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Abstract 
Mitochondria sense, shape and integrate signals, and thus 
function as central players in cellular signal transduction. 
Ca2+ waves and redox reactions are two such intracellular 
signals modulated by mitochondria. Mitochondrial Ca2+ 

transport is of utmost physio-pathological relevance with 
a strong impact on metabolism and cell fate. Despite its 
importance, the molecular nature of the proteins involved 

in mitochondrial Ca2+ transport has been revealed only 
recently. Mitochondrial Ca2+ promotes energy metabolism 
through the activation of matrix dehydrogenases and down-
stream stimulation of the respiratory chain. These changes 
also alter the mitochondrial NAD(P)H/NAD(P)+ ratio, but 
at the same time will increase reactive oxygen species 
(ROS) production. Reducing equivalents and ROS are 
having opposite effects on the mitochondrial redox state, 
which are hard to dissect. With the recent development 
of genetically encoded mitochondrial-targeted redox-
sensitive sensors, real-time monitoring of matrix thiol 
redox dynamics has become possible. The discoveries 
of the molecular nature of mitochondrial transporters 
of Ca2+ combined with the utilization of the novel redox 
sensors is shedding light on the complex relation between 
mitochondrial Ca2+ and redox signals and their impact on 
cell function. In this review, we describe mitochondrial 
Ca2+ handling, focusing on a number of newly identified 
proteins involved in mitochondrial Ca2+ uptake and release. 
We further discuss our recent findings, revealing how 
mitochondrial Ca2+ influences the matrix redox state. As 
a result, mitochondrial Ca2+ is able to modulate the many 
mitochondrial redox-regulated processes linked to normal 
physiology and disease. 
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Core tip: Deregulated redox signaling in mitochondria 
leads to mitochondrial dysfunction, associated with several 
disorders and disease states. Matrix Ca2+ rising can be 
linked through multiple pathways to the mitochondrial 
redox state. Here we describe recent progress in the field 
of mitochondrial Ca2+ handling. We further summarize how 
mitochondrial Ca2+ signals are influencing the mitochondrial 
redox state. This link between Ca2+ and redox signals is likely 
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of central importance in the regulation of mitochondrial 
function in health and disease. 

Santo-Domingo J, Wiederkehr A, De Marchi U. Modulation of 
the matrix redox signaling by mitochondrial Ca2+. World J Biol 
Chem 2015; 6(4): 310-323  Available from: URL: http://www.
wjgnet.com/1949-8454/full/v6/i4/310.htm  DOI: http://dx.doi.
org/10.4331/wjbc.v6.i4.310

INTRODUCTION 
Mitochondria are versatile multifunctional organelles 
best known for their contribution to cellular energy 
homeostasis. Mitochondria are also central regulators 
of cell fate. The involvement of mitochondria in a large 
number of biological processes is dependent on two 
unique characteristics. First, mitochondria are organelles 
able to sense and influence a number of intracellular 
signals (ions and small molecules, such as Ca2+, ATP, 
pH and the redox potential). Second, these organelles 
are very dynamic. Mitochondria undergo morphological 
changes (they fragment and fuse)[1,2], and they increase or 
decrease in the mass due to mitochondrial biogenesis[3] 
and mitophagy[4]. Finally, they can move within the cell[5]. 
Mitochondrial dynamics combined with their ability to 
control the fluxes of ions and small molecules makes this 
organelle a central player in signal transduction. Two of 
the signals strongly affected by mitochondria are Ca2+ 
and redox state.

Ca2+ is a key intracellular messenger that coordinates 
a vast repertoire of cellular functions, ranging from 
contraction, secretion and fertilization to the control of 
transcription, proliferation, several aspects of develo­
pment as well as learning and memory[6-8]. Cells express 
a large number of proteins for the precise spatial and 
temporal control of Ca2+ rising[6]. Mitochondria efficiently 
contribute to the shaping of Ca2+ signals through Ca2+ 

uptake and release[9-12]. The associated matrix Ca2+ 

rises (transient or prolonged) act as a signal per se that 
can modulate energy metabolism and cell fate[12-16]. 
Although the basic properties of mitochondrial Ca2+ 

handling have been established several decades ago, the 
molecular identities of the mitochondrial Ca2+ transport 
systems have only been revealed over the last 6 years 
(see section on “Molecular identification of mitochondrial 
Ca2+ transporters”, below). The identification and study 
of these transporters has improved our understanding 
of the physio-pathological role of mitochondrial Ca2+ 
transport and provided researchers with new opportunities 
for molecular intervention. 

Signals other than Ca2+ are generated/integrated in 
the mitochondrial matrix, notably redox reactions linked 
to the production of reactive oxygen species (ROS), and 
changes in the oxidation state of thiol groups in proteins 
(thiol switches). Redox reactions and associated changes 
can serve as cellular signals. Metabolites and proteins 

can activate specific cellular signaling pathways in a 
redox state-dependent manner[17,18]. Thiol switches in 
proteins are controlled by the balance of two opposite 
influences, oxidizing and reducing. ROS are able to 
shift the equilibrium to a more oxidized state. This is 
particularly relevant in mitochondria, which are a major 
source of ROS[19,20]. Such oxidation in mitochondria 
is counteracted by reducing systems that depend on 
the availability of NAD(P)H, which is generated by 
mitochondrial metabolism[18]. The oxidation/reduction 
of thiol groups in mitochondrial target proteins can 
modulate their activity, localization and stability. Such 
changes can regulate mitochondrial functions, including 
nutrient oxidation, oxidative phosphorylation, ROS 
production, mitochondrial permeability transition, cell 
death and mitochondrial morphology[21]. The study of 
redox switches in vivo has been a challenge[22]. However, 
the recent development of fluorescent protein redox 
sensors has revolutionized the study of redox processes 
in living cells. They allow real-time compartment-specific 
monitoring of thiol redox dynamics[22-25]. 

