetic parameter
q has a clear thermodynamic meaning: it is the value of the
supersaturation ratio S atwhich nucleation turns intometanu-
cleation and is thus analogous to the spinodal supersaturation
ratio in nucleation of droplets in vapors. Naturally, for both
the modified and the original OK models, as evidenced by
the two lines 0.5 in Fig. 2, formation of macroscopically
long fibrils is impossible when S< 1, i.e., when the solution
is undersaturated, because then Wn increases unlimitedly
with n.

Taking into account that the nucleus size n* coincides
with the size nm and using Eq. 15, for n* and the energy bar-
rier E* h Wn*�W1 to nucleation (see Fig. 2 b), we obtain
(n* ¼ 1, 2, 3,., 1 % S % q)
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n� ¼ nm (17)

� �
�q�
E ðSÞ ¼ ðn � 1ÞkT ln
S

: (18)

These two exact relations and Eq. 16 show that, like in CNT,
E* is a decreasing function of S, and Wn* obeys the nucle-
ation theorem in the form (54,57) dWn*/d(kT ln S) ¼ �n*.
Unlike in CNT, however, n* does not depend on S, the
reason being the steplike change of gn at n ¼ nm, Eqs. 13
and 14, used in the modified OK model to approximate
the decrease of gn with n. Considering gn as a gradually
changing function of n, as done in CNT, would result in a
certain dependence of n* on S (52,54). Lines 2, 5, 10, and
20 in Fig. 5 display the S-dependence of E* from Eq. 18
at n* ¼ 3 and q ¼ 2, 5, 10, and 20, respectively. We observe
that the greater the q value, the wider the S range in which
fibril nucleation takes place and the greater the value
of E* at a given S. The nucleation barrier E* vanishes at
S ¼ q so that when S > q, as already noted, the fibrils
form in metanucleation regime. According to Eq. 18, E*
increases linearly with increasing n* and is nil at q ¼ 1 or
n* ¼ 1, the latter reiterating that nucleation is not involved
in the original OK model of linear fibrils.

We now turn to the equilibrium size distribution Ce,n of
linear fibrils that corresponds to the modified OK model.
With the aid of fn and gn from Eqs. 7, 13, and 14, in view
of Eq. 17, from Eq. 3 we easily obtain the exact result
(S > 0)

Ce;n ¼ csq
1�nSn ð1%n%n�Þ (19)

C ¼ c q1�n�Sn ðnRn�Þ: (20)
e;n s

These equations are a particular case of those in Goldstein
and Stryer (18) and, as required, at q ¼ 1 or n* ¼ 1 they
turn into Eq. 10 for Ce,n of the original OK model. They
FIGURE 5 Dependence of the fibril nucleation barrier E* on the super-

saturation ratio at q ¼ 2, 5, 10, and 20 (as indicated) according to Eq. 18.
reveal a strong dependence of Ce,n on n not only when the
protein solution is undersaturated (then S < 1) and Ce,n is
a really existing fibril size distribution because of its vanish-
ing in the n/N limit, but also when the solution is super-
saturated (then S > 1) and Ce,n is only a thought size
distribution, because it diverges in the same limit. This
behavior of Ce,n is exhibited in Fig. 3, in which the solid
lines 0.7, 1, and EQ graph the function Ce,n from Eqs. 19
and 20 for undersaturated (S ¼ 0.7), saturated (S ¼ 1)
and supersaturated (S ¼ 2) solutions, respectively, when
q ¼ 5, n* ¼ 3, and cs ¼ 1 mM. Comparison of these lines
with the respective dashed lines resulting from the original
OK model (for which q ¼ 1) brings out the considerable
drop in the entire fibril population caused by the only five-
fold increase in the frequency of monomer detachment
from the short linear fibrils (the dimers and the trimers).
Importantly, this drop increases strongly with increasing q
and n*. We note as well that when the solution is supersat-
urated (Fig. 3 b), Ce,n has a minimum at the nucleus size
n* ¼ nm ¼ 3. This minimum reflects the maximum of
the fibril formation work Wn from Eqs. 15 and 16 (see
Fig. 2 b), because Ce,n and Wn are related by the CNT
expression Ce,n ¼ C1 exp[�(Wn�W1)/kT] (54).

