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The basal ganglia (BG) are a subcortical structure implicated in action selection. The aim of this work is to present a new cognitive
neurosciencemodel of the BG, which aspires to represent a parsimonious balance between simplicity and completeness.Themodel
includes the 3main pathways operating in the BG circuitry, that is, the direct (Go), indirect (NoGo), and hyperdirect pathways.The
main original aspects, compared with previous models, are the use of a two-termHebb rule to train synapses in the striatum, based
exclusively on neuronal activity changes caused by dopamine peaks or dips, and the role of the cholinergic interneurons (affected
by dopamine themselves) during learning. Some examples are displayed, concerning a few paradigmatic cases: action selection
in basal conditions, action selection in the presence of a strong conflict (where the role of the hyperdirect pathway emerges),
synapse changes induced by phasic dopamine, and learning new actions based on a previous history of rewards and punishments.
Finally, some simulations showmodel working in conditions of altered dopamine levels, to illustrate pathological cases (dopamine
depletion in parkinsonian subjects or dopamine hypermedication). Due to its parsimonious approach, the model may represent a
straightforward tool to analyze BG functionality in behavioral experiments.

1. Introduction

The basal ganglia (BG) are a collection of subcortical struc-
tures, which are supposed to be implicated in many tasks,
including action selection. While their role was traditionally
restricted to motor function, more recent research focused
on their involvement in cognition as well. Indeed, nowadays
the implication of BG in a variety of cognitive functions
has gained more and more consideration, as suggested by
behavioral, clinical, and biochemical experiments in human
and especially nonhuman beings [1–5]. These results are
further supported by anatomical findings, demonstrating that
the BG are connected to structures of the brain implicated in
different cognitive tasks [1].

The large interest received by BG in recent neurophysio-
logical and neuroscience research is motivated not only by
their significant role in several motor and cognitive tasks
in healthy state (action selection, categorization, working
memory, etc. . .), but also by their malfunctions that lead

to an array of diseases, primarily Parkinson disease (PD),
a neurodegenerative disorder associated with a depletion of
the dopaminergic neurotransmitter. Indeed, cognitive studies
in humans, performed both in healthy controls and in
PD subjects, documented cognitive deficits in PD patients,
including deficits in memory, attention, learning, and solving
visuospatial tasks [6–11]. The complexity of the mechanisms
operating in the BG and the multiplicity of data acquired
in recent years (biochemical, cellular, anatomical, functional,
and behavioral) risk being insufficiently understood or poorly
exploited if not incorporated into a coherent theoretical
framework. Neurocomputational models provide an excel-
lent way to summarize a large body of knowledge into a
comprehensive setting. Indeed, the last 20 years have seen
a growing literature investigating BG functions by means of
computational modeling techniques (for a summary and a
discussion of the most influential recent models, see the last
section of this work, but also the excellent review papers
by Cohen and Frank [12], Helie et al. [13], and Schroll and
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Hamker [14]). The goal of these models is to assess the
mechanisms governing BG functions in rigorous quantitative
terms; to this aim, they incorporate physiological knowledge
on the different neural pathways implicated and on synaptic
plasticity rules as well into a coherent structure, resulting in
emerging properties and peculiar features that stand-alone
field of sciences cannot explain yet. The final goal is to
understand cognitive behavior and/or motor functions, in
physiological as well as pathological conditions.

Despite the large number of valid models presented
in the recent literature, there are still several aspects that
deserve attention and may benefit from additional computer
simulation studies.

This work presents a novel parsimonious model of BG
in action selection, which combines rigor in the description
of the main mechanisms and neural pathways with the
simplicity of the general equations and is finalized at the
interpretation of behavioral experiments. The work is moti-
vated by the following main objectives (not all incorporated
or simply insufficiently emphasized in previous studies):

(i) To introduce the role of cholinergic interneurons in
BG mechanism and in synapse learning. Although various
data underline that synapse learning in the striatum reflects a
possible cooperation of dopamine and acetylcholine andmay
be mediated by cholinergic interneurons [15], we are aware
just of a few models which consider this aspect explicitly, but
assuming a different role for acetylcholine comparedwith our
model [16, 17].

(ii) To analyze some important mechanisms operating in
the BG. In particular, we will illustrate how a simple two-
term Hebb mechanism for synapse learning can account for
the capacity of BG to select new actions on the basis of a
previous history of rewards and punishments. Moreover, we
will provide clear examples on the role of the hyperdirect
pathway during conflict resolution tasks. Although the latter
2 aspects have also been included in recent models [18], a
thorough analysis of their functional role is still of value for
the modeling community.

(iii) To show how the dopaminergic mechanism intro-
duced in themodel can account for various aspects of clinical
relevance, such as the effect of dopamine depletion on the
response times and on neglecting relevant responses.

2. Qualitative Model Description

2.1. Model Structure. The qualitative structure of the network
is depicted in Figure 1.

The model includes a sensory representation in the
cortex (S), the motor representation in the cortex (C), the
thalamus (T), the striatum, functionally divided according
to dopamine receptor expression (D1: Go, D2: NoGo), the
subthalamic nucleus (STN), the globus pallidus pars externa
(Gpe), and an output part represented by the globus pallidus
pars interna (Gpi) and the substantia nigra pars reticulata
(SNr) taken together. A peculiarity of the present model,
compared to the majority of previous ones, consists in
an explicit representation of the cholinergic interneurons
(represented by the single unit ChI) and of their specific
network.

The stimulus is represented in the cortex by a vector S.
We assumed N different action channels, each one coding for
a different alternative choice. These channels are segregated
within the BG but interact within the motor prefrontal
portion of the cortex via a winner-takes-all dynamics.

While all the other structures are modeled as N-neuron
layers (representing N alternative segregated choices) the
STN and ChI are modeled as single neurons since their
activity represents a global property of the overall network;
that is, they exert a global action on all channels.

In the following, each stimulus S in input is represented
as a 4-element vector, and we also assume the presence of
4 segregated channels (i.e., we have 4 possible alternative
choices, N = 4). We used just 4 action channels to reduce
model complexity to a minimum, still allowing a thorough
analysis of model dynamics: indeed 4 channels are sufficient
to investigate the complexity of the relationships occurring
when multiple possible choices are competing together.

Each neuron in the model is represented as a computa-
tional unit, which calculates its activity from the weighted
sum of inputs. The output activity is in the range [0, 1],
representing a normalized firing rate of neurons. In par-
ticular, we used a sigmoidal static relationship to represent
the presence of a lower threshold and upper saturation for
neuronal activity and a first-order low-pass dynamics to
mimic the integrative capacity of neuron membrane.

A first simplification with respect to biology is the use a
single output region for the BG; that is, the globus pallidus
pars interna and the substantia nigra pars reticulata are
treated as a single region (named simply GPi hereafter). This
is common to the majority of models of BG and is justified by
their strict anatomical and functional similarities.

A further simplification consists in the use of dopamine
(DA) directly as a modulating input factor, without explicitly
representing the dopaminergic neurons in the substantia
nigra pars compacta, which are responsible for the release
of the dopaminergic neurotransmitter. This choice allows
simple simulations of normal and pathological conditions,
in which dopamine levels can be artificially altered by the
disease or by external intervention.

The previous neurons are connected to realize the 3 main
pathways (direct, indirect, and hyperdirect) which are known
to work in the BG functioning.

As in the predominant “brake accelerator” view, the BG
are only able to disinhibit a choice already selected by the
cortex: in other words, the combined action of the 3 pathways
only modulates the inhibition provided from the Gpi to
the thalamus, thus consenting or blocking a response coded
by the cortical neurons. Indeed, the thalamus receives only
inhibitory projections from the BG, while the excitation is
provided only by the selected neurons of the cortex C.

Let us follow the role and function of the main pathways
in the model.

The input of the model is the vector S, which can
be interpreted as a cortical representation of an external
stimulus. S is connected both to the portion of the cortex
C devoted to the implementation of the response (motor
prefrontal) and to the striatum (both Go and NoGo), so that
the striatum can contextualize the situation. We assume that
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Figure 1: Graphical representation of the overall basal ganglia model. Rectangles represent different structures, circles neurons, arrows
projections: green excitatory, red inhibitory, and orange lateral inhibition. This figure depicts the principal areas taken into consideration
in the current model: the sensory representation of the stimulus in the cortex (S), the motor representation in the cortex (C), the thalamus
(T), the striatum, functionally divided according to dopamine receptor expression (Go andNoGo), the subthalamic nucleus (STN), the globus
pallidus pars externa (Gpe), and the globus pallidus pars interna (Gpi). The synapses where learning takes place are those from the cortex to
the Go (𝑊GC) and the NoGo (𝑊NC) part of the striatum and those from the stimulus representation S to the Go (𝑊GS) and the NoGo (𝑊NS)
part of the striatum.

a response is activated when the corresponding neuron in C
overcomes a given “action threshold” (chosen close to 1: 0.95).

If there is no stimulus in input (i.e., the network is in its
basal steady-state), the thalamus is globally inhibited since,
without any excitation by the cortex, it receives only tonic
inhibition by the Gpi [19]. On the contrary, an adequate
stimulus can disinhibit the thalamus. In this sense, the
model implements a winner-takes-all (WTA) mechanism, so
that only the stronger response can be triggered. The WTA
mechanism is attained through lateral inhibitions among the
neurons in the cortex and a positive self-loop. The latter
is realized by means of feedback connections between each
neuron in the cortex and its corresponding representation in
the thalamus (see Figure 1). The achievement of a sufficient
activity by the winner requires the activation of this self-loop;
hence that the corresponding representation in the thalamus
can be previously disinhibited by the BG.

In order to regulate the thalamus inhibition/disinhibition,
each neuron of the cortex is connected to its own Go
(direct or striatonigral) andNoGo (indirect or striatopallidal)
pathway via excitatory trained synapses, being the first path-
way responsible for the focused facilitation of the response
coded by the corresponding neuron and the second pathway
responsible for its focused suppression.

Each striatonigral neuron in the Go pathway, in turn,
sends an inhibitory synapse to the corresponding neuron of
the Gpi: the more the neuron of the Go is excited, the more
the neuron of theGpi is inhibited, decreasing its tonic activity.
Therefore, if the thalamus can be stimulated by the cortex, by
means of this process the BG try to facilitate the gating of this
specific response.

Similarly, each striatopallidal NoGo neuron sends an
inhibitory synapse to the corresponding neuron of the Gpe,
decreasing its tonic activity. This results in less inhibition
provided to the Gpi, which thus becomes more active. By
means of this complementary process, the BG try to stop the
candidate action.

Indeed, it is the imbalance between the 2 pathways, due
to different values of the synapses, that ultimately modulates
the activity of the Gpi: if the Go pathway prevails, the Gpi
provides less inhibition to the corresponding neuron of the
thalamus (i.e., the BG “let go” the response); on the contrary
if the NoGo pathway is more active, the Gpi provides more
inhibition to the thalamus (i.e., the BG “stop” the response).

