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Systematic analysis of 
hematopoietic gene expression 
profiles for prognostic prediction in 
acute myeloid leukemia
Frederick S. Varn1, Erik H. Andrews1 & Chao Cheng1,2,3

Acute myeloid leukemia (AML) is a hematopoietic disorder initiated by the leukemogenic 
transformation of myeloid cells into leukemia stem cells (LSCs). Preexisting gene expression 
programs in LSCs can be used to assess their transcriptional similarity to hematopoietic cell types. 
While this relationship has previously been examined on a small scale, an analysis that systematically 
investigates this relationship throughout the hematopoietic hierarchy has yet to be implemented. We 
developed an integrative approach to assess the similarity between AML patient tumor profiles and 
a collection of 232 murine hematopoietic gene expression profiles compiled by the Immunological 
Genome Project. The resulting lineage similarity scores (LSS) were correlated with patient survival 
to assess the relationship between hematopoietic similarity and patient prognosis. This analysis 
demonstrated that patient tumor similarity to immature hematopoietic cell types correlated with 
poor survival. As a proof of concept, we highlighted one cell type identified by our analysis, the 
short-term reconstituting stem cell, whose LSSs were significantly correlated with patient prognosis 
across multiple datasets, and showed distinct patterns in patients stratified by traditional clinical 
variables. Finally, we validated our use of murine profiles by demonstrating similar results when 
applying our method to human profiles.

Hematopoiesis is the developmental program that gives rise to the cellular components of blood. This 
process is hierarchical, with multipotent hematopoietic stem cells (HSCs) generating myeloid and lym-
phoid progenitor cells, which then generate more differentiated cell types1. Mutations in hematopoietic 
cells can upset this process, resulting in a variety of blood maladies, including cancer. Acute myeloid 
leukemia (AML) is one such cancer, characterized by the accumulation of aberrant primitive myeloid 
cells2,3. These cells have a limited proliferative capability, suggesting the existence of an underlying 
sub-population of proliferative cells that maintain the leukemia. Evidence for the existence of these leu-
kemia stem cells (LSCs) was first reported when a population of human CD34+CD38− AML patient cells 
successfully initiated AML in a SCID mouse xenograft model4–6. A follow-up study showed that LSCs 
are hierarchically organized, with varying self-renewal capabilities7. Additional reports have suggested 
that AML-initiating cells are not limited to the CD34+CD38− cell population and are found in the 
CD34+CD38+ and CD34−CD38− cell populations as well8,9. Taken together, these studies portray AML 
as a heterogeneous disease that can be initiated and maintained through a variety of cell types.

The heterogeneity of AML has made accurately predicting patient prognosis difficult. Most com-
monly, cytogenetic analysis is used to subtype patients by karyotype10. However, nearly 50% of AML 
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cases have a normal karyotype, leaving a large fraction of heterogeneous samples without further clas-
sification. For these patients, molecular mutations, such as FLT3 internal tandem duplications, MLL 
partial tandem duplications, mutations in the NPM1 and CEBPA genes, and heightened expression of 
the BAALC and ERG genes are used as prognostic indicators11. Gene expression microarray analyses 
have led to additional classification schemes that can further stratify patients for prognostic purposes 
and increase the resolution by which we can study their molecular pathology. Multiple studies have 
clustered AML samples using gene expression profiles, revealing different molecular subgroups defined 
by previously identified cytogenetic abnormalities12–18. Another study has drawn upon the stem cell-like 
nature of LSCs to create a robust, prognostic gene expression signature19. Patients with high expression 
of this signature’s genes tend to have an adverse outcome, supporting the LSC hypothesis and suggesting 
that LSC activity may be driving AML severity. This idea was furthered by work showing that HSCs and 
LSCs share a core transcriptional program that imparts stem cell properties, including self-renewal and 
differentiated progeny production20.

Although these studies have improved prognostic accuracy, they have limitations. Hematopoiesis is 
extremely complex, involving a vast number of cells of varying maturity that express a wide array of 
cell-surface markers1. Understanding the dominant hematopoietic programs in a patient’s leukemia may 
elucidate features that can be used to improve disease characterization. Recently, a group has reported 
that, in MLL-rearranged AML, the LSC shares a common transcriptional signature similar with its cell 
of origin. This group compared AML arising from HSCs to AML arising from granulocyte-macrophage 
progenitors (GMPs) and found that HSC-derived AML had an expedited onset and a greater resistance 
to chemotherapy21. Taking this idea further, a systematic analysis that correlates AML tumor profiles 
across profiles from cells throughout the hematopoietic hierarchy could offer a highly specific assessment 
of the molecular makeup of a patient’s leukemia, including any hematopoietic programs the cell may 
have inherited from it’s origin cell. While human hematopoietic gene expression profiles are a useful 
tool to use in this analysis, murine hematopoietic profiles can serve as a proxy for many human pro-
files22,23 and offer several additional advantages. Using mice allows for hematopoietic gene expression 
profiling to be carefully controlled to diminish noise and batch variability between studies. Additionally, 
mice can be easily subjected to genetic and environmental perturbations enabling more comprehensive 
profiling studies of hematopoiesis. One such study has been performed by the Immunological Genome 
Project Consortium and has resulted in a series of 232 murine hematopoietic cell lineage gene expression 
profiles24.