The last to determine are the stationary size distribution
Cst,n and the stationary nucleation rate J of the linear fibrils
corresponding to the modified OK model. Using fn and gn
from Eqs. 7, 13, and 14 in Eqs. 4 and 5, owing to Eq. 17
and the two geometric series formulae presented earlier,
we find that Cst,n and J are given exactly by (S R 1)

Cst;n ¼ csS
S� 1� ðq� 1Þðq=SÞn��n

S� 1� ðq� 1Þðq=SÞn��1
ð1%n%n�Þ (21)

S� q �
Cst;n ¼ csS
S� 1� ðq� 1Þðq=SÞn��1

ðnRn Þ (22)

2 S� q

JðSÞ ¼ 2kacs SðS� 1Þ

S� 1� ðq� 1Þðq=SÞn��1
: (23)

As seen from these equations, they satisfy the requirement
to pass into Eqs. 11 and 12 of the original OK model
when q ¼ 1 or n* ¼ 1. It should be noted also that the
J(S) dependence from Eq. 23 is different from that given
in Hofrichter et al. (37).

The solid line ST in Fig. 3 b is a plot of Cst,n from Eqs. 21
and 22 for a supersaturated solution at fixed S¼ 2 (i.e., C1¼
2cs) when q ¼ 5, n* ¼ 3, and cs ¼ 1 mM. We observe that
the nucleus and supernucleus linear fibrils (those of size
nR n*) 1) have the same concentration, and 2) are ~10 times
less numerous than the fibrils of the same size when the
monomer detachment frequency is n-independent (then
q¼ 1 and Cst,n is visualized by the dashed line STof the orig-
inal OK model). Also, the solid lines EQ and ST in Fig. 3 b
Biophysical Journal 109(10) 2126–2136
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evidence that when S is sufficiently smaller than q, Ce,n from
Eq. 19 is a good approximation toCst,n fromEq. 21 in the n%
n* range, i.e., for the nucleus and subnucleus linear fibrils.
Physically, this means that when fibril formation is strongly
nucleation-mediated (then 1% S<< q), the imaginary equi-
librium and the real stationary size distributions of these fi-
brils are virtually the same.

The S dependence of J from Eq. 23 of the modified OK
model is displayed by the solid lines 1, 5, 10, and 20 in
Fig. 4. The lines are drawn with the already used ka ¼
103 M�1 s�1, cs ¼ 1 mM, n* ¼ 3, and q ¼ 1, 5, 10, and
20, respectively (line 1 also represents J from Eq. 12 of
the original OK model). Seen in the figure and its inset is
that the fibril nucleation rate J increases in a parabolic
manner with the supersaturation ratio S (i.e., with the con-
centration C1 of monomeric protein) and that it diminishes
substantially with increasing the ratio q between the fre-
quencies of monomer detachment from the short (subnu-
cleus and nucleus) and the long (supernucleus) linear
fibrils. The J(S) function from Eq. 23 has no singularity at
S ¼ q, the S value which separates the nucleation (S < q)
and the metanucleation (S > q) regimes of fibril formation.

The dashed lines in Fig. 4 visualize the simple J(S) depen-
dence applicable to strongly nucleation-mediated linear
polymerization (1 % S << q)

JðSÞ ¼ 2kac
2
s q

1�n�Sn
� ðS� 1Þ: (24)

This approximate relation follows from Eq. 23, provided the
short linear fibrils lose monomers much more frequently
than the long ones (then q>> 1) and the polymerization oc-
curs by nucleation in sufficiently weakly supersaturated so-
lutions (then S<< q so that S – 1<< (q – 1)ðq=SÞn��1). It is
seen in Fig. 4 that Eq. 24 approximates well Eq. 23 when S is
sufficiently smaller than q. It is worth noting also that with
the aid of the nucleation barrier E* from Eq. 18, J from
Eq. 24 can be represented in the familiar CNT form (54)

J ¼ Ae�E�=kT ; (25)

where the preexponential factor A ¼ 2kacs
2S(S�1) is, phys-

ically, the rate of barrierless (E* ¼ 0) formation of linear fi-
brils, i.e., the fibril metanucleation rate from Eq. 12.