Excellent reviews have covered the mechanisms 
of ROS production[19], the importance of redox signals 
in the modulation of mitochondrial function, and how 
deregulation of these signals can lead to the development 
of various disease states[21,26,27]. The effect of Ca2+ on ROS 
generation and in the regulation of cellular energetics 
has also been reviewed recently[13,28]. Here we will review 
the transporters mediating and regulating the entry and 
extrusion of calcium across the inner membrane. We will 
further discuss the evidences linking mitochondrial Ca2+ 
rises to the modulation of the matrix redox signals. 

molecular identification of 
Mitochondrial Ca2+ TRANSPORTers
Mitochondria are equipped with sophisticated machinery 
mediating Ca2+ fluxes across the inner mitochondrial 
membrane (Figure 1). This system is composed of 
channels, exchangers, regulatory proteins and a poorly 
characterized matrix Ca2+ buffer system. In this section, 
we will focus on the recently identified Ca2+ channels 
and exchangers. 

Mitochondrial Ca2+ uptake mechanisms
Mitochondrial Ca2+ uniporter: The mitochondrial 
Ca2+ uniporter (MCU) is the principal mediator of Ca2+ 
transport into the mitochondrial matrix. The MCU 
catalyzes the passive and unidirectional transport of Ca2+ 
across the inner mitochondrial membrane, a process 
that is driven by the electrochemical gradient (Δψmit) in 
energized mitochondria. The inside negative potential 
of -180 mV is generated as electrons transferred 
stepwise along the respiratory chain from electron 
donors inside the matrix to the end-acceptor molecular 
oxygen. Given the large electrical gradient across the 
inner mitochondrial membrane, the organelle has 
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the potential to import large amounts of Ca2+. At a 
concentration of 100 nmol/L cytosolic Ca2+ in a resting 
cells and a mitochondrial potential of -180mV, the Nernst 
equation would predict that the equilibrium will only 
be reached at 100 mmol/L mitochondrial [Ca2+]. The 
result would be a gradient of six orders of magnitude 
between matrix and cytosolic calcium concentration. 
However, this matrix Ca2+ concentration is never reached 
under physiological conditions for three reasons: (1) 
the mitochondrial Ca2+ uptake mechanism displays 
low Ca2+ affinity, and the Kd has been estimated close 
to 10 μmol/L. Therefore efficient mitochondrial Ca2+ 
uptake only occurs in the μmol/L cytosolic [Ca2+] range, 
protecting the mitochondria from Ca2+ overload in resting 
cells; (2) mitochondria activate Ca2+ extrusion as soon 
as [Ca2+] rises in the mitochondrial matrix, following cell 
stimulation; and (3) the mitochondrial matrix contains 
a poorly defined high capacity Ca2+ buffer system, 
composed of PO4

-, Ca2+ binding proteins and metabolites 
that significantly reduce free mitochondrial [Ca2+]. 

Electrophysiological recordings in mitoplasts have 
revealed the existence of an inward rectifying highly 
Ca2+-selective current across the inner mitochondrial 

membrane (IMCU)[29]. This current was shown to be 
reflecting mitochondrial Ca2+ uniport activity as it was 
blocked by two well-characterized pharmacological 
inhibitors of MCU, ruthenium red and Ru360[29]. This 
study was the first to define the electrophysiological 
properties of the MCU. 

Following a long-lasting search for the proteins 
responsible for mitochondrial calcium uniport, two groups 
independently identified the essential component of the 
MCU in 2011[30,31]. The Mitocarta, the most complete 
compendium of mitochondrial proteins, was used as a 
starting point for the identification of MCU1 (mitochondrial 
Ca2+ uptake protein 1). Baughman et al[30] identified 
MCU1 on the basis of an integrative genomic approach 
combining whole-genome phylogenetic profiling, genome-
wide co-expression analysis and organelle-wide protein 
co-expression analysis to predict proteins functionally 
related with MICU1. MICU1 had previously been ide­
ntified as essential for mitochondrial Ca2+ uptake[32]. De 
Stefani et al[31] uncovered MCU1 by analyzing well-known 
and predicted characteristics of the mitochondrial uptake 
mechanism: the ubiquitous expression in mammalian 
cells, its absence in yeast (which lacks a ruthenium 
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Figure 1  Ca2+ transport proteins of mitochondria. In mammalian mitochondria, the uptake of Ca2+ is mediated by the Ca2+-selective channel MCU, which is part 
of a high molecular weight protein complex called Uniplex. At least 4 additional proteins (MCUb, MICU1, MICU2 and EMRE) regulate MCU activity. Ca2+ is then 
extruded by a sodium/calcium exchange (NCX) or proton/calcium exchange (HCX). If the protein NCLX has been confirmed to be the mitochondrial NCX, which is 
down-regulated by the protein SLP-2, the molecular nature of the mitochondrial HCX is still debated. Dimers of mitochondrial ATP synthase have been proposed 
to form the PTP, a mitochondrial channel regulated by CypD, that facilitates PTP opening by desensitizing PTP to Ca2+. Besides being activated by Ca2+, PTP has 
also been proposed to act as a reversible fast Ca2+ release channel. Other non-MCU mitochondrial proteins with an indirect or debated effect on Ca2+ transport are 
represented in the blue square (MCUR; SLC25A23; ryanodine receptor, RyR; UCP2; UCP3; LETM1). OMM: Outer mitochondrial membrane; IMS: Inter-membrane 
space; IMM: Inner mitochondrial membrane; VDAC: Mitochondrial porin; PTP: Permeability transition pore; CypD: Cyclophilin D; MCU: Mitochondrial Ca2+ uniporter; 
MCUR1: Mitochondrial calcium uniporter regulator 1; MICU1: Mitochondrial Ca2+ uptake protein 1; MICU2: Mitochondrial Ca2+ uptake protein 2; EMRE: Essential MCU 
regulator.
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to prevent mitochondrial Ca2+ uptake[34,35]. EMRE[36] was 
discovered as part of the mitochondrial calcium uptake 
machinery by quantitative mass spectrometry, and was 
shown to mediate MCU1-MICU1 physical and functional 
interaction. When EMRE was missing, the interaction 
between MCU1 and MICU1/2 was disrupted, despite intact 
MCU1 oligomers and preserved MICU1-2 interactions[36]. 
EMRE knock-out and knock-down models display a strong 
decrease in the ability to take up Ca2+ in permeabilized 
mitochondria. Furthermore, IMCU Ca2+ current is virtually 
absent in mitoplasts from EMRE knocked-out cells. These 
results are in conflict with earlier results suggesting that 
MCU1 alone is sufficient for MCU activity[37]. 