Here, we extend our previously developed BASE (binding association with sorted expression) algo-
rithm25 to systematically investigate the similarity between human AML gene expression data and the 232 
murine transcription profiles compiled by the Immunological Genome Project. The BASE algorithm was 
originally developed to infer transcription factor activity from gene expression profiles using ChIP-chip 
and ChIP-seq data. We have recently shown that it can be used to calculate the activity of binary gene 
sets in breast cancer samples26 and now, by substituting binding affinity data with hematopoietic gene 
expression profiles, we demonstrate its utility in calculating the activity of hematopoietic transcription 
programs in patient AML samples. This process will provide information about the molecular makeup of 
a patient’s AML, allowing us to perform follow-up analyses to make prognostic predictions and further 
characterize the cancer.

We begin by using BASE to calculate the lineage similarity score (LSS), a summary statistic that 
encapsulates the similarity between patient AML gene expression data and the murine hematopoietic 
cell lineage expression profiles generated by the Immunological Genome Project. We then apply Cox 
proportional-hazards (PH) models to identify the hematopoietic cell types whose LSSs most closely 
associate with patient survival. We find that patients whose AML profiles most resemble immature 
hematopoietic cell profiles tend to have diminished survival time. As a proof of concept, we highlight a 
short-term reconstituting stem cell gene expression profile that is especially predictive of patient prog-
nosis. We demonstrate that this profile aligns with traditional AML classification schemes including 
French-American-British (FAB) subtyping and FLT3 mutation status, and is also predictive of induction 
therapy response. We apply this profile to three independent AML patient datasets and show that it 
remains predictive across all of them. Finally, we validate our findings using murine profiles by compar-
ing their prognostic performance with that of their analogous human cell counterparts.

Results
Overview.  Figure 1A provides a schematic of our analysis. Murine hematopoietic cell lineage profiles 
for 232 cell types from the Immunological Genome Project24 were combined with the AML patient gene 
expression dataset generated by Bullinger et al. (GSE 425)27 using BASE to generate a matrix of LSSs for 
each patient across all 232 cell types. A high LSS indicated high concordance between a patient’s and a 
cell type’s gene expression profile, while a low LSS indicated the opposite (Fig. 1B). Univariate survival 
analyses using Cox PH regression were conducted for each cell type’s LSSs to identify cell types with 
AML prognostic significance. Multivariate Cox PH survival analyses to correct for clinicopathological 
variables were then conducted on these cell types for further analysis.

Identification of survival-associated hematopoietic cell profiles.  To identify patterns of hemato-
poietic cell types that correlate with overall AML patient survival, hierarchical clustering and heatmap 
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generation using the patient LSSs for each cell type was performed (Fig. 2A). Most of the 232 murine 
cell types did not show any concordance in gene expression with AML patients. Notably, the lowest LSSs 
were found in a cluster enriched in differentiated myeloid and stromal cell types, indicating high discord-
ance between AML patient profiles and cells of these types (Fig. 2A, bracket). However, there were 42 
cell types that had an LSS >  0 in at least half of the samples, showing that many murine hematopoietic 
lineages do share biological properties with human leukemias, despite the species barrier.

To examine whether this similarity had a clinical application in AML, we cut the hierarchical clus-
tering tree at a depth that generated four clusters of samples with low intra-cluster LSS variability but 
high inter-cluster LSS variability. We then compared the survival distributions of each cluster using a 
log-rank test (P =  0.08) (Fig. 2B). While the survival distributions of each cluster were not significantly 
different from each other, we decided to investigate further by looking at the survival distributions of 
the individual cell type LSSs.

Univariate Cox PH models were used to measure the correlation between LSS as a continuous variable 
and patient survival time for each cell type (Supplementary Table S1). Figure 3A shows the distribution 
of the adjusted P and hazard ratios (HR) of each cell type’s result. Only two cell types yielded adjusted 
P <  0.05, the CD150−CD48− short-term reconstituting stem cell (STRSC) derived from bone marrow 
(adjusted P =  0.01, HR =  1.17, 95% CI =  1.08–1.25) and the CD44+NK1.1+ thymus invariant iNKT pre-
cursor cell (adjusted P =  0.03, HR =  0.81, 95% CI =  0.72–0.91). Figure 3B shows their LSS distributions. 
The STRSC LSSs were primarily positive, with 111/116 samples having a positive LSS, while all 116 
samples had negative CD44+NK1.1+ thymus invariant iNKT precursor cell LSSs. Because we were pri-
marily interested in the survival distribution of leukemias that share expression profiles with cell types, 
we decided to examine the STRSC profile in more detail.

Kaplan-Meier estimators were fitted to two groups of samples stratified into high and low LSS groups 
(Fig. 3C). A log-rank test revealed that the patients in the high group had significantly shorter survival 
times than the patients in the low group (P =  6e-4). This result was robust to a multivariate Cox PH 
model correction for age, FAB subtype, FLT3 mutation status, CALGB-defined cytogenetic risk category, 
and history of preceding malignancy (P =  0.03, HR =  1.12, 95% CI =  1.01–1.23) (Supplementary Table 
S2; Fig. 3D). Taken together, this suggested that patients whose leukemias’ genetic profiles more closely 
reflected the genetic profile of the STRSC tended to die at a faster rate than patients with more dissimilar 
profiles.