In the opposite extreme, when the fibrils form in suffi-
ciently strongly supersaturated solutions, Eq. 23 simplifies
to (S >> 1, q >> 1),

JðSÞ ¼ 2kac
2
s S

S� q

1� ðq=SÞn� ; (26)

which is the expression obtained by Powers and Powers
(25). The dotted lines in Fig. 4 represent the J(S) depen-
dence from Eq. 26 and show that this equation is a good
approximation to Eq. 23 in the entire metanucleation range
SR q and, also, in the nucleation range S< q as long as S is
Biophysical Journal 109(10) 2126–2136
sufficiently greater than unity. The approximate Eq. 26 re-
duces to J(S) ¼ 2kacs

2S(S–q) when the fibrils form in the
metanucleation range and S is sufficiently greater than q
to satisfy the condition ðq=SÞn� << 1.
Rate equations of linear polymerization

The rate equations of linear polymerization within the modi-
fied OK model can be obtained by combining Eqs. 2 and 6
of the Szilard-Farkas model and using fn and gn from Eqs. 7,
13, and 14 with nm replaced by n*. Doing that yields the
equations (n ¼ 2, 3,.,n*�1)

dCnðtÞ
dt

¼ 2ka½C1ðtÞCn�1ðtÞ � qcsCnðtÞ � C1ðtÞCnðtÞ
þ qcsCnþ1ðtÞ� (27)

for the fibril subnuclei, the equation

dCn� ðtÞ
dt

¼ 2ka½C1ðtÞCn��1ðtÞ � qcsCn� ðtÞ � C1ðtÞCn� ðtÞ
þ csCn�þ1ðtÞ�

(28)

for the n*-sized fibril nuclei, and the equations (n ¼ n* þ1,
n* þ2,.)

dCnðtÞ
dt

¼ 2ka½C1ðtÞCn�1ðtÞ � csCnðtÞ � C1ðtÞCnðtÞ
þ csCnþ1ðtÞ� (29)

for the fibril supernuclei. When n* ¼ 2, Eqs. 27 are super-
fluous. When q ¼ 1, both Eqs. 27 and 28 are superfluous,
and the remaining Eq. 29 describes the kinetics of nuclea-
tionless linear polymerization within the original OK model
for which n* ¼ 1. Importantly, Eqs. 27–29 are self-con-
tained, because they include solely the four independent
parameters ka, cs (or kd), n*, and q of the modified OK
model. Also, they are a particular case of those in Goldstein
and Stryer (18).

Equations 27–29 are a set of ordinary differential equa-
tions of first order for the fibril size distribution Cn(t). This
set parallels the one used first byTunitskii (58) and Zeldovich
(59) to describe nucleation at fixed supersaturation and later
generalized (53,54,60) to also cover nucleation at variable
supersaturation. The problem of solving Eqs. 27–29 is math-
ematically well posed when the set is supplemented with an
equation for the monomer concentration C1(t) and when the
initial fibril size distribution Cn(0) for n ¼ 1,2,3,. is speci-
fied. In fibrillation at a given time-independent monomer
concentration, an equation for C1 is not needed and, as can
be verified by direct substitution, exact time-independent so-
lutions of Eqs. 27–29 are Ce,n and Cst,n from Eqs. 19–22.
Another important case is that of fibrillation in protein
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solutions with known fixed total concentration Ctot of pro-
tein. Then the equation for C1 is of the form C1ðtÞþPN

n¼2nCnðtÞ ¼ Ctot, C1 is time-dependent, and Eqs. 27–29
are nonlinear and difficult to treat analytically (see, e.g.,
Goldstein and Stryer (18), Powers and Powers (25), and Mi-
chaels et al. (34) for important mathematical approaches and
results).

It is instructive to compare Eqs. 27–29 with the rate equa-
tions used by Michaels et al. (34) for analysis of the kinetics
of nucleation-mediated linear self-assembly of protein
within the framework of the OK model. The analysis was
carried out under the assumption of S-independent size
nc R 2 of the so-called growth nucleus (27,28) which, in
our terminology, is the smallest supernucleus, because
it was shown (27) that nc is related to the size n* of the nu-
cleus by

nc ¼ n� þ 1: (30)

This equation implies that the analysis in Michaels et al.
(34) is completely applicable to the modified OK model
(recall that this model describes nucleation with S-indepen-
dent n* from Eq. 17). Also, because the concentration of fi-
brils of size n< ncwas considered as negligible, Eqs. 27 and
28 were not necessary for the analysis of Michaels et al. (34)
so that only Eqs. 29 for the fibril supernuclei were used, the
first of them in the form

dCncðtÞ
dt

¼ 2ka½ � csCncðtÞ � C1ðtÞCncðtÞ þ csCncþ1ðtÞ�
þ kN½C1ðtÞ�nc

(31)