A large variety of mitochondrial Ca2+ currents has 
been observed across different tissues and cell types[42]. 
Based on the current knowledge of the function of 
MCU components, it will be possible to study how their 
stoichiometry influences the variability of mitochondrial 
Ca2+ currents in different cell types. 

A number of additional proteins have been shown to 
be important for mitochondrial Ca2+ uptake[43-47]. These 
proteins are not likely part of the Uniplex, but rather may 
be involved in alternative mechanisms of mitochondrial 
Ca2+ uptake. Therefore, this group of proteins is discussed 
separately. A genome-wide siRNA screen, designed 
to detect new proteins involved in mitochondrial Ca2+ 
uptake[43,44], has identified leucine zipper-EF-hand containing 
transmembrane protein 1 (LETM1) as a molecule able to 
mediate high affinity (200 nmol/L) mitochondrial Ca2+ 
uptake in exchange for H+. Several laboratories have 
been able to reproduce the mitochondrial Ca2+ uptake 
defect in LETM1 knock-down cells[48,49]. Furthermore, 
when reconstituted in liposomes, LETM1 mainly promotes 
electro-neutral Ca2+/2H+ exchange[50]. However, LETM1 
was previously proposed to exchange K+ against H+[51,52]. 
Also, thermodynamic considerations would argue against 
electro-neutral Ca2+/2H+ exchange, as this should 
promote Ca2+ extrusion rather than uptake given the 
proton gradient (0.8 pH units more alkaline in the matrix) 
across the inner mitochondrial membrane[53]. Knockout 
of LETM1 causes mitochondrial dysfunction, swelling 
and depolarization, thus reducing the driving force for 
mitochondrial Ca2+ uptake. Depolarization of the inner 
mitochondrial membrane as a secondary consequence of 
LETM1 disruption may explain impaired MCU-mediated 
Ca2+ transport[51,52,54]. The role of LETM1 in mitochondrial 
ion homeostasis remains controversial. MCUR1 was 
originally reported to be a component of the Uniplex, 
contributing to ruthenium red-sensitive mitochondrial Ca2+ 
uptake[45]. However, MCUR1 was not identified in mass 
spectrometry experiments of the purified Uniplex, arguing 
against a direct role in mitochondrial Ca2+ uptake[36]. In the 
absence of MCUR1 expression, oxidative phosphorylation is 
impaired and cellular ATP levels lower, leading to activation 
of AMP kinase. Recent evidence suggests that MCUR1 
may instead work as a cytochrome-c oxidase assembly 
factor[55]. The evidence suggests that loss of MCUR1 
impairs respiratory function, leading to diminished Δψmit and 

red-sensitive Ca2+ uptake mechanism), its presence in 
kinetoplastids (which express a ruthenium red-sensitive 
Ca2+ uptake mechanism), and the presence of two or 
more predicted transmembrane domains. 