Figure 1.  Overview of workflow. (a) Murine hematopoietic cell expression profiles were downloaded 
from the Immunological Genome Project and compared against patient gene expression profiles from 
an AML dataset of interest using the BASE algorithm. This resulted in a lineage similarity score (LSS) 
that reflects gene expression concordance between a given hematopoietic cell type and a given patient. 
The resulting patient LSSs were then used as covariates in a Cox proportional hazards model. Cell types 
that were significantly associated with patient survival were explored in more detail. (b) For each murine 
hematopoietic cell profile, genes are ranked from high to low based on their expression values. These 
weights are then assigned to a list of genes ranked by patient gene expression profiles. LSSup is determined 
based on concordance between hematopoietic up-regulated weights and patient rank, with a more positive 
value representing higher concordance. LSSdn is determined based on concordance with the down-regulated 
weights and patient rank, with a more negative value representing higher concordance. Dotted lines 
represent 10*mean(weight) over a rolling window of 1000 genes. The LSSdn is then subtracted from the 
LSSup to obtain the final LSS, which represents the similarity between patient and hematopoietic cell gene 
expression profiles. Patients 1, 2, and 3 are examples of a high, intermediate, and low LSS, respectively.
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Cell lineage similarity scores and survival time.  To look at whether this effect was localized to 
the STRSC profile, we relaxed the cutoff of our analysis and examined all lineages that were correlated 
with patient survival at an unadjusted P <  0.05 threshold. To identify cell types that shared similar char-
acteristics with the STRSC profile, we separated the significant cell types into a HR >  1 and a HR <  1 
group. Strikingly, we found that 9/11 cell types in the HR >  1 group were classified as stem cells by the 
Immunological Genome Project. The two remaining lineages were both located early in the T cell devel-
opment pathway28. We highlight two examples in this group, the CD150+CD48− long-term reconstitut-
ing stem cell (LTRSC) derived from fetal liver and the CD150−CD48− STRSC derived from fetal liver 
(Fig. 4, top). When samples were stratified into high and low LSS groups for each lineage, the samples 
with higher LSSs had significantly worse survival than those with lower LSSs (P =  3e-3 and 3e-3, respec-
tively, log-rank test).

In contrast, gene expression profiles that yielded a HR <  1 tended to be from more differentiated cell 
types. This group included many different cell types, including dendritic cells (DC), monocytes, natural 
killer cells, active and inactive α β  T cells, and γ δ  T cells. Notably, none of the cells in this group were 
stem cells. When samples were stratified by LSS for two examples from this group, the Vg5+  intes-
tinal intraepithelial lymphocyte (i-IEL) and the lung CD11b+ DC, the samples with higher LSSs had 
significantly better survival than those with lower LSSs (P =  3e-3 and P =  0.02, respectively, log-rank 
test) (Fig.  4, bottom). As a negative control to these analyses, we examined the association between 
patient survival and stromal cell LSS, as these scores were uniformly distributed across samples (Fig. 2A, 
bracket). As expected, none of these cell types were significantly associated with patient survival (P >  0.1, 
Cox PH, Supplementary Table S1).

Association of STRSC LSSs with clinical variables.  The FAB subtype system uses the percentage 
and morphology of myeloblasts and erythroblasts in a patient’s blood to subtype the patient’s disease. 
The system classifies AML into one of eight subtypes, M0 through M7. The M0 through M5 subtypes 
have high percentages of immature myeloblasts, with M0 myeloblasts appearing the least mature and 
M5 myeloblasts appearing the most mature histologically, while the M6 and M7 subtypes have high 
percentages of immature erythrocytes and megakaryocytes, respectively29. The leukemia samples in this 
dataset included 3 M0, 13 M1, 25 M2, 12 M3, 35 M4, and 15 M5. We examined the STRSC LSS distribu-
tions of the M0-M5 subtypes (Fig. 5A). As can be seen, the LSSs demonstrated a decreasing trend from 
M1 to M5, suggesting that that the mouse STRSC LSS reflected the degree of differentiation in human 
AML. In support of this, a significant difference in LSS was observed between the subtypes (P =  0.02, 
Kruskal-Wallis). Furthermore, dichotomizing patient samples into two groups on the basis of cellular 
maturity, with the immature group made up of the M0 through M2 subtypes and the mature group 
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Figure 2.  Exploratory analysis of Immunological Genome Project LSSs. (a) Heatmap showing the pattern 
of 232 LSSs across the 116 samples from the Bullinger dataset. Each column represents one patient’s LSS 
profile for each of the 232 murine hematopoietic cell types from the Immunological Genome Project. Green 
is indicative of a lower (less similar) LSS while red is indicative of a higher (more similar) LSS. Patients 
tended to have lower LSSs in more differentiated cell types (bracket). Patient clusters were chosen based 
on patient location in the heatmap dendrogram (sidebar). (b) Kaplan-Meier plot depicting the survival 
probability over time for each cluster. Vertical hash marks indicate points of censored data. The four clusters 
did not show a significant difference in survival time (p >  0.05).
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consisting of the M3 through M5 subtypes, revealed that samples from more immature FAB subtypes 
had significantly higher STRSC LSSs than samples from more mature FAB subtypes (P =  0.02, Wilcoxon 
rank-sum test) (Fig.  5A). Though the M0 subtype was expected to have the highest STRSC LSS, the 
low number of M0 samples may have been confounding this observation. Interestingly, we observed a 
decreasing trend from M0 to M5 for LSSs from naïve CD8+  and CD4+  T cells that reside in the lymph 
node (Supplementary Fig. S1). However, LSSs of these cell types were not associated with patient survival.