Each of Go and NoGo pathway runs in parallel for each
neuron of the cortex [20] and this is how the network usually
approaches the response selection task: a single neuron wins
the competition in the cortex and a single action is selected.
However, the choice for the cortex may become particularly
difficult in the presence of a strong conflict among alternative
candidates: in this case, the BG could provide fast but
contradictory feedback and conflicting responses could win
together (see the Results section).This challenging situations
are managed by the hyperdirect pathway, carried out by the
STN: its role is, indeed, to provide an overall stop signal to
all the units of the Gpi in order to prevent any feedback by
the BG and therefore let more time to the cortex to solve the
conflict. In more detail, the STN receives an energy signal
from the cortex, which summarizes the conflict level, and
sends excitatory projections to all the neurons of the Gpi,
providing an overall inhibition to the thalamus. Finally, in
agreement with the physiological literature, we included a
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short loop between the Gpe and the STN (see Figure 1). Its
role is mainly to control the STN activity, in order to avoid
overactivity or undesired oscillations [21].

2.2. Dopamine and Acetylcholine. Evidences [2] show that
basal ganglia are able to change their synaptic weights, in
particular those between the cortex and the Go (𝑊GC) and
the NoGo (𝑊NC) part of the striatum and similarly those
between the stimulus representation S and the Go (𝑊GS) and
the NoGo (𝑊NS) part of the striatum.

Moreover, dopamine is not uniquely excitatory or
inhibitory but can exert different effects depending on the
receptor: if it binds D1 receptor, it generally provides excita-
tion, while if it binds D2 receptor it provides inhibition [20].
Hence, the effect of dopamine is different within the striatum,
being primarily excitatory for the Go part and inhibitory for
the NoGo part.

In more detail, a contrast enhancement phenomenon has
been reported in the Go neurons [22]: if the activity of a Go
neuron is high enough, dopamine produces further excita-
tion, whereas it provides further inhibition to Go neurons
with low activity. This results in a contrast enhancement
effect. No similar effect has been reported so far for the
NoGo neurons: in these neurons, dopamine exerts only an
inhibitory effect.

In the model, dopamine exhibits a tonic level. More-
over, in case of punishment or reward, a phasic change in
dopamine is produced (a transient dopamine peak during
rewards; a transient dip during punishments). This induces
a transient change in the activity of the neurons of the
striatum, with the winning Go neurons generally receiving
further excitation in case of reward,meanwhile theNoGo and
losing Go neurons receive inhibition. On the contrary, in case
of punishment, the Go neurons are inhibited, while all the
winning NoGo neurons are excited.

A strong novelty introduced by the present model is the
explicit description of the striatal cholinergic interneurons
during learning, here represented by a single unit (ChI).

The dependence of cholinergic interneurons on
dopamine seems well-established in physiological literature:
cholinergic interneurons express both D1 and D2 receptor
[23, 24] and so, like the other striatal neurons, can sense
dopamine changes. Furthermore, data in medical literature
report a decrease in cholinergic activity following an increase
in dopamine concentration, suggesting an inhibitory effect
of dopamine on cholinergic interneurons [15]. Conversely,
a fall in dopamine excites cholinergic neurons above their
basal activity. Furthermore, we assumed that the activation
of these interneurons provides inhibition to the Go neurons
and excitation to the NoGo neurons, with an opposing
role compared with dopamine. This role, despite being
still debated in the literature, is in part supported by new
research findings [25–28] (see also Discussion) but has never
been assessed in previous neurocomputational models. A
summary of the relationships between the cholinergic unit
and the rest of the network is depicted in Figure 2.

Thank to this mechanisms, the cholinergic interneurons
amplify the effect of dopamine on striatal neurons, especially
during a dip in dopamine.
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Figure 2: Focus on the effect of dopamine and cholinergic interneu-
ron on Go and NoGo cells in the model. Arrows projections: green
excitatory, red inhibitory.

2.3. Hebb Rule and Learning. As discussed above, we
assumed that a reward or punishment causes a phasic change
in the dopamine level (a peak or a dip, resp.), which, in
turn, is reflected in an opposite change in the cholinergic
interneurons activity.

The phasic changes of the dopamine level and the conse-
quent changes in the cholinergic interneurons activity affect
the activity in the striatal neurons. This has an effect on
synaptic plasticity.

Synaptic plasticity has been implemented in the model
using a two-termHebb rule, based on the correlation between
presynaptic and postsynaptic activities, affecting all synapses
entering into the striatal neurons (i.e., synapses 𝑊GC, 𝑊NC,
𝑊

GS, and𝑊NS in the model). It is worth noting that this rule
differs from the one adopted in most previous models, which
generally use a three-term rule, including a multiplicative
term directly modulated by phasic dopamine.

In the present model we did not use a temporal rule for
training, but a simple associative rule based on the final value
of neuronal activity. Both the steady-state presynaptic and
the postsynaptic activities are compared with a threshold.
Only if presynaptic activity is above threshold the synapse
is eligible for training. In this way, just the synapses coming
from active neurons in the cortex (the winners) and from sig-
nificant stimuli in the sensory cortex can modify their value.
The synapse is then reinforced (potentiation) or weakened
(depression) depending on whether the postsynaptic activity
is above or below threshold.

A fundamental aspect of our rule is that, in the absence
of phasic dopamine changes, the activities of the winners
(postsynaptic) striatal neurons are close to the threshold
(we assumed a threshold as high as 0.5, denoting average
activation). As a consequence, their synapses are not changed
(or exhibit a minor change) since the postsynaptic activity
term in the Hebb rule is close to 0. Conversely, a phasic
dopamine change (a peak during reward or a dip during
punishment), and the consequent phasic change in cholin-
ergic activity, causes significant alterations in the activity of
striatal neurons,moving themquite far from the postsynaptic
threshold and inducing significant synaptic potentiation or
depression.

In conclusion, transient changes in striatal activity due to
dopamine and acetylcholine lead to activity driven plasticity,
which is able to change network behavior and create new
stimulus-response associations with experience, as rewards
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and punishment go on in time. As a consequence, synaptic
plasticity induces a modification of the association between
a specific stimulus S and the consequent response: previously
rewarded outcomes will be more likely selected in the future,
while punished ones will be actively avoided.

3. Mathematical Model Description

3.1. IndividualNeuronDynamics. In the following section,we
will identify as 𝑖 a postsynaptic neuron, receiving synapses
𝑤

𝑖𝑗
from presynaptic neurons 𝑗, whose activity is 𝑦

𝑗
. The

neuron can eventually also have additional inputs coming
from external sources not directly represented in the model:
these are conveyed in a single term 𝐼

𝑖
.

Synaptic and nonsynaptic inputs to the postsynaptic
neuron 𝑖 can be summarized in a synthetic variable 𝑥

𝑖
. If there

are N presynaptic neurons projecting to the postsynaptic
neuron 𝑖, we can write

𝑥

𝑖
=

N
∑

𝑗=1

𝑤

𝑖𝑗
𝑦

𝑗
+ 𝐼

𝑖
. (1)

In order to mimic the cell membrane integrative process,
the input 𝑥

𝑖
is transformed in a postsynaptic variable 𝑢

𝑖
, using

a first-order differential equation with time constant 𝜏:

𝜏

𝑑𝑢

𝑖

𝑑𝑡

= −𝑢

𝑖
+ 𝑥

𝑖
.

(2)

Finally, a sigmoidal function 𝜍 computes the activity of
the neuron 𝑖, 𝑦

𝑖
, from the output of the previous differential

equation 𝑢
𝑖
:

𝑦

𝑖
= 𝜍 (𝑢

𝑖
) . (3)

In the present model, the sigmoidal function 𝜍 was
implemented as

𝑦

𝑖
=

1

1 + 𝑒

−𝑎(𝑢𝑖−𝑢0)
, (4)

where 𝑎 and 𝑢
0
are parameters which set the central slope and

the central position of the sigmoid.

3.2. Network Connectivity. The spatial position of individual
neurons is described by the subscripts 𝑖, 𝑖 = 1, . . . ,N, with N
= 4 for the majority of the layers (S, C, Go, NoGo, Gpe, and
Gpi). The STN and the cholinergic interneurons ChI, being
both represented in the model as single units, do not need
subscripts.

To describe connectivity in the network, synapses are rep-
resentedwith 2 superscripts and 2 subscripts.The 2 subscripts
denote the position of the postsynaptic and presynaptic
neurons, respectively. Superscripts denote the target layer (to
which the postsynaptic neuron 𝑖 belongs) and the donor layer
(where the presynaptic neuron 𝑗 is located), respectively. The
acronyms used to indicate the individual layers are S: sensory
cortex; C: motor cortex; T: thalamus; G: Go; N: NoGo; I: Gpi;
E: Gpe; H: cholinergic interneurons ChI; STN: subthalamic
nucleus. Moreover, 𝐿 is used to denote the dynamics of lateral
inhibition in the cortex.

To provide an example, the term 𝑤

GS
𝑖𝑗

denotes a synapse
from the neuron at position 𝑗 in the sensory cortex S, to a
neuron at position 𝑖 in the Go portion, G, of the striatum.

Referring to Figures 1 and 2, the nature of the synapses is
represented by the specific color of the projections: excitatory
projections are represented in green,while inhibitory ones are
represented in red. Lateral inhibition is represented by orange
arrows.

Among all the synaptic matrices and synaptic weights, we
underline that a different denomination is used for 𝑘E, since
this projection does not connect single neurons but informs
the STN about the conflict within the cortex C, expressed by
means of an energy function 𝐸.

3.2.1. Cortex. The first set of equations describe how the
activity of the neurons in the cortex C is computed.

We can write for 𝑖 = 1, . . . ,N

𝜏

𝐿

𝑑𝑢

𝐿

𝑖

𝑑𝑡

= −𝑢

𝐿

𝑖
+

N
∑

𝑗=1

𝑖 ̸=𝑗

𝑙

𝑖𝑗
𝑦

C
𝑗 (5)

𝜏

𝑑𝑢

C
𝑖

𝑑𝑡

= −𝑢

C
𝑖
+

N
∑

𝑗=1

𝑤

CS
𝑖𝑗
𝑠

𝑗
+ 𝑢

𝐿

𝑖
+ 𝑤

CT
𝑖𝑖
𝑦

T
𝑖 (6)

𝑦

C
i = 𝜍 (𝑢

C
𝑖
) . (7)

The previous equations can be explained as follows. Every
neuron of the cortex C receives excitatory input from the
whole stimulus S and an excitatory projection from the corre-
sponding neuron in the thalamus. Moreover, it also receives
an additional input 𝑢𝐿

𝑖
reflecting lateral inhibition from the

other neurons in the cortex. The latter is characterized by a
different time constant 𝜏

𝐿
. If the neuron of the thalamus is

active, the neuron of the cortex receives the positive feedback
necessary to win the WTA selection.