The MCU is part of a high molecular weight protein 
complex called Uniplex (Uniporter Complex, Figure 1). 
This complex is comprised of at least 5 different proteins: 
MCU1[30,31], MCUb[33], MICU1[32], MICU2[34,35] (mitochondrial 
Ca2+ uptake protein 2) and essential MCU regulator 
(EMRE)[36]. Less well established is the interaction with 
and functional relevance of 2 additional mitochondrial 
proteins: MCUR and SLC25A23. MCU1 constitutes the 
pore-forming subunit. This essential component of the 
uniporter is sufficient for uniporter activity[37]. MCU1 
contains two α-helix trans-membrane domains connected 
by a loop in the inter-membrane space[30]. Biochemical 
evidence and computational modeling predict MCU1 
forming a tetramer. The trans-membrane domains build 
the pore of the channel. The loops, facing the inter-
membrane space, constitute the mouth of the channel, 
which also confers Ca2+ selectivity. Sequence analysis of 
MCU led to the identification of a new MCU1 paralogue, 
named MCUb. This protein can replace MCU1 subunits 
resulting in different MCU1/MCUb ratios as observed in 
different tissues. MCUb can be considered a dominant 
negative pore-forming version of MCU1. Its presence adds 
a regulatory mechanism that modulates the properties 
of the channel[33]. MICU1 and MICU2 are Ca2+-sensitive 
subunits of the complex[32,38]. Both carry EF-hand (helix-
loop-helix) Ca2+ binding domains facing the inter-
membrane space (Figure 1). Indirectly, these EF-hands 
sense cytosolic signals. MICU1 and MICU2 are likely to 
work as a gatekeeper defining the activation threshold 
of the channel, preventing the activity at resting Ca2+ 
levels (100 nmol/L) and triggering MCU activity when 
Ca2+ microdomains (several μmol/L) are generated close 
to the channel[39,40]. MICU1 has been shown to control 
cooperativity of Ca2+ uptake, a well-defined characteristic 
of the MCU. This regulatory mechanism favors the active 
state of the channel at high cytosolic [Ca2+][39]. The Ca2+ 
binding affinity of each active helix-loop-helix domain 
on MICU1 and MICU2 has been estimated to be in the 
range of 15-21 μmol/L. These values are consistent 
with the necessity to reach high Ca2+ microdomains as 
an essential requirement for full MCU activation[41]. The 
recently obtained crystal structure of MICU1 suggests that 
in the absence of Ca2+, the protein forms hexamers that 
inhibit MCU1. Conversely, in the presence of Ca2+, MICU1 
undergoes a conformational change, forming multiple 
oligomers that activate MCU1[41]. Biochemical evidence 
suggests that MICU2 physically interacts with MICU1, 
which in turn interacts with MCU1. Functional interaction 
studies between MCU1, MICU1 and MICU2 suggest that 
both regulatory subunits contribute to MCU activation 
as a function of the amount of cytosolic [Ca2+]. At high 
cytosolic [Ca2+], the stimulatory effect of MICU1 drives the 
rapid response of mitochondria to cytosolic [Ca2+] rises. 
Conversely, at low cytosolic [Ca2+], MICU2 is required 
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thereby a reduction of mitochondrial Ca2+ uptake. Recently, 
the protein SLC25A23, a member of the mitochondrial 
Ca2+-dependent solute carrier family, previously considered 
to be an ATP-Mg/PO4

- carrier, has been shown to physically 
interact and positively modulate MCU activity. Lack of 
SLC25A23, as well as overexpression of the SLC25A23 
EF-hand mutants, was shown to reduce MCU activity[46]. 
SLC25A23 may therefore be a regulatory subunit of the 
Uniplex. UCP2 and UCP3 have also been proposed to be 
essential for mitochondrial Ca2+ uptake[47]. This is unlikely, 
since mitochondria isolated from tissues of the UCP2 and 
UCP3 knock-out mice displayed unaltered Ca2+ uptake[56]. 
Recently, impaired mitochondrial Ca2+ uptake has been 
confirmed in UCP3 knock-out cells[57]. Even though MCU 
activity did not rely on the UCP3 in intact cells, the lack 
of UCP3 decreased cytosolic ATP available for SERCA 
pumps. As a result, IP3-driven cytosolic and mitochondrial 
Ca2+ rises were reduced[57]. The contribution of UCP2 and 
UCP3 to mitochondrial calcium uptake is therefore via their 
impact on Ca2+ handling in the ER. 

Studies in cardiac cells indicate that ryanodine rece­
ptors, one of the main endoplasmic reticulum Ca2+ release 
channels, contribute to an alternative mitochondrial Ca2+ 
uptake mechanism[58,59]. Consistent with this, localization 
of ryanodine receptors to mitochondria was demonstrated 
using electron microscopy and Western-blotting[58,59]. 
Pharmacological inhibition with ryanodine diminished 
inward Ca2+ current in mitoplasts insensitive to the MCU 
blocker Ru360[60]. Along the same line of evidence, single 
channel recordings in mitoplasts from HeLa cells after 
knock-down of MCU1 revealed a 2.5-fold increase in the 
occurrence of the extra-large conductance Ca2+ current[61]. 
These observations are consistent with an alternative and 
compensatory molecular mechanism for mitochondrial 
Ca2+ uptake.

Mitochondrial Ca2+ release mechanisms
Two main mechanisms have been proposed to account 
for mitochondrial Ca2+ release[62]: (1) Na+-dependent, 
mediated by a recently identified mitochondrial Na+/Ca2+ 
exchanger named NCLX; and (2) Na+-independent, 
probably mediated by a H+/Ca2+ exchanger. These two 
mechanisms operate to extrude Ca2+ during physiological 
mitochondrial [Ca2+] transients. A third mechanism, 
called permeability transition pore (PTP, see below) 
opening gets activated under specific physiopathological 
conditions when mitochondria experience Ca2+ overload 
for extended periods of time[62]. 

The mitochondrial Na+/Ca2+ exchange discovered 
by Carafoli et al[63] constitutes the main pathway for 
mitochondrial Ca2+ extrusion[64,65]. The stoichiometry 
of ion exchange has been estimated to be 3Na+/Ca2+. 
This electrogenic export mode favors Ca2+ extrusion in 
energized mitochondria[66]. Like MCU, NCLX is highly 
selective for Ca2+ when compared with other divalent 
ions, but less selective for Na+ that can be replaced by 
Li+[63,67]. Although NCLX has recently been thought to 
localize to the plasma membrane, electron microscopy 