(in writing Eq. 31, we have omitted the term 2kaC1Cnc�1 in
Eq. 1 in Michaels et al. (34) because of the considered van-
ishing smallness of Cnc�1 ). In Eq. 31, the term kNC

nc
1 is the

so-called fibril nucleation rate, a quantity introduced ad hoc
in the equation and defined by means of two free parame-
ters: the S-independent nucleation rate constant kN and
growth nucleus size nc. It is clear, however, that because
kNC

nc
1 does not vanish when the solution is saturated (i.e.,

at C1 ¼ cs), it cannot be nucleation rate. To reveal the phys-
ical significance of the term kNC

nc
1 and the parameter kN, we

juxtapose the right-hand sides of Eq. 29 for n ¼ n* þ 1 and
of Eq. 31. In view of Eq. 30, we thus find that Eq. 31 is
identical to Eq. 29 for n ¼ n* þ 1 if kNC

nc
1 ¼ 2kaC1Cn� .

This result means that, indeed, kNC
nc
1 is not the fibril nucle-

ation rate, but merely an approximation to the forward flux
2kaC1Cn* through the nucleus size n*.

If we now use Ce,n* from Eq. 19 to approximate Cn* in
the above expression for kN, upon allowing for Eq. 30, we
obtain (n* R 2)

kN ¼ 2ka

�
1

qcs

�n��1

¼ 2ka

�
ka
qkd

�n��1

: (32)
These equalities and Eq. 30 tell us that in analyses of protein
fibrillation that are based on rate equations with the term
kNC

nc
1 in them (15,20,22,27–35), when nc R 3, kN and nc

are related quite simply to the four independent parameters
ka, cs (or kd), n* and q of the modified OKmodel that specify
the monomer attachment and detachment frequencies fn and
gn via Eqs. 7, 13, and 14.

Importantly, when the nc, kN, ka and cs (or kd) values are
given in model theoretical studies or obtained from fit to
experimental data, Eqs. 30 and 32 make it possible to deter-
mine the corresponding energy barrier E* and stationary
rate J of nucleation of linear fibrils. This is so, because
then the nucleus size n* and the detachment frequency ratio
q can be calculated from these equations and used in Eqs. 18
and 23 for determination of E* and J. To illustrate this point,
we can employ the exemplary ka ¼ 103 M�1 s�1, kd ¼
10�3 s�1 (implying cs ¼ 1 mM), kN ¼ 102.5 M�2 s�1 and
nc ¼ 3 in Michaels et al. (34). Because in view of Eqs. 30
and 32, n* and q are given by (nc R 3)

n� ¼ nc � 1 (33)

� � 1
nc�2

� � 1
nc�2
q ¼ 1

cs

2ka
kN

¼ ka
kd

2ka
kN

; (34)

with the aid of the above parameter values we obtain n* ¼ 2
and q ¼ 6.3 � 106. Physically, this result means that in the
case illustrated in the last figure in Michaels et al. (34): 1)
the dimers are the fibril nuclei; 2) they lose monomers over
a million times more frequently than the longer (supernu-
cleus) linear fibrils; and 3) the fibrillation process is indeed
nucleation-mediated in the considered S range from 1 to
10, because these S values satisfy the condition S < q. To
check whether the above value of q is realistic, we can use
it in Eqs. 18 and 23 to calculate the corresponding nucleation
barrier E* and stationary nucleation rate J: the result is
E*/kT ¼ 16–13 and J ¼ 0 to 1.7 � 1014 m�3 s�1

(¼ 0.28 pM s�1) for S ¼ 1–10. These E* and J values
seem reasonable: typically, the nucleation barrier is between
10 and 40 kT, and a stationary nucleation rate of 1014 m�3 s�1

yields JVt ¼ 108 supernuclei in volume V ¼ 1 cm3 within
time t ¼ 1 s. We can, therefore, regard the above exemplary
ka, kd, kN, and nc values as representing self-consistently the
nucleation of linear fibrils within the modified OK model.
Helical polymerization

As schematized by the first and second rows of fibrils in
Fig. 6 for the nm ¼ 3 case, in the OK model of helical poly-
merization (12) the fibrils of size n < nm are linear, those of
size n > nm are helical, and the nm-sized ones can be either
linear or helical. While the linear fibrils are characterized
by n-independent monomer attachment and detachment
frequencies fl and gl, respectively, for the helical fibrils
Biophysical Journal 109(10) 2126–2136



FIGURE 6 Schematic of the original (first and second rows) and simpli-

fied (third row) OK models of helical polymerization with the trimer as

fibril nucleus. In the simplified OK model, the trimer line-to-helix and

helix-to-line transformations are neglected, and the linear fibrils (dimers

and trimers) lose monomers (the circles) q times more frequently than

the helical fibrils (tetramers, pentamers, etc.).