3.2.2. Go Part of the Striatum. The second set of equations
describe the activity of the neurons in the Go.

We can write for 𝑖 = 1, . . . ,N

𝜏

𝑑𝑢

G
𝑖

𝑑𝑡

= −𝑢

G
𝑖
+

N
∑

𝑗=1

𝑤

GS
𝑖𝑗
𝑠

𝑗
+ 𝑤

GC
𝑖𝑖
𝑦

C
𝑖
+ 𝛼 ⋅ DA

⋅ (𝑦

G
𝑖
− 𝜗G) + 𝑤

GH
𝑦

H

(8)

𝑦

G
𝑖
= 𝜍 (𝑢

G
𝑖
) . (9)

As for the cortex C, every neuron of the Go receives
excitatory input from the whole stimulus S and an excitatory
projection from the corresponding neuron of the cortex C,
starting here the direct pathway. In particular, it is worth not-
ing that the matrix𝑊GC is diagonal, reflecting the separation
among the different action channels.

Dopamine (DA) and cholinergic interneuron activity
(𝑦H) modulate the activity of each Go neuron.

Dopamine is excitatory (𝛼 > 0) if the Go activity is
above a certain threshold (𝜗G), inhibitory on the contrary:
thismechanism realizes the contrast enhancement effect [22].
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The cholinergic interneurons are always inhibitory
(𝑤GH

< 0) to the Go instead.
Both dopamine and acetylcholine exert tonic and phasic

effects on Go activity.

3.2.3. NoGo Part of the Striatum. The third set of equations
describes the activity of the neurons in the NoGo.

We have for 𝑖 = 1, . . . ,N

𝜏

𝑑𝑢

N
𝑖

𝑑𝑡

= −𝑢

N
𝑖
+

N
∑

𝑗=1

𝑤

NS
𝑖𝑗
𝑠

𝑗
+ 𝑤

NC
𝑖𝑖
𝑦

C
𝑖
+ 𝛽 ⋅ DA

+ 𝑤

NH
𝑦

H

(10)

𝑦

N
𝑖
= 𝜍 (𝑢

N
𝑖
) . (11)

Just like the Go, also every neuron of the NoGo receives
excitatory input from the whole stimulus S and excitatory
projection from the corresponding neuron in the cortex C,
starting here the indirect pathway instead (hence, the matrix
𝑊

NC is diagonal).
Dopamine (DA) and cholinergic interneuron (𝑦H) mod-

ulate the activity of each NoGo neuron as well, but in a
different way.

Dopamine is always inhibitory (𝛽 < 0) to all the
NoGo neurons, while the cholinergic interneurons provides
excitation (𝑤NH

> 0) to the NoGo. Both dopamine and
acetylcholine exert tonic and phasic effects on NoGo activity,
in a specular way than in the previous Go case.

3.2.4. Globus Pallidus Pars Externa. The fourth set of equa-
tions describe the activity of the neurons of the Gpe.

Equations are for 𝑖 = 1, . . . ,N

𝜏

𝑑𝑢

E
𝑖

𝑑𝑡

= −𝑢

E
𝑖
+ 𝑤

EN
𝑖𝑖
𝑦

N
𝑖
+ 𝑤

ESTN
𝑦

STN
+ 𝐼

E (12)

𝑦

E
𝑖
= 𝜍 (𝑢

E
𝑖
) . (13)

Every neuron of the Gpe receives an excitatory projection
from the corresponding neuron of the NoGo part of the stria-
tum, continuing the indirect pathway, while the excitation
(𝑤ESTN) from the STN is part of a feedback loop to control
STN activity, as previously mentioned.

Every neuron is tonically active at rest, thanks to the
external input (𝐼E).

3.2.5. Globus Pallidus Pars Interna. The fifth set of equations
describe the activity of the neurons in the Gpi.

Equations are for 𝑖 = 1, . . . ,N

𝜏

𝑑𝑢

I
𝑖

𝑑𝑡

= −𝑢

I
𝑖
+ 𝑤

IG
𝑖𝑖
𝑦

G
𝑖
+ 𝑤

IE
𝑖𝑖
𝑦

E
𝑖
+ 𝑤

ISTN
𝑦

STN
+ 𝐼

I (14)

𝑦

I
𝑖
= 𝜍 (𝑢

I
𝑖
) . (15)

Every neuron of the Gpi receives an excitatory projection
from the correspondingneuronof theGopart of the striatum,

continuing the direct pathway, and an inhibitory projection
from the Gpe, while the excitation (𝑤ISTN) from the STN is
part of the hyperdirect way. Indeed, the STN excites all the
neurons of the Gpi, which in turns inhibit the corresponding
neurons in the thalamus, thus braking any action selec-
tion.

Every neuron is tonically active at rest. In particular, the
external input (𝐼I) overcomes the inhibitory input coming
from the Gpe that is the reason why although the Gpe
provides inhibition, the Gpi is active in the tonic state and
inhibits the thalamus.

3.2.6. Subthalamic Nucleus. The sixth set of equations
describe the activity of the STN.

We can write (𝑦STN and 𝑢STN are scalar variables)

𝜏

𝑑𝑢

STN

𝑑𝑡

= −𝑢

STN
+ 𝑘

E
𝐸 +

N
∑

𝑗=1

𝑤

STNE
𝑗

𝑦

E
𝑗 (16)

with 𝐸 =

N
∑

𝑖=1

𝑖 ̸=𝑗

𝑦

C
𝑖
𝑦

C
𝑗 (17)

𝑦

STN
= 𝜍 (𝑢

STN
) . (18)

The STN is connected to the cortex C, but its activity does
not depend on a single neuron, but on the overall activity
of C, sensed by means of an energy function 𝐸. The latter
reflects the conflict occurring in the cortex; that is, it signals
the presence of 2 or more cortical neurons simultaneously
highly active. The higher 𝐸, the higher the excitation of the
STN. This is how the hyperdirect pathway starts.

The projection from the Gpe is part of the feedback loop
to control STN activity, as previously said.

3.2.7. Thalamus. The seventh set of equations describes the
activity of the neurons in the thalamus T.

We have for 𝑖 = 1, . . . ,N

𝜏

𝑑𝑢

T
𝑖

𝑑𝑡

= −𝑢

T
𝑖
+ 𝑤

TI
𝑖𝑖
𝑦

I
𝑖
+ 𝑤

TC
𝑖𝑖
𝑦

C
𝑖

(19)

𝑦

T
𝑖
= 𝜍 (𝑢

T
𝑖
) . (20)

Every neuron of the thalamus receives an excitatory
projection from the corresponding neuron of the cortex C
and an inhibitory projection from the corresponding neuron
of the Gpi: the imbalance between the 2 determines whether
the corresponding action is gated or not. It is worth noting
that the excitation from the cortex to the thalamus realizes,
together with the backward excitation from the thalamus to
the cortex, a positive feedback loop, which is an essential part
of the WTA cortical mechanism.

Every thalamic neuron is tonically silent at rest, as a
consequence of the tonic activity at rest of the Gpi.
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3.2.8. Cholinergic Interneurons. The last set of equations
describes the activity of the cholinergic interneurons ChI.

We have (𝑦H and 𝑢H are scalar variables)

𝜏

𝑑𝑢

H

𝑑𝑡

= −𝑢

H
+ 𝐼

H
+ 𝛾 ⋅ DA (21)

𝑦

H
= 𝜍 (𝑢

H
) . (22)

The cholinergic interneuron is inhibited (𝛾 < 0) by
dopamine (DA); hence it is influenced both tonically and
phasically.

The ChI is tonically active at rest (𝐼H).

3.3. Synaptic Learning: The Hebb Rule. In this section we
present the mathematical details of the Hebb rule specifically
designed to reproduce synaptic plasticity as it occurs in our
model of the BG.

Let Δ𝑤AB
𝑖𝑗

be the variation of the synapse between the
presynaptic neuron 𝑗 in layer B (B = S or C) and the
postsynaptic neuron 𝑖, in layer A (A = G or N): the rule is
expressed as follows:

Δ𝑤

AB
𝑖𝑗

= 𝜎 (𝑦

B
𝑗
− 𝜗PRE)

+

(𝑦

A
𝑖
− 𝜗POST) , (23)

where the change in synaptic weight is due to the correlation
between pre- and postsynaptic terms, comparing synaptic
activities to specific thresholds.

The introduction of pre- and postsynaptic thresholds is a
key element in the ability of this rule to reproduce plasticity
due to the modulatory role of dopaminergic and cholinergic
neurotransmitters.

The presynaptic term, with the use of the function
“positive part” ([]+), detects where learning can actually
occur: only the synapses coming from excited neurons of the
cortex C or from salient stimuli in S, above the threshold
𝜗PRE, can be modified. In particular, this means that only
synapses from the chosen action (high value in C) and from
the present context (high values in S) are subject to learning.
The postsynaptic term considers whether the postsynaptic
activity 𝑦

𝑖
(in our case in the striatal neuron) is above or

below a certain threshold 𝜗POST, which is set close to the
tonic activity level of the winner without error feedback.
It determines whether synaptic potentiation or depression
occurs.

Finally, we assume that synapses cannot change their
value (in particular all synapses entering the striatum are
excitatory and cannot become negative) or cannot increase
above a maximum saturation value. Hence, we have, for each
trained synapse, 0 ≤ 𝑤

AB
𝑖𝑗

≤ 𝑤max (with A = G or N and B = S
or C).

3.4. Parameters Assignment. Since the model is extremely
complex and contains many parameters, no automatic iden-
tification process was performed. Furthermore, most param-
eters describe average long-range connections among pop-
ulations, for which neurophysiological data are not directly
available. Hence, we used heuristic approach to tune the
parameters.

In particular, parameters were tuned to respect a certain
number of constraints, related first to the normal working
point in the absence of external stimuli, then to the response
to external stimuli, and finally to the effect of rewards and
punishments.

(i) Individual neurons: the sigmoidal characteristics of
individual neurons were given so that, in the absence
of any input, the activity could be quite negligible
(close to 0); the slope of the sigmoid allows a pro-
gressive increase from 0 to the upper saturation, thus
consenting a fine modulation of neuronal activity.
The time constant is the range normally adopted for
rate neurons and agrees with the temporal dynamics
resulting from more sophisticated integrate and fire
models.

(ii) Basal working point: in basal conditions the cortex,
the thalamus, and the striatum must be inhibited;
conversely the Gpi and Gpe exhibit a certain basal
activity. We assumed that the basal activity of the Gpe
is at about half the maximal activity; conversely, the
basal activity of the Gpi is higher, close to the upper
saturation. This high activity of the Gpi agrees with
physiological data [19] and is necessary to maintain
the thalamus inhibited.The previous constraints were
realized by assigning values to the external inputs to
the Gpi and Gpe and to the connectivity from Gpi to
Gpe and from Gpe to the thalamus.