and cell fractionation experiments clearly showed that 
NCLX is targeted to the mitochondrial inner membrane. 
Na+-dependent Ca2+ release was strongly reduced in 
NCLX knock-down cells, whereas NCLX overexpression 
enhanced it[68]. NCLX-driven Ca2+ extrusion is inhibited 
by 7-Chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzo­
thiazepin-2(3H)-one (CGP-37157), the most selective 
inhibitor of mitochondrial Na+/Ca2+ exchange. Taken 
together, the evidence led to the conclusion that 
NCLX encodes the so-called mitochondrial Na+/Ca2+ 
exchanger[68]. Several studies suggest the existence 
of regulatory mechanisms controlling mitochondrial 
Ca2+ export kinetics. The protein kinases PKC[69] and 
PINK1[70] were reported to modulate the activity of this 
ion exchanger. Stomatin-like protein 2 (SLP-2), which 
localizes to the inner mitochondrial membrane, was also 
shown to inhibit mitochondrial Na+/Ca2+ exchange[71]. 
CGP-37157, an inhibitor of the mitochondrial Na+/Ca2+ 
exchanger, was used to demonstrate that this exchange 
mechanism contributes to shape cytosolic [Ca2+] tra­
nsients[72], to mediate the Ca2+ transfer from the ex­
tracellular medium to the ER during IP3-driven Ca2+ 
signaling[73], and modulates the NAD(P)H redox state[74] 
and ATP production[72].

Mitochondria suspended in buffers devoid of Na+ 
retain their capacity to extrude Ca2+, pointing to a Na+-
independent mechanism. This Ca2+ efflux pathway is 
catalyzed by a to date non-identified H+/Ca2+ exchanger 
(reviewed in Bernardi)[62]. LETM1 has been proposed 
recently to exchange Ca2+ against H+. LETM1 may 
therefore drive extrusion of Ca2+ from energized mito­
chondria[43,44]. In conflict with this interpretation, LETM1 
expression in HeLa cells did not alter Ca2+ efflux rates, 
regardless of the amplitude of Ca2+ elevation reached 
during agonist stimulation[74]. These findings cast doubt 
on the Ca2+ exchanger function of LETM1. 

Permeability transition pore: The PTP is a Ca2+ and 
ROS-activated, voltage-dependent and cyclosporine 
A-sensitive channel located in the inner mitochondrial 
membrane. Opening of the permeability transition 
pore causes a sudden increase in the mitochondrial 
inner membrane permeability to solutes with molecular 
masses up to 1500 Dalton[75-77]. Opening of PTP leads 
to mitochondrial permeability transition, which plays 
an important role in intracellular death signaling and in 
events ranging from tissue damage upon infarction to 
muscle wasting in some forms of dystrophy[75]. Given 
that PTP activation occurs under several pathological 
conditions[14,75], the channel has been extensively chara­
cterized as a pharmacological target. The proteins 
forming the PTP channel have been recently rediscovered. 
The classical model envisioned a supramolecular complex 
spanning the double membrane system of mitochondria 
including the protein voltage-dependent anion channel 
(VDAC) in the outer membrane, the adenine nucleotide 
translocator in the inner membrane, cyclophilin D in 
the mitochondrial matrix, and also including additional 
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proteins such as Bax. However, genetics studies have 
demonstrated that permeability transition and/or even 
single channel activity can be observed in mitochondria 
devoid of the proposed components of the PTP[78-83]. 
Recent evidence from the Bernardi laboratory has 
revolutionized our view of the PTP. They propose that 
the pore of the channel is formed by dimers of the 
ATP synthase[84] (Figure 1). To be activated by Ca2+, 
PTP has also been proposed to act as a reversible fast 
Ca2+ release channel[85]. Such transient opening of the 
PTP may be induced by physiological stimuli for fast 
mitochondrial Ca2+ release, preventing Ca2+ overload[86]. 

Reevaluation of the physiological role of mitochondrial 
Ca2+ 
Mitochondrial Ca2+ uptake has been related with a 
plethora of cell functions, including exocytosis, gene 
transcription, cell cycle regulation, respiration and cell 
death[12,14]. Much of the evidence linked to the function 
of mitochondrial Ca2+ was obtained over the last few 
decades using pharmacological tools. The identification 
of the molecular machinery governing mitochondrial 
Ca2+ fluxes has led to a large number of genetic studies 
that re-evaluate the role of mitochondrial Ca2+ in cell 
physiology/pathology. Furthermore, they have allowed 
for the first time their role to be studied in the context 
of the whole organism. Recently, an MCU1 knock-out 
mouse has been generated. Analysis of the mouse 
phenotype has led to new questions regarding the 
importance of mitochondrial Ca2+ uptake. Unexpectedly, 
the mouse is viable. It only displays limited impairment 
of muscle function, even during exercise. Contrary to 
expectations, MCU KO hearts were also not protected 
from the damage induced by ischemia/reperfusion[87,88]. 
It is worth mentioning that the mice analyzed were 
obtained from a mixed genetic population (CD1) back­
ground, because disruption of the MCU1 gene in pure 
C57/BL/6 inbred mice led to embryonic lethality[89]. 
Developmental defects were also observed in a Zebra 
fish knock-down model that showed defects in gastrula 
morphogenesis[90]. The results with MCU1 KO mice on a 
mixed genetic background suggest that in these animals, 
alternative mechanisms are able to compensate for 
the absence of MCU function. It has been postulated 
that alternative Ca2+ uptake mechanisms may be 
responsible for this compensation. This hypothesis is 
hard to reconcile with the absence of regulated Ca2+ 