2134 Kashchiev
these (also n-independent) frequencies are fh and gh, respec-
tively. In addition, Oosawa and Kasai (12) considered both
the transformation of nm-sized linear fibrils into nm-sized
helical ones and the reverse transformation as separate
elementary events occurring with frequencies ulh and uhl,
respectively.

Clearly, this model allows a simplification that makes it
mathematically identical to the modified OK model of
linear polymerization considered above. This simplification
is illustrated by the third row of fibrils in Fig. 6 (see also
Powers and Powers (25)). It consists of 1) neglecting the ef-
fect of the line-to-helix and helix-to-line transformations of
the nm-sized fibrils on the nm / nm þ 1 and nm þ 1 / nm
size transitions (this is feasible when the frequencies ulh

and uhl are so high that they do not limit the rates of these
transitions), and 2) setting fl ¼ fh ¼ 2kaC1 for all n, gl ¼
2qkacs for n % nm and gh ¼ 2kacs for n > nm, with cs
now being the solubility of the helical fibrils. As these
frequencies coincide with fn and gn from Eqs. 7, 13, and
14, mathematically, the so-simplified OK model of he-
lical polymerization is indistinguishable from the modified
OK model of linear polymerization. Therefore, the entire
analysis and all results obtained above for linear fibrils in
the framework of the modified OK model are fully appli-
cable to helical fibrils describable within the simplified
OK model. In particular, in the latter case, according to
Eq. 17 the longest linear fibrils (the nm-sized ones) are the
nuclei, the other linear fibrils are subnuclei, and all helical
fibrils are supernuclei.
Biophysical Journal 109(10) 2126–2136
CONCLUSIONS

Several important points emerging from this nucleation-
theory approach to protein polymerization into fibrils are
worth bringing to the fore.

1) The original OKmodel of linear polymerization does not
involve nucleation. Instead, the polymerization occurs
always in metanucleation regime, with no nucleation
barrier and with the protein monomers playing the role
of fibril nuclei.

2) The analyzed modified OK model of linear polymeri-
zation admits of nucleation, but only when the protein
solution is sufficiently weakly supersaturated. In a suffi-
ciently strongly supersaturated solution, the polymeriza-
tion takes place again in metanucleation regime.

3) Within the modified OK model of linear polymerization,
the fibril formation work Wn is a broken linear function
of the fibril size n, and the nucleus size n* is independent
of the supersaturation ratio S, because it is equal to the
fixed fibril size nm at which the monomer detachment
frequency changes abruptly. The energy barrier E* to
nucleation decreases with S according to Eq. 18.

4) Within the modified OK model, when the supersatura-
tion ratio S is fixed and greater than unity, the stationary
concentration Cst,n of the short (subnucleus) linear fibrils
may be much higher than that of the long (supernucleus)
fibrils and cannot be considered as vanishingly small.
For the fibril subnuclei and nuclei, a good approximation
to Cst,n from Eq. 21 can be their equilibrium concentra-
tion Ce,n from Eq. 19. Regardless of their length, the
fibril supernuclei have the same stationary concentration,
which is given by Eq. 22.

5) Within the modified OKmodel, the stationary nucleation
rate J increases with S according to Eq. 23 and has no
singularity at the S value, which separates the nucleation
and metanucleation regimes of linear polymerization.
Under otherwise equal conditions, this rate decreases
considerably when the subnucleus and nucleus linear
fibrils lose monomers much more frequently than the
supernucleus fibrils, a feature that should be born in
mind when designing a strategy for stymying or stimu-
lating fibril nucleation. The simple J(S) dependence
from Eq. 24 is convenient for experimental verification
and for use in rate equations describing strongly nucle-
ation-mediated formation of OK-type protein fibrils.

6) The rate equations of linear polymerization, Eqs. 27–29,
describe the process within both the original and the
modified OK models. Being self-contained because of
not having ad hoc parameters, these equations reveal
that the quantity kNC

nc
1 used in the literature is not the

fibril nucleation rate. Equations 30 and 32 relate the pa-
rameters nc and kN to the parameters of the modified OK
model, and Eqs. 33 and 34 allow determination of the
nucleus size n* and detachment frequency ratio q from
data for nc and kN.
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7) The entire analysis and all results obtained for the
modified OK model of linear polymerization are fully
applicable to a simplified OK model of helical polymer-
ization.
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56. Becker, R., and W. Döring. 1935. Kinetische behandlung der keimbil-
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