FLT3 is a receptor tyrosine kinase involved in the proliferation and development of hematopoietic 
stem cells30. Mutations resulting in FLT3 activation have been found in about 30% of AML patients and 
are correlated with poor prognosis30. Interestingly, samples with a mutated copy of FLT3 had significantly 
higher STRSC LSSs than FLT3 wild type samples (P =  0.03, Wilcoxon rank-sum test, Fig. 5B). This result 
indicated that there was a correlation between the mouse STRSC LSS and the mutation status of the 
FLT3 gene.

Stratifying patients by remission status allowed us to test whether there was a correlation between 
STRSC LSSs and the patient response to induction therapy27. There were four types of responses 
observed: complete response to therapy (CR), relapse (REL), refractory disease (RD), and early death due 
to treatment toxicity (ED). A significant difference in LSS was observed across the treatment outcomes 
(P =  0.005, Kruskal-Wallis). Additionally, STRSC LSSs in CR samples were significantly lower than REL, 
RD, and ED samples (P =  0.05, 0.001, and 0.05, respectively, Wilcoxon rank-sum test; Fig.  5C). These 
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Figure 3.  Survival analysis of the short-term reconstituting stem cell LSS. (a) Distribution of the hazard 
ratios and adjusted p-values derived from univariate Cox proportional-hazards models that included murine 
hematopoietic cell type LSSs as the variables. Each point corresponds to a different cell type, with red points 
corresponding to cell types with an adjusted p-value <  0.05 and blue points corresponding to cell types 
with an adjusted p-value >  0.05. The two red dots correspond to the short-term reconstituting stem cell 
(STRSC) and thymus invariant iNKT precursor CD44+NK1.1+ (TIIP). (b) Density plot of the LSSs for the 
two cell types significantly associated with survival in the Bullinger dataset. The STRSC is represented by 
a cyan curve and the TIIP is represented by a magenta curve. (c) Kaplan-Meier plot depicting the survival 
probability over time for samples with a high (red curve) and low (green curve) STRSC LSS. Vertical hash 
marks indicate points of censored data. (d) In a multivariate Cox proportional-hazards model, the STRSC 
LSS is significantly predictive of patient survival even after adjusting for traditional clinical factors. Bars 
represent log(hazard ratio) 95% confidence interval. Red dotted line indicates where the log10(hazard 
ratio) =  0.
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results suggested that the STRSC LSS could be a useful marker to predict the effectiveness of induction 
therapy on a patient.

Application of the STRSC to other datasets.  To confirm the findings from the Bullinger dataset, 
we expanded our analysis to four additional independent datasets by Wilson et al. (willm-00119)31, Valk 
et al. (GSE1159)15, Metzeler et al. (GSE12417)32, and the AML dataset generated by The Cancer Genome 
Atlas (TCGA)33. For each dataset, patients were stratified into high and low groups based on their STRSC 
LSS. This profile remained predictive of overall survival across the Wilson (P =  6e-5, log-rank test), Valk 
(P =  2e-5, log-rank test), Metzeler (P =  0.02, log-rank test), and TCGA (P =  0.05, log-rank test) datasets 
(Fig.  6). The reproducibility of the STRSC profile validated our findings in the Bullinger dataset and 
indicated that the results from our analysis were generalizable across multiple datasets.

Comparison of murine hematopoietic profiles to human hematopoietic profiles.  To fur-
ther validate our results from using murine lineages, we examined the predictive ability of analogous 
human lineage profiles from both the GSE24006 dataset by Gentles et al.19 and the GSE24759 data-
set by Novershtern et al.34 The Gentles et al. dataset included transcriptional profiles from seven dif-
ferent lineages: AML LSCs, AML leukemia progenitor cells, AML blasts, normal hematopoietic stem 
cells (HSCs), normal multipotent progenitors (MPPs), normal common myeloid progenitors, normal 
granulocyte-monocyte progenitors, and megakaryocyte-erythrocyte progenitors. We calculated LSSs for 
the seven cell types for each patient and then correlated the LSSs with survival using a univariate Cox 
proportional-hazards model, just as we did for the mouse data (Supplementary Table S3). Both the 
human HSC and MPP expression profiles were significantly correlated with patient survival (P =  0.001, 
HR =  1.04, 95% CI =  1.02–1.07, and P =  0.006, HR =  1.02, 95% CI =  1.01–1.04, respectively, Cox PH). 
Figure 7A shows the survival distributions of samples from the high and low HSC LSS groups (P =  0.002, 
log-rank test). This analysis is repeated with the MPP LSSs in Fig. 7B (P =  0.005, log-rank test).
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The Novershtern et al. dataset detailed a comprehensive gene expression analysis of 38 different cell 
types involved in human hematopoiesis. To examine the analogous cell types’ association with patient 
survival, we repeated the analysis we performed on the Gentles et al. data, and examined the results in 
the relevant dedifferentiated cell populations (Supplementary Table S4). Three of the four dedifferentiated 
cell types were significantly associated with poor survival, the CD133+CD34 diminished HSCs (P =  0.03, 
HR =  1.04, 95% CI =  1.00–1.08, Cox PH), CD38–CD34+  HSCs (P =  0.02, HR =  1.03, 95% CI =  1.01–1.06, 
Cox PH), and megakaryocyte erythroid progenitors (P =  0.005, HR =  1.09, CI =  1.03–1.16, Cox PH). The 
fourth dedifferentiated cell type, the common myeloid progenitor, was not significantly associated with 
patient survival (P >  0.05, Cox PH), matching our findings using the murine data and the dataset by 
Gentles et al.