uptake in mitochondria isolated from MCU1 KO mice[87]. 
Despite the negative results obtained in KO mice on a 
mixed genetic background, MCU activity seems to play 
an important role in muscle physiology. Manipulation 
of MCU1 expression in skeletal muscle cells in vivo 
revealed that MCU levels modulate muscle size. The 
phenomenon is linked to the PGC1α4 and on IGF1-
AKT/PKB signaling pathways[91]. MCU-dominant negative 
transgenic mice showed similar heart rates compared to 
the wild type animals under resting conditions, but failed 
to increase the beating frequency upon physiological 

adrenergic stimulation[92]. Detailed assessment of hearts 
from mice lacking MCU revealed markedly impaired 
mitochondrial Ca2+ uptake. Surprisingly, the hearts of 
these animals appear to function relatively normally, 
even during stress[93]. MICU1 loss of function mutations 
in human fibroblasts led to a defect in mitochondrial 
Ca2+ homeostasis[94]. Patients carrying such mutations 
displayed neurological disorders and muscle disease. 

matRix redox Signaling 
modulation by mitochondrial Ca2+ 
EXTRUSION
Energy metabolism and redox balance are regulated 
by mitochondrial Ca2+. There is a complex relationship 
between Ca2+ and redox signaling, as Ca2+ promotes 
both oxidizing and reducing biological processes. Matrix 
Ca2+ rises stimulate respiratory chain activity[95,96], 
which as a side-product also produces ROS[97]. ROS 
production occurs at complexes Ⅰ, Ⅱ and Ⅲ of the 
respiratory chain and several flavoproteins in different 
cellular compartments[18]. In fact, it was shown that 
mitochondria are able to produce H2O2

[98,99]
. The peroxide 

is formed from dismutation of superoxide (O2•ˉ), which 
is generated within mitochondria[100,101]. By promoting 
ROS formation, matrix Ca2+ causes net oxidation of the 
mitochondrial redox state. On the other hand, several 
Ca2+-activated dehydrogenases of the mitochondrial 
matrix form reducing equivalents, therefore favoring 
reduction of mitochondrial redox couples. Notably, studies 
in Bristol in the 1960s and 1970s led to the recognition 
that mitochondrial Ca2+ promotes the supply of reducing 
equivalents in the form of NADH or FADH2

[102-104]. Four 
Ca2+-activated mitochondrial dehydrogenases were 
described: FAD-glycerol phosphate dehydrogenase 
(located on the outer surface of the inner mitochondrial 
membrane; influenced by changes in cytoplasmic Ca2+ 

concentration), pyruvate dehydrogenase, NAD-isocitrate 
dehydrogenase and oxoglutarate dehydrogenase (the 
latter three located within mitochondria and regulated 
by changes in mitochondrial matrix Ca2+ concentration). 
Following early studies with isolated mitochondria, the 
results on Ca2+ regulation of mitochondrial metabolism 
were confirmed in situ[13]. Recent evidence on insulin-
secreting INS-1E-cells demonstrates that the interplay 
between mitochondrial Ca2+ and matrix production of 
reducing equivalents may be even more complex[105]. 
Matrix calcium signals accelerate respiration and increase 
cytosolic ATP levels[16]. Under the same conditions, 
NAD(P)H levels increased rapidly to reach a new steady-
state in both INS-1E cells and human pancreatic islets[105]. 
Surprisingly, this substrate-dependent increase of 
NAD(P)H was also observed when calcium signaling was 
prevented. The data is consistent with Ca2+-dependent 
control both at the level of dehydrogenases and the 
respiratory chain. The accelerated formation of reducing 
equivalents by dehydrogenases is balanced by enhanced 
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oxidation of NADH and FADH2 by the respiratory chain. 
Such coordinated activation of oxidative metabolism and 
respiratory chain activity allows the respiratory rate to 
change several fold with only small or no alterations of 
the NAD(P)H/NAD(P)+ ratio[105]. These results underline 
the complex connection between matrix Ca2+ and the 
control of mitochondrial redox signaling. 

The recently developed fluorescent green fluor­
escence protein (GFP)-based redox sensors can be 
used to further clarify the interplay between Ca2+ and 
redox regulations (see for a recent review describing 
in detail novel sensor variants and their utilization to 
understand redox biology in living cells)[22]. These roGFP 
sensors equilibrate predominantly with the glutathione 
redox couple (GSSG/2GSH)[22]. This redox balance 
depends on glutaredoxins, which catalyze thiol-disulfide 
exchange between the glutathione pool and the redox-
sensitive protein[106]. By coupling human glutaredoxin 
to an roGFP, new redox sensors have been developed 
that can be used even in compartments lacking gluta­
redoxin activity[107]. Glutathione can be oxidized by 
superoxide radical, hydrogen peroxide and other 
oxidizing agents[108,109], therefore mitochondrial targeted 
roGFP1 was demonstrated to be in dynamic equilibrium 
with the mitochondrial redox status and to respond to 
membrane-permeant reductants and oxidants[24] (Figure 
2). 