(iii) Cortex and thalamus: the lateral connections within
the cortex and the connections from the cortex to the
thalamus and back from the thalamus to the cortex
were assigned to realize quite a strong winner-takes-
all mechanism. In particular, the cortico-thalamic
loop represents a self-excitation, necessary to lead
the winner neuron close to the upper saturation. The
lateral inhibition is strong enough so that the winner
neuron (close to saturation) can almost completely
inhibit all the other cortical neurons. The synapses
from the stimulus to the cortex have amoderate value
so that, in the absence of thalamic excitation, a neuron
in the cortex cannot reach a high activity level (hence
the corresponding action is not triggered).

(iv) Striatum: the synapses from the stimulus and from
the cortex to the striatal (Go and NoGo) neurons
were given moderate values before training, so that
the striatal neurons in the active pathway (thewinner)
could have an intermediate activity between inhibi-
tion and upper saturation (approximately 0.5). This
activity is close to the threshold of the Hebb rule.
As a consequence, the corresponding synapses are
reinforced or weakened only in response to reward
or punishment feedbacks, which significantly alter the
neuronal activity level. In the absence of feedback, the
synapse changes are negligible.

(v) Globus pallidus: the synapses from the striatum to
the Gpe and Gpi were given so that even a moderate
activation of a striatal neuron (as a consequence of
the cortical winner neuron and sensory inputs) could
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induce almost complete inhibition of the downstream
neurons (in Gpi and Gpe). The synapses from Gpi to
the thalamus ensure that whenGpi is active, the thala-
mus is completely inhibited. Hence, Gpi disinhibition
corresponds to the desired gating mechanism.

(vi) Subthalamic nucleus: the connectivity form the cortex
to the STN was chosen so that even a moderate
conflict (i.e., 2 cortical neurons simultaneously quite
active) could excite the STN. The connection from
STN to the Gpi ensures strong excitation of Gpi even
at moderate activity of the STN, thus blocking any
gating by the BG. Finally, the feedback connections
between the STN and Gpe were chosen to allow
a rapid deactivation of the STN when conflict is
resolved.

(vii) Dopamine and acetylcholine: parameters which
set the dopamine action on striatal neurons were
assigned so that a dopamine increase, during
reward, could activate the winner Go neuron in the
striatum close to its upper saturation and almost
completely inhibit all NoGo neurons. Similarly, a
dip in dopamine had to be able to strongly inhibit
all Go neurons (also via activation of the cholinergic
pathway) and excite the winner NoGo neuron. These
constraints were satisfied by setting appropriate
gains or synaptic weights from dopamine to striatum
and from dopamine to cholinergic interneurons to
striatum. As a consequence, the Hebb rule can work
as requested, helping the Go pathway during reward
and the NoGo pathway during punishment.

Starting from an initial cluster of values for the parame-
ters, able to satisfy the constraints (i) and (ii), the technique
was to assess the behavior of the network in order to have
the desired behavioral output by progressively including
subsequent constraints, fixing the previous parameters and
determining the new ones.

Some parameters were obtained also including or knock-
ing out specific structures, such as the STN.

This whole tuning procedure was iterated several times,
considering cyclically the previous set of parameters and
finally evaluating the entire neural network in order to verify
if thewhole behavior could satisfy all biological requirements.

The parameter values of themodel in the default state and
the initial values of state variables are reported in Table 1.

The synaptic weights of the model derived with the
procedure described above are reported in Table 2 instead.

4. Results

In the following section, we describe some simulation results,
to show how the present model works in paradigmatic
conditions.

The majority of the simulations are run with a tonic
dopamine value (0.45) corresponding, in our set of param-
eters, to healthy tonic levels. Simulations performed with a
depletion or an increase in the dopamine level are clearly
indicated.

Table 1: Parameter values of themodel in the default state and initial
values of state variables.

Name Value
𝜏/𝜏

𝐿
10 [ms]/50 [ms]

𝑎 4
𝑢

0
1

𝜗G 0.3
𝐼

E 1
𝐼

I 3
𝐼

H 1.25
𝛼 1
𝛽 −1

𝛾 −1

𝜎 0.1
𝜗PRE 0.5
𝜗POST 0.5

4.1. Default Behavior. An example ofmodel simulation in the
default case (i.e., with parameter values and the initial values
of state variables as inTable 1 and synapses values as inTable 2,
without learning) is presented in Figure 3.The stimulus given
as input to the network was S = [0.3 0.8 0.3 0.2].

With the symmetrical basal values of synapses, the BG
gate the response associated with the higher input stimulus
(i.e., the second in this case): accordingly the second neuron
in the cortex wins the competition and is maximally active,
together with the corresponding neuron in the thalamus.The
Go and NoGo portions show that both direct and indirect
pathways are activated for the winning action. However,
the correct response is gated due to an unbalance in the
activity of the Go and NoGo neurons, resulting in a greater
inhibition of the second neuron in the Gpi and therefore in
less inhibition to the corresponding neuron of the thalamus.
Hence, a positive loop occurs between the winning neuron of
the cortex and the corresponding neuron in the thalamus.

The STN activity is low, signaling that the network does
not perceive any conflict situation in the cortex.

Furthermore, the cholinergic interneuron activity is sta-
ble at its tonic level during the whole simulation, since no
error feedback was released.

4.2. Conflict Resolution. In particular situations, when the
choice for the cortex is particularly difficult, the hyperdirect
pathway, carried out by the STN, works to prevent any gating
by the BG. To analyze this situation, we used a conflicting
stimulus S = [0.85 0.9 0.85 0.1] as input to the network.
This stimulus creates a great conflict within the cortex, in
particular among the first 3 neurons, although the second
neuron receives the higher excitation. Results are illustrated
in Figure 4.

The red dotted lines represent the results of a simulation
performed by artificially eliminating the hyperdirect pathway
(to this aim, the STN activity was set at 0 throughout the
simulation). Here, a nonphysiological situation occurs, in
which all the 3 candidate actions rapidly reach the high
cortical activation. Both Go and NoGo signals for all the
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Table 2: Synaptic values of the model (pretraining).

Name Projection Type Values
𝐿 Inhibition Extradiagonal matrix 𝑙 𝑖𝑗

𝑖 ̸=𝑗

= −1.2

𝑊

CS Excitation Full matrix 𝑤

CS
𝑖𝑖
= 1.1; 𝑤CS

𝑖𝑗

𝑖 ̸=𝑗

= 0.2

𝑊

CT Excitation Diagonal matrix 𝑤

CT
𝑖𝑖

= 4

𝑊

GC Excitation Diagonal matrix 𝑤

GC
𝑖𝑖

= 0.48

𝑊

GS Excitation Full matrix 𝑤

GS
𝑖𝑖

= 0.9; 𝑤GS
𝑖𝑗

𝑖 ̸=𝑗

= 0

𝑊

NC Excitation Diagonal matrix 𝑤

NC
𝑖𝑖

= 1.08

𝑊

NS Excitation Full matrix 𝑤

NS
𝑖𝑖

= 0.1; 𝑤NS
𝑖𝑗

𝑖 ̸=𝑗

= 0

𝑊

EN Inhibition Diagonal matrix 𝑤

EN
𝑖𝑖

= −2.2

𝑊

IE Inhibition Diagonal matrix 𝑤

IE
ii = −3

𝑊

IG Inhibition Diagonal matrix 𝑤

IG
𝑖𝑖
= −12

𝑊

TC Excitation Diagonal matrix 𝑤

TC
𝑖𝑖

= 3

𝑊

TI Inhibition Diagonal matrix 𝑤

TI
𝑖𝑖
= −3

𝑤

ESTN Excitation Scalar 𝑤

ESTN
= 1

𝑤

ISTN Excitation Scalar 𝑤

ISTN
= 14

𝑘

E Excitation Scalar 𝑘

E
= 7

𝑊

STNE Inhibition Row vector 𝑤

STNE
𝑖

= −1

𝑤

GH Inhibition Scalar 𝑤

GH
= −1

𝑤

NH Excitation Scalar 𝑤

NH
= 1

3 actions rise, and the corresponding thalamic neurons are
disinhibited. Of course, this situation is unacceptable, since 3
contradictory actions could be simultaneously gated.

The blue solid lines represent the same simulation per-
formed assuming an intact STN: in this situation too an initial
state of conflict is clearly evident looking at the cortical signals
in C and at the energy function 𝐸. Consequently, the activity
of the STN initially rises and temporarily stops basal ganglia
feedback until the conflict within the cortex is solved. This is
underlined also by the delay in the Gpi and in the thalamic
activities, compared with the previous case.

The final result is that the cortex has more time to
solve its conflict; as a consequence the BG provide correct
feedback, even if slower: the final output response is the
correct one, that is, that coded by the second neuron of C.
More important, the model can select just 1 final response,
avoiding conflicting experiences, despite the presence of
multiple strong inputs.

Once the role of STN is accomplished, its activity is less
necessary and essentially the neuron becomes silent.

4.3. Reward and Punishment. In a previous section we men-
tioned that dopamine and cholinergic interneurons phasic
changes are responsible for synaptic plasticity in the BG.Here
we present how error feedbacks (i.e., reward and punishment)
are able to alter striatal activity, which is at the basis of
synaptic plasticity described by our Hebb rule.

In the following simulations (Figure 5) we illustrate
the effect that a reward or a punishment can have on the
different activities in the network. The stimulus used is S =

[0.4 0.8 0.6 0.5]. In the default state (i.e., without training)

the gated response is the one coded by the second neuron of
C, since it receives the greater excitation.

In the first simulation (red dotted lines) we assumed that
the final response of the network receives a punishment.This
is simulated by decreasing the dopamine level from its basal
value (0.45) to zero. The dopamine dip starts at 𝑡 = 100ms,
when the network has reached its steady-state level, and lasts
for 50ms (values suitable for latency and duration of phasic
dopaminergic response [2]). In the second simulations (blue
solid lines) we assumed that a reward occurs, simulated with
a peak of dopamine (from 0.45 to a value double the normal,
i.e., 0.9) still between 100 and 150ms.

The effect of reward and punishment does not appreciably
alter the activity in the cortex, but it is clearly noticeable
in the activity of striatal neurons. In case of punishment, a
transient dip occurs in the activity of the winning Go neuron.
Conversely, the NoGo units clearly show a peak, particularly
pronounced in the unit of the winning neuron. Furthermore,
we can notice a transient peak in the cholinergic interneuron
activity, underlying the inhibitory role of dopamine on ChI.

In case of reward, a transient peak occurs in the activity of
the winning Go unit.The others Go units maintain low activ-
ities, due to the contrast enhancement effect of dopamine.
All the NoGo neurons exhibit a transient dip in activity,
particularly remarkable for the unit in the selected action
channel. Finally, the activity of the cholinergic interneuron
exhibits a transient dip, which contributes to the excitation of
the Go pathway and to the inhibition of the NoGo pathway.