In both cases, these findings were in agreement with our results using murine lineage profiles, as 
human HSC lineages were analogous to the mouse STRSC line23. Additionally, the findings in both 
datasets globally showed a pattern consistent with our findings using the univariate Cox model (see 
Supplementary Table S1), with LSSs from dedifferentiated murine cell types being predictive of patient 
survival. The reproducibility of our findings in both mouse and humans suggested that the murine lin-
eage profiles generated by the Immunological Genome Project were useful proxies for the analogous 
human immune cell lineages and had potential clinical applications in the context of human AML.

Discussion
AML is a heterogeneous disease that presents prognostic challenges. Beyond differences in cytogenetics 
and specific gene mutations, it is increasingly understood that a major source of AML’s variation in 
survival is a result of gene expression programs inherited from the origin cell of an LSC. This suggests 
that a better understanding of hematopoietic transcriptional profiles in the context of AML would pro-
vide additional insight into AML patient survival outcome. This is the general method we pursued here, 
utilizing murine hematopoietic transcription profiles for their high quality, high resolution, and similar-
ity to human hematopoietic profiles. Our integrative analysis compared the gene expression profiles of 
AML samples to the gene expression profiles of 232 murine hematopoietic cell lineages, quantifying the 
degree of concordance between the AML samples and cell lineages using the Lineage Similarity Score 
(LSS). These scores allowed us to assess the activity of hematopoietic programs in human AML at a 
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higher resolution than previously reported, and together with Cox PH models, examine each cell type’s 
association with patient survival to identify which were survival prognostic. In agreement with previous 
literature, transcriptional similarity to immature hematopoietic cells tended to be associated with shorter 
survival times than transcriptional similarity to more differentiated cell types18–21.

To demonstrate the utility of our analysis, we highlighted the murine STRSC, the mouse analog of 
the human HSC, as a prognostic indicator. By using the LSSs of this profile as a continuous variable to 
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Figure 6.  Survival analysis of the STRSC LSS across datasets. Across all datasets tested, patients with high 
STRSC LSSs (red curve) had significantly shorter survival times than those with low STRSC LSSs (green 
curve) (all P <  0.05, log-rank test). Vertical hash marks indicate points of censored data.
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predict patient survival, we achieved a hazard ratio of 1.17, which compares favorably to the LSC signa-
ture developed by Gentles et al. (HR =  1.15)19. Our profile remained predictive even after correcting for 
clinical and molecular pathological variables. The STRSC LSS was predictive across multiple datasets and 
correlated with existing AML classification schemes, as significant differences were found between FAB 
subtypes and FLT3 mutation groups. Furthermore, STRSC LSSs were correlated with response to induc-
tion therapy, with a lower LSS being characteristic of a complete response. Taken together, these data 
showed that the LSS serves as a useful prognostic indicator that can be used to elucidate the underlying 
gene expression program of a patient’s disease.

Correlating the large number of murine hematopoietic gene expression profiles to AML gene expres-
sion data yielded promising results for the future of AML classification and prognosis. The resolution 
at which the murine hematopoietic system has been characterized to date has not yet been achieved in 
humans. As such, future applications that use well-characterized murine genomic data may introduce 
new avenues in disease characterization. The reproducible results we obtained by using murine hemato-
poietic cell profiles, and the similarity between our findings in murine and human profiles, demonstrate 
that this data is applicable to human hematologic disease and may have further applications to areas of 
computational genomics, and hematology and oncology in general. However, as important differences 
still remain between murine and human hematopoietic lineages23, the method presented in this paper 
will likely be improved further as our capacity to profile human hematopoietic cells catches up to our 
murine profiling ability. Additionally, as more comprehensive datasets emerge that measure the full array 
of cytogenetic abnormalities used to classify AML patients, a better understanding of the relationship 
between hematopoietic transcriptional profiles and traditional prognostic indicators can be obtained. 
This understanding could allow for further characterization of the underlying biology of AML, and aid 
in personalized therapeutic research efforts.

Going forward, a major focus will be on better understanding the role of hematopoietic transcrip-
tional profiles across other cancers that arise from the misregulation of hematopoiesis similarly to AML, 
such as acute lymphoblastic leukemia (ALL). Our analysis can be readily applied to these cancers to iden-
tify prognostic hematopoietic profiles assuming there is gene expression data and survival information 
present for a given cohort of patients. Similarly to AML, the results of this analysis in other hematopoie-
tic diseases can aid in disease classification and subtyping, enabling personalized therapeutic approaches. 
Additionally, the results obtained using this method can be easily compared across diseases, which can 
help distinguish important similarities and differences about the hematopoietic state of each one.

In conclusion, we have developed an integrative analysis that correlates murine hematopoietic cell 
gene expression profiles to AML patient data to measure the concordance of their gene expression pro-
grams. Using this technique, we have found, in agreement with other literature, that transcriptional 
similarity to less differentiated hematopoietic cell types is indicative of a poor prognosis. We demon-
strate this using the murine short-term reconstituting stem cell (STRSC), which is an especially effective 
predictor of clinical outcome. This effect is pronounced in the unique LSS distribution that can be used 
to define traditional AML subgroups and treatment response groups. Additionally, our findings using 
murine profiles are reproducible in several datasets, and our methodology finds similar results when 
substituting murine profiles for human ones. In summary, our analysis provides a method to assess the 
role of hematopoietic transcriptional programs in AML patient survival. We are hopeful going forward 
that the results of this analysis can eventually be translated into useful clinical practice.