We have recently used the mitochondrially-targeted 
roGFP probe to study the link between mitochondrial 
Ca2+ signals and matrix redox state. The kinetics 
of mitochondrial Ca2+ transients were analyzed by 
focusing on the rate of mitochondrial Ca2+ extrusion[74]. 
Following agonist-induced Ca2+ mobilization, maximal 
mitochondrial Ca2+ efflux rates were calculated as a 
function of the signal amplitude. A large heterogeneity 

of matrix Ca2+ extrusion rates was observed. Thus, only 
single-cell analysis is able to capture the complexity of 
this biological process. Manipulation of the mitochondrial 
Na+/Ca2+ exchanger (NCLX)[68] expression has a strong 
impact on agonist-induced matrix Ca2+ transients. These 
experimental conditions were also used to assess the 
effect of mitochondrial Ca2+ signals on the matrix redox 
state (Figure 2). During HeLa cell stimulation with the 
agonist histamine, calcium is mobilized from the ER, 
leading to a mitochondrial calcium rise. Concomitant 
with the Ca2+ rise, the mitochondrial redox state was 
increasingly reduced as measured with a mitochondrially-
targeted roGFP1. These changes likely reflect a shift of 
the mitochondrial glutathione pool towards the reduced 
form. By promoting mitochondrial Ca2+ extrusion in cells 
overexpressing NCLX, histamine-induced redox changes 
were completely prevented. This effect was reverted by 
blocking NCLX activity using CGP-37157[68,74]. Consistent 
with these results, NCLX expression was able to limit 
histamine-induced mitochondrial NAD(P)H production 
in HeLa cells, and this response was fully restored 
by CGP-37157. We conclude that the calcium rises 
induced by histamine stimulate matrix dehydrogenases, 
as reflected by the increased NAD(P)H/NAD(P)+ 
ratio. These changes favor the formation of reduced 
glutathione measured by an increase of the roGFP1 
signal. Mitochondrial Ca2+ is also a powerful activator of 
respiratory chain complexes. The associated acceleration 
of ROS production should have a net oxidizing effect 
on the mitochondria. Our findings demonstrate that 
the reducing effects are dominant during physiological 
calcium mobilization. Furthermore, our data establish 
a causal relationship between NCLX activity and matrix 
redox state (Figure 3).

REDOX REGULATION OF 
MITOCHONDRIAL FUNCTION 
Redox control of mitochondrial proteins is an important 
topic in cell physiology and pathology because many 
mitochondrial functions are linked to redox reactions[21]. 
An increasing number of publications demonstrate a role 
for redox signals in the control of mitochondrial functions, 
including nutrient oxidation, oxidative phosphorylation, 
ROS production, mitochondrial permeability transition, 
mitochondrial morphology and cell death (reviewed in[21]). A 
number of reviews have covered the role of redox switches 
in the control of specific mitochondrial functions[21,110-113]. 
They highlight the fact that mitochondria harbor a unique 
environment that promotes thiol modifications and redox 
signaling. The mitochondrial proteome is very rich in 
protein thiols. The total concentration of such thiol groups 
was estimated to be in the range of 60-90 mmol/L[114]. 
In addition, as previously mentioned, mitochondria are a 
very important source for ROS (notably superoxide anion 
radical and hydrogen peroxide), reduced glutathione 
and NAD(P)H, which are required for oxidation/reduction 
reactions. Importantly, redox potentials are strongly 
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Figure 2  Ratiometric fluorescence intensity response of roGFP1 to histamine 
stimulation and exogenous H2O2 and DL-dithiothreitol in living HeLa cells. 
HeLa cells were transfected with the mitochondrial targeted redox sensor 
roGFP1. Cells were excited at 410 and 480 nm and emission was collected at 
535 nm. The 410/480 fluorescence ratio (R) was normalized to the minimum of 
fluorescence (obtained after the addition of 1 mmol/L H2O2) and the maximum (after 
the addition of 10 mmol/L dithiothreitol, DL-dithiothreitol). The effect of intracellular 
Ca2+ was assessed by stimulating the cell with 100 µmol/L histamine. DTT: DL-
Dithiothreitol.
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influenced by pH, and mitochondria are able to dyna­
mically regulate mitochondrial proton gradient during 
cytosolic and mitochondrial Ca2+ elevations[115]. Changes 
in mitochondrial pH seem to play an important role in 
physiological and pathological situations such as apoptosis, 
neurotransmission, pancreatic beta cells activation and 
insulin secretion[116,117]. Interestingly, spontaneous flashes 
of alkalinization have been reported in the mitochondrial 
matrix of living cells[118]; they can even spread between 
contiguous mitochondria, but their potential impact 
on redox potential has not yet been studied. Since the 
redox potential of any redox reaction involving H+ is pH-
dependent, it is likely that matrix pH influences redox 
reactions. By extension, pH flashes could promote localized 
matrix redox reactions. Given the described properties, 
mitochondria represent a perfect microenvironment to 
promote redox signaling via cysteine oxidation reactions. 

Several types of redox modifications have been 
observed in mitochondria. These modifications include 
S-oxidation (sulfenylation and sulfinylation), S-glutat­
hionylation and S-nitrosylation[21]. A proteomic method 
has been recently developed to profile quantitatively free 
cysteine thiol groups based on their intrinsic reactivity 
in situ[119]. It is noteworthy that among the 50 most 
reactive cellular cysteine residues listed, 19 were found in 
mitochondrial proteins. The most reactive mitochondrial 
cysteines were found in aldehyde dehydrogenases. Other 
examples of enzymes that undergo physiologically-relevant 
thiol switches have been reviewed elsewhere[18]. They 
include mitochondrial thiolases, creatine kinase, aconitase, 
homoaconitase and branched chain aminotransferase. The 
importance of mitochondrial thiol switches and the role of 
“physiological” ROS production to trigger those switches 
has also been highlighted by Riemer et al[18]. For instance, 

the phenotypes of knock-out mice for several mitochondrial 
redox-regulating enzymes (superoxide dismutases 1 
and 2; glutaredoxins 1 and 2; glutathione peroxidases 
1 and 4; thioredoxin 2; thioredoxin reductases 1 and 2; 
peroxiredoxin 3) were reviewed. The observed phenotypes 
in these animals range from embryonic lethality, develo­
pmental aberrations and neurodegeneration to impaired 
signal transduction. 