In conclusion, as a consequence of the dopamine tran-
sient changes, the phasic activity in the striatum, both in
case of reward and punishment, is moved far from the
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Figure 3: Continued.



Computational Intelligence and Neuroscience 11

0 50 100 150

0

0.5

1

Time (ms)

A
ct

iv
ity

Neuron 1 

Time (ms)

0.5

0 50 100 150

0

1

A
ct

iv
ity

Neuron 2

0.5

Time (ms)
0 50 100 150

0

1

A
ct

iv
ity

Neuron 3

0.5

Time (ms)
0 50 100 150

0

1

A
ct

iv
ity

Neuron 4

0 50 100 150

0

0.5

1

Time (ms)

A
ct

iv
ity

Neuron 1 Neuron 1 

0 50 100 150

0

0.5

1

Time (ms)

A
ct

iv
ity

Thalamus

STN and cholinergic interneuron

Figure 3: Temporal activity of the neurons in each structure of the whole network in a default case, assuming that the input stimulus favors
the second response. In this case, the basal ganglia gate the response associated with the higher input stimulus (i.e., the second in this case):
the second neuron in the cortex is maximally active, together with the corresponding neuron in the thalamus. The Go and NoGo pathways
are both active, but the imbalance induces the correct response to be gated. In this case, the STN activity is low, indicating that the network
does not perceive any conflict situation in the cortex.

postsynaptic threshold, thus allowing a significant Hebb
learning of the incoming synapses.

4.4. Contribution of the Cholinergic Interneurons to Rewards
and Punishment. One of the main novelties of the present
model is the introduction of cholinergic interneurons and
the simulation of their role in synaptic plasticity. In order to
clarify the function of this specific mechanism, the previous
simulations were repeated by artificially maintaining the
activity of the ChI at a constant basal level. A comparison
between the normal condition (blue solid line) and the
absence of ChI (red dotted line) is displayed in Figure 6.

Since, during reward and punishment, the main changes
in activity occurred in the striatal neurons (both Go and
NoGo) in the selected action channel (i.e., the second channel
in Figure 5), only the activity of these 2 neurons is displayed
again in Figure 6.

The red dotted signals have lower peaks and higher dips:
this means that the contribution of ChI is essential to move
the striatal activities far from the established threshold 𝜗POST
(this threshold is shown with a green dot-and-dashed line)
thus allowing greater changes in synaptic weights according
to our specific Hebb rule.

In particular, it can be noticed that the contribution of
ChI is particularly essential for the Go neurons, especially
during punishment; without this mechanism, the postsynap-
tic term in the Hebb rule would be close to 0, preventing any
plasticity along the direct pathway.

4.5. Training. Basal ganglia can change their behavior and
their stimulus-response associations by means of synaptic
plasticity.

Given a stimulus S, the aim of training is to shift the
chosen response from the default, prepotent one (in the
previous simulations the one associated with the strongest
element of S) to the one coded by another cortical neuron.

To train the network, we assumed a stimulus S =

[0.15 0.15 0.9 0.7]. In the default state, the third cortical
neuron receives the stronger excitation and therefore the
third action is selected. Our aim is to progressively suppress
the response coded by the third neuron of the cortex, when
this stimulus S is presented in input to the network, and to
train the network to gate the desired response, that is, the one
coded by the fourth neuron.

In these simulations some noise (normal distribution
with mean value 0 and standard deviation 0.25) was added to
the original stimulus S. Since each element of the stimulus S
has to be in a precise range of values previously specified, after
noise addition each element of S was checked and eventually
compelled in the range [0, 1].The addition of noise allows the
gating of alternative actions in response to the same external
input, and the occurrence of both reward and punishment
during the different epochs. This means that the subject is
not only exploiting the previous knowledge (coded in the
synapse values) but also exploring new possibilities. This
exploration/exploitation tradeoff is essential for having an
efficient learning.
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Figure 4: Continued.
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Figure 4: Temporal activity of the neurons in each structure of the whole network in a situation of strong conflict in the cortex, red dashed
line with no STN, blue solid line with STN.The red signals of the cortex underline that 3 strong candidate actions in competition are quickly
provided with basal ganglia feedback, being the STN off. All the corresponding 3 neurons of the thalamus are disinhibited, and the neurons
of the cortex rapidly reach high levels of activation, so all the 3 are simultaneously gated. The blue signals underline that, in the presence of
STN, just a single neuron of the cortex reaches the high value and is gated: the initial state of conflict is evident in the energy 𝐸 function. The
activity of the STN initially rises, temporarily stopping basal ganglia feedback until the conflict within the cortex is solved. As a consequence,
the basal ganglia provide slower but correct feedback, allowing only 1 response to be gated.

The training consisted of 100 epochs.
The changes in synapses 𝑊GC, 𝑊NC, 𝑊GS, and 𝑊

NS,
during the various epochs are illustrated in Figure 7 (blue
solid lines). Since the important synaptic changes occurred
only in the third and fourth action channels (where the
presynaptic activity is high) just the submatrices involved in
the third and fourth action channels, that is,𝑊GC (3: 4; 3: 4),
𝑊

NC (3: 4; 3: 4), 𝑊GS (3: 4; 3: 4), and 𝑊NS (3: 4; 3: 4), are
portrayed for briefness.

(i) Synapses from cortex to Go: recalling that 𝑊

GC

is implied in the direct pathway, the decrease of
the element in the position (3, 3) disfacilitates the
prepotent response. Conversely, the increase of the
element in the position (4, 4) corresponds to an
increase in the facilitation of the desired response,
with the corresponding synapse increased to its upper
saturation.

(ii) Synapses form cortex to NoGo: recalling that𝑊NC is
implied in the indirect pathway, the slight increase of
the element in the position (3, 3) tends to suppress the
prepotent response. On the contrary, the decrease of
the element in the position (4, 4) provides less inhibi-
tion to the neuron coding for the desired response; in
this case the corresponding synapse is decreased to 0
(lower saturation).

(iii) Synapses from the sensory cortex to the Go: recalling
that𝑊GS is implied in the direct pathway, the decrease
of the element in the position (3, 3) and the lack of
increase of the element in the position (3, 4) provide
less facilitation to the prepotent response. Similar to
𝑊

GC, this time 2 synapses, (4, 3) and (4, 4), rise to
provide more facilitation to the desired response.

(iv) Synapses from the sensory cortex to the NoGo:𝑊NS

is implied in the indirect pathway, and its changes
are less immediate to understand. Indeed, this matrix
exhibits only mild variations as a consequence of
training. Some changes (suppression of the third
action by an increase in element (3, 3)) are evident
only during the first epochs and therefore contribute
significantly just to the first phase of training. The
reason is that, during the last epochs, punishments
occur only rarely (since the network learned the
correct strategy) and rewards are predominant, which
inhibits all NoGo neurons, while the same elements of
the input stimulus S are still high. Hence, because of
the Hebb rule, all synapses from the high values of S
to the NoGo are progressively decreased. This aspect
might be improved by reducing the dopamine peaks
in case of expected rewards (see Discussion).

However, despite this incongruence, the comparison
between the cortical and thalamic activities at the beginning
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Figure 5: Continued.
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Figure 5: Temporal activity of the neurons in each structure of the whole network during error feedback, red dashed line punishment,
blue solid line reward. The effect of reward and punishment is clearly noticeable in the activity of striatal neurons. In case of punishment
(red signals), a transient dip occurs in the activity of the winning Go neuron. Conversely, the NoGo units clearly show a peak, particularly
pronounced in the unit of the winning neuron. Furthermore, we can notice a transient peak in the cholinergic interneuron activity, underlying
the inhibitory role of dopamine on ChI. In case of reward (blue signals), a transient peak occurs in the activity of the winning Go unit. The
others Go units maintain low activities, due to the contrast enhancement effect of dopamine. All the NoGo neurons exhibit a transient dip
in activity, particularly remarkable for the unit in the selected action channel. Finally, the activity of the cholinergic interneuron exhibits a
transient dip, which contributes to the excitation of the Go pathway and to the inhibition of the NoGo pathway.
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Figure 6: Temporal activity in the winner action channel of Go and NoGo neurons during reward and punishment, in the same conditions
as in Figure 5: red dashed line with no phasic activity of ChI (the activity of the ChI was artificially constrained at a constant basal level),
blue solid line with phasic activity of ChI. The red dotted signals have lower peaks and higher dips; this means that the contribution of ChI
is essential to move the striatal activities far from the established threshold 𝜗POST (this threshold is shown with a green dot-and-dashed line)
thus allowing greater changes in synaptic weights according to our specific Hebb rule.

and at the end of the training (Figure 8), in response to the
same stimulus S, shows that the effect of synapses learning
has been successful and that the network after the training
is now able to adapt the stimulus-response coded as desired.
This figure shows the temporal response of the network to the
stimulus S = [0.15 0.15 0.9 0.7], given without noise, in the

initial stage (red dotted signals) and in the final stage (blue
solid signals) of training.

Before training, the prepotent response is gated, as shown
by the final activity both in the cortex and the thalamus. The
first weak sign of training is shownby a little dip in the activity
of the third neuron of the thalamus, showing that the training
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Figure 7: Synapses update during the 100 epochs of training, red dashed line with no phasic activity of ChI, blue solid line with phasic activity
of ChI. In these simulations (contrarily to Figure 3) we assumed that, before training, the input stimulus favors the third response. However,
during training, the third response is punished and the fourth is rewarded. Each panel represents the submatrix 𝑊IJ (3: 4; 3: 4). Row 𝑖 is
post-synaptic neuron 𝑖, while column 𝑗 is presynaptic neuron 𝑗. (a)𝑊GC (3: 4; 3: 4). (b)𝑊NC (3: 4; 3: 4). (c)𝑊GS (3: 4; 3: 4). (d)𝑊NS (3: 4; 3:
4). Recalling that𝑊GC is implied in the direct pathway, the decrease of the element in the position (3, 3) disfacilitates the prepotent response.
Conversely, the increase of the element in the position (4, 4) facilitates the desired response. Recalling that 𝑊NC is implied in the indirect
pathway, the increase of the element in the position (3, 3) helps suppress the prepotent response. On the contrary, the decrease of the element
in the position (4, 4) provides less inhibition to the desired response. Similar consideration can be made for𝑊GS and less intuitively for𝑊NS

.

It is evident from the red signals that the effect of the lack of acetylcholine induces a generally slower learning process, with synapses changing
less compared to the normal case.

is starting punishing the prepotent response, as expected.
After 100 epochs of training, the network presented the same
stimulus S but now the BG gate the desired response, showing
that the training process was successful.

Finally, we repeated the training procedure by lesioning
the ChI, as was done in the simulation of Figure 6 (the activity
of the ChI is artificially maintained at a constant basal level,
suppressing any phasic activity). The results are shown in
Figure 7 with red dashed lines. It is evident that the effect
of lower peaks and higher dips in Go/NoGo neurons, due

to the lack of acetylcholine (previously shown in Figure 6),
induces a slower learning process, with synapses changing
less compared with the normal case, despite the same epochs
of training.Therefore, cholinergic interneurons are proven to
be essential to perform correct synaptic plasticity.