Methods
Datasets.  Five AML gene expression datasets were analyzed in this study. Each dataset chosen con-
tained at least 100 samples and included clinical data and sufficient overall survival outcome information. 
Three of the datasets were obtained from the Gene Expression Omnibus (GEO) database under the 
accession numbers GSE425 (Bullinger et al., n =  116)27, GSE1159 (Valk et al., n =  285)15, and GSE12417 
(Metzeler et al., n =  242)32. Acute myeloid leukemia (LAML) Level 3 gene expression data and clinical 
information was downloaded from The Cancer Genome Atlas data portal (n =  171)33. The remaining 
dataset was obtained from the NCI caArray database under the accession number willm-00119 (Wilson 
et al., n =  170)31.

Mouse immune lineage gene expression profiles (n =  232) from the Immunological Genome Project 
were downloaded on 7/22/14 from the GEO database under the accession number GSE1590724. Human 
immune lineage gene expression profiles were downloaded from the GEO database under the accession 
number GSE24006 (Gentles et al., n =  8)19 and GSE24759 (Novershtern et al., n =  38)34. For the willm-
00119 and GSE15907 datasets (.CEL files), the data was background corrected using Robust Microarray 
Analysis (RMA), quantile normalized, and fitted with a multichip linear model for each probeset. These 
techniques were carried out using the “expresso” function of the “affy” library in R35. GSE12417, which 
contained gene expression measurements from the GPL96, GPL97, and GPL570 platforms, was repre-
sented by the probeset overlap between GPL96 and GPL570. For all datasets, probeset expression was 
converted into gene expression. Genes with multiple probesets were represented by the probeset with 
the highest average intensity across all samples. Murine transcripts were matched to human transcripts 
on the basis of gene symbol.
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Pre-processing of hematopoietic cell profiles.  To calculate the LSS, the BASE algorithm25 requires 
that hematopoietic cell expression profiles be normalized to reflect the relative expression of each gene 
in a given cell type. This process can be broken into five steps: (i) Gene expression values in the dataset 
containing murine or human hematopoietic profiles (GSE15907, GSE24006, or GSE24759) are median 
normalized across cell types to transform absolute expression values into relative expression values. As a 
result, genes that are more highly expressed in a given cell type relative to the other cell types will have a 
higher expression value. (ii) Each cell type’s median-normalized values are then z-transformed, causing 
each cell type’s expression values to follow a standard normal distribution (~N(0,1)). Z-scores >  0 indi-
cate genes that are up-regulated in a given cell type relative to the other cell types in the dataset, while 
z-scores <  0 indicate the opposite. In some cases, datasets may contain replicate gene expression exper-
iments representing the same cell type that need to be combined into a single column. These replicates 
are collapsed during this step, using the mean z-score of each replicate and then each cell type’s values 
are z-transformed again to renormalize. (iii) Each cell type’s resulting z-scores are then transformed into 
up- and down-regulated subsets. In the up-regulated subset, z-scores >  0 maintain their value, while 
z-scores <  0 are converted to 0, while the opposite is done in the down-regulated subset. This process 
allows for the transformation of z-scores into p-values without losing the relative expression information 
contained in the z-scores. (iv) The p-values are then –log10 transformed to place greater weight on dif-
ferentially expressed genes. Outliers defined as transformed values >  10 are then trimmed to a maximum 
of 10. (v) The resulting values are then scaled to values between 0 and 1 by dividing each value by the 
maximum value in the overall dataset.

Calculation of the LSS.  To calculate the LSS, the BASE algorithm is inputted with the transformed 
hematopoietic cell profiles and patient gene expression data. The up- and down-regulated subsets of each 
hematopoietic cell type’s transformed values are defined as a weight vector W =  [w1, w2, w3…wj…wn]; 
where wj =   − log10(p-val) for gene j in that cell lineage and n =  # of genes. Patient gene expression data 
is then processed based on the microarray platform. Gene expression values from two-channel arrays 
require no additional processing, but one-channel arrays must first be log-transformed and median 
normalized across samples, so that each gene expression value will reflect relative expression between 
patients. Each patient’s gene expression profile is then treated as the vector g =  [g1, g2, g3…gj…gn], which 
contains sorted (decreasing) gene expression values for each gene gj. Using these vectors, the BASE 
algorithm calculates a “pre-LSS” for the “up” (pLSSup) and “down” (pLSSdn) lineage subsets through the 
following steps:

First, a foreground function (f(i)) is used to calculate the cumulative distribution of the gene expres-
sion values for each patient weighted by their corresponding transformed hematopoietic relative expres-
sion values:

( ) =
∑ | |

∑ | |
, ≤ ≤

( )