Mitochondrial proteins involved in oxidative metabolism 
and energy production are primary targets regulated by 
reactive cysteines. A subunit of pyruvate dehydrogenase, 
which links glycolysis to the citric acid cycle, is reversibly 
inactivated by hydrogen peroxide[120]. The activity of 
several tricarboxylic acid cycle enzymes (aconitase, 
isocitrate dehydrogenase, ketoglutarate dehydrogenase and 
succinyl-CoA synthetase) is modulated by redox reactions 
as well[121-124]. In addition, mitochondrial respiratory chain 
complexes are a target of thiol-base redox regulation[125]. 

Glutathionylation of uncoupling protein 2 (UCP2) and 
UCP3, two mitochondrial protein paralogues of UCP1, 
has been proposed to modulate proton leak[126-128]. 
Interestingly, UCP2 and UCP3 modulate the activity of 
sarco/endoplasmic reticulum Ca2+ ATPases by decreasing 
mitochondrial ATP production[57], revealing an additional 
link between Ca2+ and redox signals. 

The matrix redox state also influences mitochondrial 
function through sirtuins, a class of NAD+-dependent 
deacetylases having beneficial health effects[129]. Among 
the seven members of this family, SIRT3, SIRT4 and 
SIRT5 are found in the mitochondria, where they 
govern mitochondrial processes[130]. Also, some mito­
chondrial transport systems have been reported to 
be regulated by the redox potential. For example, 
the carnitine/acylcarnitine carrier, required for the 
transport of fatty acid into mitochondria, is regulated by 
glutathionylation[131]. 

Redox regulation of mitochondrial proteins plays a 
crucial role also in pathology, as ROS promote the opening 
of the mitochondrial permeability transition pore[14,75,132]. 
The role of thiol oxidation during mitochondrial permeability 
transition has been carefully characterized[133,134]. For 
example, redox-active compounds belonging to the 
polyphenol family are able to modulate both PTP single-
channel activity and PTP-dependent colloidosmotic swelling 
of isolated mitochondria[135]. Mitochondrial morphology 
has a strong impact on metabolism and cell death 
decisions, and this process is also modulated by redox 
reactions. Chronic ROS exposure promotes mitochondrial 
fragmentation[136]. Treatment with sublethal amounts of 
H2O2 or other acute stresses induces hyperfusion and can 
be prevented using antioxidants[137]. A recent genome-
wide screen using RNA interference has identified ROMO1 
as an essential redox-regulator, which is required for 
mitochondrial fusion and normal cristae morphology[138]. 

Deregulated mitochondrial redox signaling is ass­
ociated with several diseases and condition[21]. The 
involvement of mitochondrial thiol oxidation has been 
reported in cardiovascular diseases[139]. Redox proteomics 
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of hearts subjected to ischemia/reperfusion indicates 
major changes in the redox state of thiol groups in 
mitochondrial proteins, including components of electron 
transport complexes and enzymes involved in lipid 
metabolism[139]. Moreover, mitochondrial PTP opening 
has been demonstrated to be a causative event in 
reperfusion damage of the heart[140]. Mitochondrial redox 
signals have been implicated also in neurodegenerative 
disorders, and deregulation of glutaredoxin-1 and 
thioredoxin-1 have been proposed to be important 
events in Alzheimer’s disease pathogenesis[141]. A well-
known feature of Parkinson’s diseases is an imbalanced 
redox state[142]. Acting on mitochondrial redox signals 
has been suggest as an approach to attenuate oxidative 
stress in dopaminergic neurons of the substantia nigra 
in individuals with Parkinson’s disease. ROS production 
and associated mitochondrial dysfunction may also 
play an important role during progression of type 2 
diabetes[143]. The relevance of redox signaling in the 
development of type 2 diabetes has been highlighted 
recently[144]. In pancreatic beta cells, mitochondria are 
particularly important as they link nutrient metabolism 
to down-stream signals essential for insulin secretion. In 
this cell type the identification of mitochondrial proteins 
controlled by redox state may lead to the identification 
of novel signaling pathways modulating insulin secretion. 
Finally aging and age-related diseases in general are 
influenced by intracellular free radicals[145]. Disruption 
of mitochondrial redox signals seems to contribute to 
ageing[146,147] and the redox state of protein thiol group 
has been proposed to play key role in this process[148]. 

conclusion 
Several disorders and disease states are associated with 
deregulated redox signaling, including cardiovascular and 
neurodegenerative diseases, insulin resistance, obesity, 
diabetes and aging (discussed in[21]). Novel approaches 
are needed to rescue cellular function due to deregulated 
redox signaling. Polyphenols[149] are a good example as 
they have anti-oxidant properties and should prevent 
free radical damage, and thereby potentially normalize 
redox signaling. However, as discussed by Visioli et al[149], 
“basic and clinical science is showing that the reality is 
much more complex than this and that several issues, 
notably content in foodstuff, bioavailability, or in vivo 
antioxidant activity are yet to be resolved”. Mitochondria 
constitute an optimal target to face those issues because 
they drive/modulate their functions by redox reactions. 
The ability of mitochondrial Ca2+ to modulate matrix 
redox state offers potential novel strategies for the 
manipulation of the mitochondrial redox state. Several 
natural compounds are known to modulate mitochondrial 
Ca2+ transport[150]. Such compounds affecting mito­
chondrial Ca2+ handling may have beneficial health 
effects by rescuing mitochondrial redox-related functions.
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