4.6. Network with Low, Normal, and High Tonic Dopamine
Levels. In our model dopamine is present both in its tonic
and in its phasic form.
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Figure 8: Comparison of model decision before and after training (with intact ChI). Temporal activity of the neurons in the cortex and in
the thalamus: red dashed line before training, blue solid line after training. It is evident that synaptic plasticity is able to introduce a different
stimulus-response association.

The implication of phasic dopamine in synaptic plasticity
was widely discussed before. Now we wish to focus on how
the model is able to reproduce behavioral changes due to
different levels of tonic dopamine and how tonic dopamine
affects BG behavior in our model.

In the following simulation, the stimulus S =

[0.3 0.3 0.85 0.3] is presented as input to the network,
assuming 3 different conditions characterized by a different
value of tonic dopamine: the normal value (0.45, blue solid
line), a high value (0.55, black dashed line), and a low value
(0.35, red dotted line). The simulation is performed with the
basal values of all other parameters and synapses (no training
was performed before). The winning action is therefore the
prepotent one, that is, the third, characterized by the greater
excitation for the cortical neurons. Hence, only neuronal
activity in the third action channel is displayed for briefness
(Figure 9).

As can be easily seen, the tonic level of dopamine has
effects on each structure of the network. In the cortex C,
the higher the tonic dopamine level, the faster the response,
caused by a prompter feedback by the thalamus.

One of the most interesting results is about striatal
activity: our model straightforwardly translates the physi-
ological knowledge that tonic dopamine level is associated
to an overall imbalance in the direct-indirect pathway [29,
30]. Indeed, a higher tonic dopamine level promotes the
direct pathway with respect to the indirect pathway [30, 31]:
this is particularly noticeable in the activity of the Go and
NoGo neurons of the winner, being the activity of the first

higher and of the second lower than normal. This could be
interpreted as a possible simulation of traditional medicated
Parkinson’s disease, as it is generally characterized by higher
tonic dopamine assumed by levodopa.

The situation portrayed by the low tonic dopamine level
exerts the opposite effects instead, promoting the indirect
with respect to the direct pathway: again, the clearest exam-
ples are the activities in the Go and NoGo neurons of the
winner, which are lower and higher than normal, respectively.
This condition could also have a clinical interpretation, as it
is widely known that one of the main features of Parkinson’s
disease is tonic dopamine levels lower than normal.

Moreover, different levels of tonic dopamine exert differ-
ential effect also on the tonic activity of the cholinergic unit
ChI: lower dopamine levels increase its activation, whereas
higher dopamine levels tend to inhibit it.

4.7. Sensitivity to Stimuli with Different Tonic Dopamine
Levels. The previous simulations clearly showed that a low
tonic dopamine level may produce longer response times. In
this set of simulations we investigate the relationship between
different levels of tonic dopamine and the response latency of
our network, using stimuli with different magnitude; the aim
is to assess whether there is a relationship between the tonic
dopamine level, the subjective sensitivity to the stimuli, and
the temporal delay of the gated response.

In these simulations the network is presented with a
stimulus S = [0.3 0.3 𝑎 0.3], with 𝑎 varying in the range
0.31 ÷ 1. Moreover, 4 different levels of tonic dopamine are
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Figure 9: Temporal activity of the winning action channel in each structure of the whole network with different tonic dopamine levels, red
dotted line low level, blue solid line normal level and black dashed line high level. No training was performed before. The tonic level of
dopamine has effects on each structure of the network. In the cortex C, the higher the tonic dopamine level, the faster the response, caused
by a prompter feedback by the thalamus. Moreover, a higher tonic dopamine level promotes the direct pathway with respect to the indirect
pathway: this is particularly noticeable in the activity of the Go and NoGo neurons of the winner, being the activity of the first higher and that
of the second lower than normal. In case of low tonic dopamine level, the opposite effects are evident, promoting the indirect with respect
to the direct pathway. Different levels of tonic dopamine exert differential effect also on the tonic activity of the cholinergic unit ChI: a lower
dopamine level increases its activation, whereas higher dopamine levels tend to inhibit it.

adopted: very low, 0.35 (red dotted curve); low, 0.4 (green dot-
and-dashed line); physiological, 0.45 (blue solid line); high,
0.55 (black dashed line).

The results are summarized in Figure 10.
The simulations show that, in case of stimuli of medium

strength (𝑎 ranging between 0.8 and 0.9), the time required to
achieve a valid response crucially depends on the dopamine
level: higher levels of dopamine result in faster responses
compared with lower levels. Conversely, when the stimulus
is high (>0.9), the temporal response is scarcely affected by
the dopamine level.

Furthermore, in case of low dopamine, the network is
able to gate only stimuli of sufficient strength (approximately
𝑎 > 0.8) but it neglects stimuli of lower amplitude. Indeed,

the lower the dopamine level, the higher the magnitude of a
stimulus necessary for activating the corresponding response.

This again accounts for particular behavior in Parkinson’s
disease, induced by either low tonic dopamine levels or,
after overmedication, tonic dopamine values higher than
normal. In the first case, the model predicts that the subject
can neglect important responses if the stimuli are not high
enough. In the second, hypersensitivity to the stimuli may
occur.

5. Discussion

The aim of the present work was to develop a new simple
model of action selection in the basal ganglia (BG), which
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Figure 10: Time delay required to achieve a correct response to a
stimulus of a given strength, with very low, low, normal, and high
tonic dopamine. The absence of points means that, with the given
stimulus and the given dopamine level, no acceptable response was
gated by the basal ganglia and so no cortical neuron reached the
activation threshold.The simulations show that, in case of stimuli of
medium strength (𝑎 ranging between 0.8 and 0.9), the time required
to achieve a valid response crucially depends on the dopamine
level: higher levels of dopamine result in faster responses compared
with lower levels. Conversely, when the stimulus is high (>0.9),
the temporal response is scarcely affected by the dopamine level.
Furthermore, in case of low dopamine, the network is able to gate
only stimuli of sufficient strength (approximately 𝑎 > 0.8) but it
neglects stimuli of lower amplitude.

could represent a good compromise between completeness
and simplicity. Hence, we incorporated the main routes
that operate in the BG circuitry and the basic aspects of
learning mechanisms involved, still maintaining a simplified
description of neural units and neural dynamics.

Actually, many different models of the BG have been
developed in the past years, with a great increment in the
last decade. As clearly pointed out by Cohen and Frank
[12] and Helie et al. [13], biologically inspired models can
approximately be subdivided into 2 major classes. On one
hand we have anatomically and biophysically detailed mod-
els, which include an accurate description of biophysical
processes within neurons and synapses (for instance ionic
channels); on the other hand, less detailed models try to
describe neuron dynamics and synapse learning with more
simple and compact equations, still remaining constrained by
the neurobiological architecture.The strength of the last class
of models is that they can simulate behavioral aspects and
may contribute to understand the nature of the computation
performed by entire brain regions by relating individual
mechanisms with important cognitive neuroscience prob-
lems, such as attention, decision, and learning.

The present model definitively belongs to the second
class. We tried to include the main mechanisms and neural
pathways that participate in the action selection process in the
BG, providing a simplified description of neurons and of their
reciprocal connections, without the introduction of unnec-
essary degrees of freedom, in order to mimic the emergent
properties of the overall circuitry. In other words, we followed
a parsimonious approach, which aspires to realize an efficient

tool to understand the functional organization of the system
and its behavior in a variety of physiopathological conditions.

Of course, due to the number of good models already
present in the literature, it is worthwhile to discuss the
innovative aspects of the present study and to point out in
which parts it resembles or differs from the existing ones.

In the subsequent analysis, we will focus especially on
models for action selection. Only when useful, other models
with different aims (like models oriented to study motor
functions or working memory) will be mentioned.

Most models of BG developed in past years do not
incorporate all the 3 major pathways (direct, indirect, and
hyperdirect). For instance, the indirect pathway is not mod-
eled in several important models, such as those by Ashby et
al. [32], Moustafa and Gluck [33], Ashby and Crossley [17], or
Schroll et al. [34].

Recently, however, several neural cognitive models
started including all the 3 main circuitry components, as the
present one. In the following section we will refer to these
models above all.

Certainly the present model exhibits many similarities
and is in debt with various ideas presented in recent papers by
Frank and coauthors (Frank [18]; Cavanagh et al. [35];Wiecki
and Frank [36]). In their last models the authors include all
the 3 pathways and incorporate the idea (see alsoNambu et al.
[37]) that the hyperdirect pathway realizes a diffuse inhibition
to brake any decision during conditions of high conflict in
the cortex. Furthermore, their models make use of Hebb
mechanisms in the striatum, based on phasic modulation of
the dopamine level.

There are, however, 2main differences in the present work
compared with these similar contributions, which justify our
study.

(1) First, we included a role for cholinergic neurons in
learning, suggesting also that a cholinergic contri-
bution is essential to train synapses in the striatum,
especially during punishment. Indeed, Cohen and
Frank [12] explicitly discuss the problem of synapse
learning during punishment: the question is whether
a dip of dopamine can be sufficient for learning, due
to the moderate dopamine basal concentration level.
These authors support the idea that the duration of the
dopamine dip is the key element during punishment.
Conversely, we propose a different explanation; that
is, the dip of dopamine can disinhibit the cholinergic
pathway, which, in turn, significantly modulates the
activity of the striatal neurons, thus favoring the
NoGo (striatopallidal) neurons versus the Go (stria-
tonigral) ones.

(2) Second, Frank models use a different mathematical
formalism (based on the LEABRA framework), which
is in the middle between the use of biophysically
detailed neurons and more abstract connectionist
neurons. Mathematical equations are described in
multiple publications, making it difficult for the
reader to synthetize all equations and parameter
numerical values as well as their computational
implementation. Conversely, the presentwork reports
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all equations and parameters in a single paper, thus
allowing a straightforward implementation by any
user with a basic knowledge on numerical methods
for solving differential equations (furthermore, a
Matlab version of the model may be available from
the authors on request).

Going through the comparison with other authors,
Stocco et al. [16] describe a model which mirrors the most
important features of the BG anatomy and whose structure
is quite similar to the present one. As ours, their model uses
simple computational units in the range [0 1]. However, it
exhibits important differences as well. First, as in Ashby et
al. [32], the model by Stocco simulates the role of dopamine
by adding a third term to the Hebb rule. Furthermore, this
model does not allow excitation in the prefrontal cortex to be
activelymaintained due to the absence of recurrent excitatory
connections (hence, in their model the cortex cannot be
used as a working memory). This is an important difference
comparedwith the presentmodel, with great impact inmodel
dynamics. Indeed, in our model the main role of the BG is to
select the best action by consenting activation of the thalamus
and hence by triggering a positive feedback between the
thalamus and the cortex. For instance, in case of conflicting
actions, the role of the hyperdirect pathway is to inhibit all
these positive loops, thus avoiding the simultaneous selection
of conflicting actions.