=

=

f i
g w

g w
i n1

1

j
i

j j

j
n

j j

1

1

Second, a background function (b(i)) is used to calculate the cumulative distribution of the gene expres-
sion values for each patient weighted by a value complementary to the transformed hematopoietic rel-
ative expression values:
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The maximum deviation of these two functions can then be compared to determine the pLSSup and 
pLSSdn. This deviation is calculated by subtracting the foreground function from the background func-
tion and taking the difference with the largest absolute value. This requires comparing the maximum dif-
ference when the foreground function is larger than the background function (pLSS+) to the minimum 
difference when the background function is larger than the foreground function (pLSS−). This process 
is performed for both the up- and down-regulated subsets of each hematopoietic cell type. This step is 
formulized below:
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In the case of the up-regulated hematopoietic subset, a hematopoietic cell type that is highly similar to 
a patient gene expression profile will cause the foreground function to increase quickly in the begin-
ning, as highly expressed patient genes are assigned high hematopoietic weights, before plateauing 
towards the end, as lowly expressed patient genes are assigned low weights. The background function 
will increase slowly at the beginning, as lowly expressed genes are assigned low complementary weights, 
before increasing quickly at the end. In the case of the down-regulated hematopoietic subset, where 
higher weights correspond to more lowly expressed hematopoietic genes, the foreground function will 
behave like the background function did in the up-regulated set and vice versa. As a result, in the case 
of a highly similar patient profile and hematopoietic cell type, there will be a high deviation between the 
foreground and background functions for both the up-regulated and down-regulated subsets, resulting 
in a high pLSSup and pLSSdn. In the case of low similarity between the patient gene expression profile 
and hematopoietic profile, both the foreground and background functions will be expected to increase 
randomly, which would result in a low maximum deviation between the two functions, and thus a low 
pLSSup and pLSSdn.

After the pLSSup and pLSSdn are calculated they are then normalized to their respective null distri-
butions. The null distribution is generated by permuting the gene labels in the patient ranked gene list 
1000 times and recalculating the pLSSup or pLSSdn for each permutation using equations 1–5. The pLSSup 
and pLSSdn are then divided by the mean of the absolute value of the permuted values to yield the LSSup 
and LSSdn. For datasets derived from two-channel arrays, the final LSS was obtained by subtracting LSSdn 
from LSSup. For one-channel array datasets, which measure absolute mRNA expression, the LSSup served 
as the final LSS, as the LSSdn was enriched in genes whose low expression values were obscured by noise 
from nonspecific cross hybridization.

Survival analyses.  Univariate Cox PH models were fitted to the LSSs for each lineage across all samples 
in a dataset to investigate the relationship between LSS and survival time. For survival-associated LSSs, 
multivariate Cox PH models incorporating FAB subtype, FLT3 mutation status, age, CALGB cytogenetic 
risk36, and history of preceding malignancy were additionally constructed. Significance of the model 
parameters was assessed using the Wald test and p-values were adjusted using the Benjamini-Hochberg 
procedure. Kaplan-Meier curves were used to visualize the results, with samples stratified into two groups 
based on their LSS scores: LSSs that were distributed bimodally were dichotomized about the local min-
ima between the two peaks, otherwise, samples were dichotomized about their modal frequency. A 
log-rank test was used to estimate the significance of the difference between the survival curves.

Survival analyses were performed in R using the “survival” package’s “coxph”, “survfit”, and “survdiff ” 
functions for Cox PH modeling, Kaplan-Meier plotting, and log-rank significance testing, respectively.

References
1.	 Chao, M. P., Seita, J. & Weissman, I. L. Establishment of a normal hematopoietic and leukemia stem cell hierarchy. Cold Spring 

Harb Symp Quant Biol 73, 439–449 (2008).
2.	 Lowenberg, B., Downing, J. R. & Burnett, A. Acute myeloid leukemia. N Engl J Med 341, 1051–1062 (1999).
3.	 Estey, E. & Dohner, H. Acute myeloid leukaemia. Lancet 368, 1894–1907 (2006).
4.	 Kamel-Reid, S. & Dick, J. E. Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 242, 1706–1709 

(1988).
5.	 Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 

(1994).
6.	 Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic 

cell. Nat Med 3, 730–737 (1997).
7.	 Hope, K. J., Jin, L. & Dick, J. E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in 

self-renewal capacity. Nat Immunol 5, 738–743 (2004).
8.	 Taussig, D. C. et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-

initiating cells. Blood 112, 568–575 (2008).
9.	 Taussig, D. C. et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in 

the CD34(-) fraction. Blood 115, 1976–1984 (2010).
10.	 Lowenberg, B. Acute myeloid leukemia: the challenge of capturing disease variety. Hematology Am Soc Hematol Educ Program 

2008, 1–11 (2008).
11.	 Mrozek, K., Marcucci, G., Paschka, P., Whitman, S. P. & Bloomfield, C. D. Clinical relevance of mutations and gene-expression 

changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular 
classification? Blood 109, 431–448 (2007).

12.	 Schoch, C. et al. Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression 
profiles. Proc Natl Acad Sci USA 99, 10008–10013 (2002).

13.	 Kohlmann, A. et al. Molecular characterization of acute leukemias by use of microarray technology. Genes Chromosomes Cancer 
37, 396–405 (2003).

14.	 Debernardi, S. et al. Genome-wide analysis of acute myeloid leukemia with normal karyotype reveals a unique pattern of 
homeobox gene expression distinct from those with translocation-mediated fusion events. Genes Chromosomes Cancer 37, 
149–158 (2003).

15.	 Valk, P. J. et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350, 1617–1628 (2004).
16.	 Ross, M. E. et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 104, 3679–3687 (2004).
17.	 Klein, H. U. et al. Quantitative comparison of microarray experiments with published leukemia related gene expression signatures. 

BMC Bioinformatics 10, 422 (2009).
18.	 Diffner, E. et al. Activity of a heptad of transcription factors is associated with stem cell programs and clinical outcome in acute 

myeloid leukemia. Blood 121, 2289–2300 (2013).



www.nature.com/scientificreports/

1 2Scientific Reports | 5:16987 | DOI: 10.1038/srep16987

19.	 Gentles, A. J., Plevritis, S. K., Majeti, R. & Alizadeh, A. A. Association of a leukemic stem cell gene expression signature with 
clinical outcomes in acute myeloid leukemia. JAMA 304, 2706–2715 (2010)

20.	 Eppert, K. et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17, 1086–1093 
(2011).

21.	 Krivtsov, A. V. et al. Cell of origin determines clinically relevant subtypes of MLL-rearranged AML. Leukemia 27, 852–860 
(2013).

22.	 Ivanova, N. B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).
23.	 Doulatov, S., Notta, F., Laurenti, E. & Dick, J. E. Hematopoiesis: a human perspective. Cell Stem Cell 10, 120–136 (2012).
24.	 Heng, T. S., Painter, M. W. & Immunological Genome Project, C. The Immunological Genome Project: networks of gene 

expression in immune cells. Nat Immunol 9, 1091–1094 (2008).
25.	 Cheng, C., Yan, X., Sun, F. & Li, L. M. Inferring activity changes of transcription factors by binding association with sorted 

expression profiles. BMC Bioinformatics 8, 452 (2007).
26.	 Varn, F. S., Ung, M. H., Lou, S. K. & Cheng, C. Integrative analysis of survival-associated gene sets in breast cancer. BMC Med 

Genomics 8, 11 (2015).
27.	 Bullinger, L. et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J 

Med 350, 1605–1616 (2004).
28.	 Anderson, M. K. At the crossroads: diverse roles of early thymocyte transcriptional regulators. Immunol Rev 209, 191–211 

(2006).
29.	 Bennett, J. M. et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. 

Br J Haematol 33, 451–458 (1976).
30.	 Gilliland, D. G. & Griffin, J. D. The roles of FLT3 in hematopoiesis and leukemia. Blood 100, 1532–1542 (2002).
31.	 Wilson, C. S. et al. Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification 

and outcome prediction. Blood 108, 685–696 (2006).
32.	 Metzeler, K. H. et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid 

leukemia. Blood 112, 4193–4201 (2008).
33.	 Cancer Genome Atlas Research, N. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 

368, 2059–2074 (2013).
34.	 Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 

296–309 (2011).
35.	 Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 

20, 307–315 (2004).
36.	 Byrd, J. C. et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and 

overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 
8461). Blood 100, 4325–4336 (2002).

Acknowledgements
The authors thank Dr. Patricia Ernst for her valuable suggestions and Dr. Peter Valk and Dr. Roeland 
Verhaak for providing survival information for GSE1159. This work was supported by the American 
Cancer Society research grant IRG-82-003-30, the National Center for Advancing Translational Sciences 
of the National Institutes of Health under award number UL1TR001086, and by the start-up funding 
package provided to CC by the Geisel School of Medicine at Dartmouth College.

Author Contributions
F.S.V. and C.C. designed the method and experiments and carried out the computation. F.S.V. performed 
the analysis, interpreted data, made the figures, and wrote the paper. E.H.A. performed additional 
analysis, interpreted data, and revised the paper. All authors read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Varn, F. S. et al. Systematic analysis of hematopoietic gene expression profiles 
for prognostic prediction in acute myeloid leukemia. Sci. Rep. 5, 16987; doi: 10.1038/srep16987 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Systematic analysis of hematopoietic gene expression profiles for prognostic prediction in acute myeloid leukemia

	Results

	Overview. 
	Identification of survival-associated hematopoietic cell profiles. 
	Cell lineage similarity scores and survival time. 
	Association of STRSC LSSs with clinical variables. 
	Application of the STRSC to other datasets. 
	Comparison of murine hematopoietic profiles to human hematopoietic profiles. 

	Discussion

	Methods

	Datasets. 
	Pre-processing of hematopoietic cell profiles. 
	Calculation of the LSS. 
	Survival analyses. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Overview of workflow.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Exploratory analysis of Immunological Genome Project LSSs.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Survival analysis of the short-term reconstituting stem cell LSS.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Survival analysis of different LSSs in AML patients.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Association of STRSC LSS with traditional clinical variables.
	﻿Figure 6﻿﻿.﻿﻿ ﻿ Survival analysis of the STRSC LSS across datasets.
	﻿Figure 7﻿﻿.﻿﻿ ﻿ Survival analysis of LSSs for human hematopoietic cell types.



 
    
       
          application/pdf
          
             
                Systematic analysis of hematopoietic gene expression profiles for prognostic prediction in acute myeloid leukemia
            
         
          
             
                srep ,  (2015). doi:10.1038/srep16987
            
         
          
             
                Frederick S. Varn
                Erik H. Andrews
                Chao Cheng
            
         
          doi:10.1038/srep16987
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep16987
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep16987
            
         
      
       
          
          
          
             
                doi:10.1038/srep16987
            
         
          
             
                srep ,  (2015). doi:10.1038/srep16987
            
         
          
          
      
       
       
          True
      
   