A recentmodel by Ashby and Crossley [17] focuses on the
role of cholinergic interneurons, but with fundamental dif-
ferences. First, the mathematical approach they use belongs
to the first class of computational models here exposed (i.e.,
detailed mathematical description with conductance values);
second, the interpretation that the authors give to the role
of cholinergic interneurons is different from ours, since they
assume these interneurons work only as a “switch,” able to
allow the BG to recognize when learning should occur and
when not. Hence, their description resembles the “eligibility
trace” modeling adopted by others and discussed below.

The model by Chersi et al. [38] also incorporates 3
pathways, with architecture similar to the present one. How-
ever, it belongs to the class of more physiologically oriented
models, since neurons are described as leaky integrate andfire
elements, and a larger number of neurons are adopted (the
overall model includes a total of 14600 neurons). More par-
ticularly, its learning rule is a combination of 2 components:
a spike-timing-dependent plasticity and an eligibility trace.
This synaptic plasticity is applied to a greater combination
of synapses, including those entering the STN layers and the
motor layers (which are not updated in our model). Hence,
theirmodel ismore realistic than the present at the individual
neuronal level, but less parsimonious when it is used with a
behavioral purpose.

More similar to the present is the model by Schroll et al.
[39], which is also based on 3 pathways and rate neurons,
including a learning mechanism based on dopamine. In
particular, the model includes plasticity of lateral inhibitory
synapses within the Gpi (not present in our model) and
of corticothalamic synapses using a two-factor Hebb rule;
the other synapses, however, including those converging

to the striatum, are learned with a three-factor Hebb rule
(i.e., making use of presynaptic, postsynaptic, and dopamine
terms). With this model, the authors were able to study the
effect of dopamine loss on synaptic plasticity, stressing its role
in parkinsonian symptoms.

An important point is that most aforementioned models
([16, 38, 39], but see also Guthrie et al. [40] and Moustafa
andGluck [33]) use a three-factor Hebb rule to train synapses
entering striatal neurons. This rule includes the product of 3
terms: a presynaptic, a postsynaptic, and a thirdmultiplicative
term which is based on phasic dopamine. An exception is
provided by the more recent models by Frank, which do not
use a three-factor rule. However, this author uses a more
complex rule than the present one, adopting a combination
of the Oja rule (i.e., an Hebb rule with a forgetting factor)
and an error-driven rule similar to that commonly adopted
in Boltzmann machines (for more details, see Frank [18]).

Worth noting is that, in the three-factor rule, the tonic
dopamine plays a different role compared with phasic
dopamine, acting on the input to neurons and thus setting
their working point; that is, tonic and phasic dopamine are
conceptually different. Conversely, the Hebb equations for
synapse learning in our model do not require a third term
but simply use the classic two-factors Hebb rule: dopamine
works just on the inputs to neurons (both in the striatum
and in the cholinergic interneurons); phasic dopamine differs
from tonic dopamine only in its transient nature triggered by
reward or punishment events. The basic idea is that, in the
absence of phasic dopamine changes, the winner neuron in
the striatum works close to the threshold of the postsynaptic
term in the Hebb rule. Consequently, no synaptic changes
(or just negligible synaptic changes) occur. During reward
or punishment, phasic dopamine modifies the activity of
striatal neurons, moving the activity of one neuron toward
the upper saturation (causing a synapse potentiation) and the
activity of other neurons toward inhibition (causing synapse
depression). In this regard, it is noticeable that we also
included a contrast enhancement mechanism of dopamine
in the striatonigral neurons (see also Frank [31]) so that
dopamine excites Go neurons with high basal activity but
further depresses neurons with poor basal activity. These
equations too (equation (8)) are original compared with
previous models.

Finally, we wish to stress that the choice of a two-factor
rule versus a three-factor rule is not dictated by the need to
better reproduce synaptic plasticity but rather to its greater
physiological reliability. In our opinion, the dopamine signal
used in the three-factor rule is not physiologically well-
founded: a simple Hebb rule is more physiologically reliable.

From the previous excursus, we can conclude that the
present work introduces 2 main aspects, which are of value,
compared with the previous modeling literature:

(1) the inclusion of cholinergicmechanisms, especially in
the learning phase;

(2) the use of a physiological “two-factor” Hebb rule that
does not postulate any “eligibility trace.”

Since the cholinergic role in learning is an important
new assumption of the present model, it deserves a few
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further comments. Despite being still partially hypothetical,
thismechanismfinds some support in the neurophysiological
literature. Cholinergic interneurons are tonically active [41]
and in primates exhibit a bursting pause during reward [42].
The pause of cholinergic interneurons activity to conditioned
stimuli (i.e., a reward) is thought to reflect a linkage with the
activity of dopaminergic neurons, as lesioning dopaminergic
neurons abolishes both the pause and learning [2, 42]. This
idea has been further strengthened by other recent findings,
showing that the activity of dopaminergic neurons in pri-
mates perfectlymirrors the pause in interneuron activity [43].
Results by Wang et al. [25] also suggest that dopaminergic
control of long term depression at striatal synapses is not
direct but mediated by cholinergic interneurons. A possi-
ble cooperative role of dopamine and acetylcholine in the
induction of synaptic plasticity in the striatum has also been
stressed for a long time by Calabresi et al. [26]. The present
model further hypothesizes that cholinergic interneurons
have a different effect on Go and NoGo neurons. Although
we are not aware of a direct proof for this specific hypothesis,
plausible biochemical mechanisms could justify our assump-
tions: for instance, it may be sustainable on the basis of both
the different role and concentration exerted by muscarinic
M1, M2, and M4 receptors in the striatum Go and NoGo
[44]. What is known for sure is that cholinergic interneurons
play a fundamental role, together with dopamine, in phasic
signaling: physiological findings show that this mechanism
could be explained by a combined Ca2+ and muscarinic M1
effect [24]: this definitely proves that additional inhibition is
provided toGo neurons during punishment. In ourmodel we
hypothesize that a dual effect is exerted on NoGo neurons,
both in reward and punishment.

Several simulations have been performed with the model
to illustrate that, with basal parameter values, it behaves as
expected. Some of these require further comments.

As previously pointed out by Frank in one of his works
[18], simulations in conditions of strong cortical conflict
underline the pivotal role played by the hyperdirect pathway
through the STN. Nambu et al. [45] proposed that a signal
conveyed through the hyperdirect pathway first inhibits large
areas of the thalamus. Although our description resembles
the one used in Frank [18], we claim that the present sim-
ulations are instructive to understand how the mechanism
actually works. Results clearly demonstrate that, without the
contribution of this hyperdirect signal, the presence of a
strong conflict within the cortex could induce the simultane-
ous excitation of different action channels. In order to avoid
this undesired effect (resulting in contradictory actions) a
brake excluding the thalamus is needed, to eliminate the
strong excitatory self-loop in the cortical winner-takes-all
mechanism. This is the same as to remove any positive self-
loop in theWTA network during the initial phase of conflict,
restoring it again only when the inhibitory intracortical
competition has solved (or reduced) the conflict [46].

Other interesting simulations concern the way the model
can modify its action selection strategy, depending on the
previous history of rewards and punishments in normal
conditions. In this regard, the most important synapses in

the model are those from the cortex to striatal neurons: we
demonstrated that the simple Hebb rule proposed, together
with a postsynaptic threshold close to the average neuronal
activity, can train these synapses quite well to reach the
desired aim. In addition, the synapses form the sensory cortex
to the Go neurons are well trained. Conversely, the synapses
from the sensory portion of the cortex (S) to the NoGo
striatum play a less important role: they are modulated only
at the beginning of learning a new action.

Since the introduction of cholinergic mechanisms is a
new important feature of the present model, in order to
understand the role of cholinergic interneurons in synap-
tic plasticity we performed a sensitivity analysis assuming
a lesioned cholinergic system. As expected, these further
simulations strongly prove and emphasize the role of the
cholinergic interneurons during training. In fact, in their
absence, an insufficient depotentiation of synapses enter-
ing the punished Go neurons and a slower potentiation
of synapses entering the rewarded neuron can easily be
observed. As a consequence, punished actions remain active
and compete with the rewarded actions.

It is worth noting that when performing our simulations
we assumed that the external stimulus does not merely
consists in the activation of a single input, but that more
inputs can be simultaneously excited. In other words, here
the stimulus vector S represents a context, within which the
proper action must be selected, not just a single pointy input
(in fact, in the simulations shown in Figure 7(c), both the
third and fourth components of S are active). As is well
known, a problem may arise if nonorthogonal stimuli are
associated during training with different responses, since an
interferencemay occur between previously learned stimulus-
responses associations [47]. We did not test this problem in
the present work, because we just wanted to analyze single
stimulus-response learning.The problemmay be investigated
in future model applications. In case, a possible interference
might be solved, as usually done in neural network models,
assuming a preprocessing net which orthogonalizes the
stimulus vectors, in order to reduce correlation and using a
larger number of input neurons.

Furthermore, we tested the role of tonic dopamine in
the model. This is extremely important to simulate patho-
logical conditions, like those occurring in Parkinson’s disease
(PD) subjects experiencing dopamine depletion or dopamine
hypermedication. Results clearly show that a reduction of
the tonic dopamine level causes various behavioral deficits:
first, a stronger stimulus may be required to elicit the same
behavioral response; second, in case of sufficient stimulus,
triggering the same response requires a longer time. Both
these results agree with clinical findings, showing that tonic
dopamine is important to speed the reaction times [48, 49].

Since the model uses just a single dopamine term, which
acts on striatal and cholinergic neuron inputs, a similar effect
of dopamine depletion is expected in the learning phase too.
This characteristic will be tested in futuremodel applications,
also comparing model predictions with behavioral data.
Among the different behavioral tests that may be simulated
with the model and are often used in the clinical practice
on PD patients, we can mention the finger tapping test [50]
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and the Wisconsin card sorting test [51]: indeed the ability
to perform these tests is often compromised in PD and is
significantly correlated with the pharmacokinetic profile of
oral Levodopa [52, 53].

There are many other behavioral results, concerning
subjects with PD, which can be explored with our model in
future works. For instance, it would be interesting to com-
pare the differential sensitivity to rewards and punishments
between medicated and unmedicated PD subjects, and the
model could also be used to test the effect of anticholinergic
medications on PD subjects a well. These analyses may
further confirm model assumptions on the learning role of
dopamine and acetylcholine or may lead to possible useful
corrections.

Finally, we wish to underline a few simplifications of
the present model, which may become target of future
improvement. First, we did not adopt a temporal differential
learning rule (Sutton [54], Suri [55]): the model just uses a
delayed associative learning rule, based on the values at the
end of the trial to modify the synapses. Furthermore, the
punishment and reward signal are treated as external inputs.
There is large consensus today that phasic dopamine changes
are especially caused by “unexpected rewards” and by “unex-
pected absences of reward” [2, 20, 54, 56–59]. This means,
for instance, that we should use a temporal modulation of
rewards and punishments during training, thus progressively
reducing the phasic dopamine peaks when a strategy has
been successfully learned; that is, the reward becomes well-
expected. A more sophisticated future model strategy may
incorporate a temporal rule and maybe include a division
between a critic and an actor, to realize more complex
learning strategies. Indeed, only the actor is implemented in
the present model version. Furthermore, as discussed above,
the assumption that acetylcholine has different effects on
Go and NoGo cells is still partially hypothetical. Finally,
the model assumes the convergence of the sensory and
motor (cortical) inputs to the same cells of the striatum: this
hypothesis is still not fully supported by anatomical data.

Lastly, themodel does not incorporate some assumptions.
For instance, the classical view that the BG are functionally
organized into the previously mentioned 3 main pathways
is acknowledged, as the majority of computational models
assume. This vision has been recently questioned providing
proofs and examples of other plausible functional interpre-
tations [60]. As minor points, the model neglects feedback
projections from the thalamus to the striatum and from the
Gpe to the striatum.This simplification, however, is common
to most models (see, for instance, Stocco et al. [16]). Some
authors trained also cortico-cortical synapses (see Cohen and
Frank [12]): as discussed by these authors, this may allow
habits often chosen in the past to be incorporated directly
within the cortex, without the need for any facilitation by the
BG.
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[22] S. Hernández-López, J. Bargas, D. J. Surmeier, A. Reyes, and
E. Galarraga, “Receptor activation enhances evoked discharge
in neostriatal medium spiny neurons by modulating an L-type
Ca2+ conductance,”The Journal of Neuroscience, vol. 17, no. 9, pp.
3334–3342, 1997.

[23] T. Aosaki, K. Kiuchi, and Y. Kawaguchi, “Dopamine D1-like
receptor activation excites rat striatal large aspiny neurons in
vitro,”The Journal of Neuroscience, vol. 18, no. 14, pp. 5180–5190,
1998.

[24] A. Tozzi, A. de Iure, M. Di Filippo et al., “The distinct role
of medium spiny neurons and cholinergic interneurons in the
D2/A2A receptor interaction in the striatum: implications for
Parkinson’s disease,” The Journal of Neuroscience, vol. 31, no. 5,
pp. 1850–1862, 2011.

[25] Z. Wang, L. Kai, M. Day et al., “Dopaminergic control of
corticostriatal long-term synaptic depression in medium spiny
neurons is mediated by cholinergic interneurons,” Neuron, vol.
50, no. 3, pp. 443–452, 2006.

[26] P. Calabresi, B. Picconi, L. Parnetti, and M. Di Filippo, “A
convergent model for cognitive dysfunctions in Parkinson’s
disease: the critical dopamine-acetylcholine synaptic balance,”
Lancet Neurology, vol. 5, no. 11, pp. 974–983, 2006.

[27] J. A. Goldberg, J. B. Ding, and D. J. Surmeier, “Muscarinic
modulation of striatal function and circuitry,” Handbook of
Experimental Pharmacology, vol. 208, pp. 223–241, 2012.

[28] A. Pisani, G. Bernardi, J. Ding, and D. J. Surmeier, “Re-
emergence of striatal cholinergic interneurons in movement
disorders,” Trends in Neurosciences, vol. 30, no. 10, pp. 545–553,
2007.

[29] J. A. Obeso, M. C. Rodriguez-Oroz, M. Rodriguez et al.,
“Pathophysiology of the basal ganglia in Parkinson’s disease,”
Trends in Neurosciences, vol. 23, supplement 1, pp. S8–S19, 2000.

[30] R. Cools, R. A. Barker, B. J. Sahakian, and T. W. Robbins,
“Enhanced or impaired cognitive function in Parkinson’s dis-
ease as a function of dopaminergic medication and task
demands,” Cerebral Cortex, vol. 11, no. 12, pp. 1136–1143, 2001.

[31] M. J. Frank, “Dynamic dopamine modulation in the basal
ganglia: a neurocomputational account of cognitive deficits
in medicated and nonmedicated Parkinsonism,” Journal of
Cognitive Neuroscience, vol. 17, no. 1, pp. 51–72, 2005.

[32] F. G. Ashby, J. M. Ennis, and B. J. Spiering, “A neurobiological
theory of automaticity in perceptual categorization,” Psycholog-
ical Review, vol. 114, no. 3, pp. 632–656, 2007.

[33] A. A. Moustafa and M. A. Gluck, “A neurocomputational
model of dopamine and prefrontal-striatal interactions during
multicue category learning by Parkinson patients,” Journal of
Cognitive Neuroscience, vol. 23, no. 1, pp. 151–167, 2011.

[34] H. Schroll, J. Vitay, and F. H. Hamker, “Working memory and
response selection: a computational account of interactions
among cortico-basalganglio-thalamic loops,” Neural Networks,
vol. 26, pp. 59–74, 2012.

[35] J. F. Cavanagh, T. V. Wiecki, M. X. Cohen et al., “Subthalamic
nucleus stimulation reverses mediofrontal influence over deci-
sion threshold,” Nature Neuroscience, vol. 14, no. 11, pp. 1462–
1467, 2011.

[36] T. V. Wiecki and M. J. Frank, “A computational model of
inhibitory control in frontal cortex and basal ganglia,” Psycho-
logical Review, vol. 120, no. 2, pp. 329–355, 2013.

[37] A. Nambu, H. Tokuno, I. Hamada et al., “Excitatory cortical
inputs to pallidal neurons via the subthalamic nucleus in the
monkey,” Journal of Neurophysiology, vol. 84, no. 1, pp. 289–300,
2000.

[38] F. Chersi, M. Mirolli, G. Pezzulo, and G. Baldassarre, “A spiking
neuron model of the cortico-basal ganglia circuits for goal-
directed and habitual action learning,”Neural Networks, vol. 41,
pp. 212–224, 2013.

[39] H. Schroll, J. Vitay, and F. H. Hamker, “Dysfunctional and com-
pensatory synaptic plasticity in Parkinson’s disease,” European
Journal of Neuroscience, vol. 39, no. 4, pp. 688–702, 2014.

[40] M. Guthrie, C. E. Myers, and M. A. Gluck, “A neurocomputa-
tional model of tonic and phasic dopamine in action selection:
a comparison with cognitive deficits in Parkinson’s disease,”
Behavioural Brain Research, vol. 200, no. 1, pp. 48–59, 2009.

[41] B. D. Bennett andC. J.Wilson, “Spontaneous activity of neostri-
atal cholinergic interneurons in vitro,” Journal of Neuroscience,
vol. 19, no. 13, pp. 5586–5596, 1999.

[42] T. Aosaki, A. M. Graybiel, and M. Kimura, “Effect of the
nigrostriatal dopamine system on acquired neural responses in
the striatum of behaving monkeys,” Science, vol. 265, no. 5170,
pp. 412–415, 1994.

[43] G. Morris, D. Arkadir, A. Nevet, E. Vaadia, and H. Bergman,
“Coincident but distinct messages of midbrain dopamine and
striatal tonically active neurons,” Neuron, vol. 43, no. 1, pp. 133–
143, 2004.

[44] I. A. Oldenburg and J. B. Ding, “Cholinergic modulation of
synaptic integration and dendritic excitability in the striatum,”
Current Opinion in Neurobiology, vol. 21, no. 3, pp. 425–432,
2011.

[45] A. Nambu, H. Tokuno, andM. Takada, “Functional significance
of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway,”Neu-
roscience Research, vol. 43, no. 2, pp. 111–117, 2002.

[46] B. Zavala, K. Zaghloul, and P. Brown, “The subthalamic nucleus,
oscillations, and conflict,”MovementDisorders, vol. 30, no. 3, pp.
328–338, 2015.

[47] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory
of Neural Computation, vol. 1, Westview Press, 1991.



24 Computational Intelligence and Neuroscience

[48] Y. Niv, N. D. Daw, D. Joel, and P. Dayan, “Tonic dopamine:
opportunity costs and the control of response vigor,” Psy-
chopharmacology, vol. 191, no. 3, pp. 507–520, 2007.

[49] A. A. Moustafa, M. X. Cohen, S. J. Sherman, and M. J. Frank,
“A role for dopamine in temporal decision making and reward
maximization in Parkinsonism,” The Journal of Neuroscience,
vol. 28, no. 47, pp. 12294–12304, 2008.

[50] I. Shimoyama, T. Ninchoji, and K. Uemura, “The finger-tapping
test. A quantitative analysis,” Archives of Neurology, vol. 47, no.
6, pp. 681–684, 1990.

[51] E. A. Berg, “A simple objective technique formeasuring flexibil-
ity in thinking,” The Journal of General Psychology, vol. 39, pp.
15–22, 1948.

[52] A. J. Espay, J. P. Giuffrida, R. Chen et al., “Differential response
of speed, amplitude, and rhythm to dopaminergic medications
in Parkinson’s disease,”Movement Disorders, vol. 26, no. 14, pp.
2504–2508, 2011.

[53] F. Caillava-Santos, R. Margis, and C. Rieder, “Wearing-off in
Parkinson’s disease: neuropsychological differences between on
and off periods,” Neuropsychiatric Disease and Treatment, vol.
11, pp. 1175–1180, 2015.

[54] R. S. Sutton, “Learning to predict by the methods of temporal
differences,”Machine Learning, vol. 3, no. 1, pp. 9–44, 1988.

[55] R. E. Suri, “TD models of reward predictive responses in
dopamine neurons,” Neural Networks, vol. 15, no. 4–6, pp. 523–
533, 2002.

[56] W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate
of prediction and reward,” Science, vol. 275, no. 5306, pp. 1593–
1599, 1997.

[57] J. W.Mink andW. T.Thach, “Basal ganglia intrinsic circuits and
their role in behavior,” Current Opinion in Neurobiology, vol. 3,
no. 6, pp. 950–957, 1993.

[58] H. M. Bayer, B. Lau, and P. W. Glimcher, “Statistics of midbrain
dopamine neuron spike trains in the awake primate,” Journal of
Neurophysiology, vol. 98, no. 3, pp. 1428–1439, 2007.

[59] R. E. Suri and W. Schultz, “A neural network model with
dopamine-like reinforcement signal that learns a spatial delayed
response task,” Neuroscience, vol. 91, no. 3, pp. 871–890, 1999.

[60] P. Calabresi, B. Picconi, A. Tozzi, V. Ghiglieri, and M. Di
Filippo, “Direct and indirect pathways of basal ganglia: a critical
reappraisal,” Nature Neuroscience, vol. 17, no. 8, pp. 1022–1030,
2014.


