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Abstract

Endothelial dysfunction has been posited to play an important role in the pathogenesis of diabetic 

nephropathy (DN). Due to the heterogeneity of endothelial cells (ECs), it is difficult to generalize 

about endothelial responses to diabetic stimuli. At present, there are limited techniques fordirectly 

measuring EC function in vivo, so diagnosis of endothelial disorders still largely depends on 

indirect assessment of mediators arising from EC injury. In the kidney microcirculation, both 

afferent and efferent arteries, arterioles and glomerular endothelial cells (GEnC) have all been 

implicated as targets of diabetic injury. Both hyperglycemia per se, as well as the metabolic 

consequences of glucose dysregulation, are thought to lead to endothelial cell dysfunction. In this 

regard, endothelial nitric oxide synthase (eNOS) plays a central role in EC dysfunction. Impaired 

eNOS activity can occur at numerous levels, including enzyme uncoupling, post-translational 

modifications, internalization and decreased expression. Reduced nitric oxide (NO) bioavailability 

exacerbates oxidative stress, further promoting endothelial dysfunction and injury. The injured 

ECs may then function as active signal transducers of metabolic, hemodynamic and inflammatory 

factors that modify the function and morphology of the vessel wall and interact with adjacent 

cells, which may activate a cascade of inflammatory and proliferative and profibrotic responses in 

progressive DN. Both pharmacological approaches and potential regenerative therapies hold 

promise for restoration of impaired endothelial cells in diabetic nephropathy.
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INTRODUCTION

Diabetic Nephropathy (DN) is the leading cause of chronic kidney diseasein the developed 

world and affects about 15–25% of type 1 and 30–40% of type 2 diabetic patients [1]. 

Despite extensive research, underlying pathogenic mechanisms have yet to be completely 

elucidated. Hyperglycemia per se, as well a metabolic consequences of hyperglycemia, such 
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as Advanced Glycation End-products (AGEs), have been implicated in therenal pathological 

changes [2], various cells, including glomerular podocytes, mesangial and glomerular 

endothelial cells (GEnCs), as well as tubular epithelial cells, interstitial fibroblasts and 

vascular ECs have all been implicated in the development of DN [3]. The ECs play critical 

roles in many physiological functions: vascular tone adjustment, blood cell trafficking, 

hemostatic balance, permeability status, cell proliferation and survival, as well as being 

involved in mediation of innate and adaptive immunity. EC dysfunction promotes 

progression of DN [4]. A correlation between diabetes and vascular endothelial dysfunction 

has been confirmed in various studies [5-9]. There is suggestive evidence that endothelial 

dysfunction may even exist in subjects with normal glucose tolerance and with a family 

history of diabetes [10]. In addition to hyperglycemia, endothelial dysfunction might also be 

exacerbated by hypertension, dyslipidemia, obesity, micro albuminuria, inflammation and 

insulin resistance [11]. This review discusses the underlying mechanisms and consequences 

of endothelial dysfunction in diabetic nephropathy.

CHARACTER AND HETEROGENEITY OF RENAL ENDOTHELIAL CELLS

The endothelium is the thin layer lining the interior surface of blood vessels and lymphatic 

vessels [12]. ECs form the endothelium as an interface between circulating blood in the 

lumen vessel wall. In kidney, blood flows successively through the renal arteries, 

interlobular arteries, and afferent arterioles to enter the glomerular capillary tufts and then 

exits glomeruli via efferent arterioles, which give rise to the plexus of peritubular capillaries, 

the vasa recta. ECs from renal arteries, arterioles, capillaries, venules, veins and glomerular 

capillaries each have distinctive phenotypic features. In spite of accumulating research on 

endothelial dysfunction, relatively little attention has been paid to varying phenotypes 

regulated by location and time, so called “endothelial heterogeneity”[13, 14]. The 

heterogeneity is also species and tissue dependent. Moreover, EC may possibly 

transdifferentiate into other cell types or vice versa in pathologic conditions [15].

Structural Heterogeneity of Endothelial Cells

Endothelial shape and thickness may vary among vascular beds. Electron microscopy 

demonstrates elongated, spindle-shaped ECs in rat arterioles, irregularly shaped ECs in 

capillaries and comparatively large, elliptical or irregularly shaped ECs in post-capillary 

venules [16]. The intercellular junctions of ECs are either continuous or discontinuous. 

Brain, skin, cardiac, and pulmonary endothelium in arteries, veins, and capillaries is non-

fenestrated and continuous. The density of fenestrae also depends on vascular phenotype. 

Glomerular capillary endothelium is fenestrated and continuous [17].

ECs also have a diversity of other cellular components. Connexins, a family of structurally 

related transmembrane proteins that assemble to form gap junctions, have a different pattern 

in ECs from glomerular afferent and efferent arterioles, which could contribute to the altered 

renal autoregulation in DN [18]. Plasma lemmal vesicle (PV)-1 protein is an endothelium-

specific integral membrane glycoprotein, enriched on the endothelium of renal peritubular 

capillaries during development, which is fenestrated with diaphragms; it is absent from adult 

GEnCs, which are also fenestrated but not apertured by diaphragms [19]. Glycocalyx is the 

glycoprotein oating the luminal surface of the glomerular capillaries; its heterogeneous 
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distribution along the vascular tree can also be seen by electron microscopy [20]. The EC 

common marker, von Wille brand factor (vWF) has an uneven distribution indifferent types 

of vessels [21, 22], although the physiologic significance remains incompletely understood. 

eNOS expression in ECs of the renal medulla (vasa recta) appears to be stronger than in 

cortex (glomeruli and peritubular capillaries) [23].

Functional Heterogeneity of Endothelial Cells

Endothelium not only forms a passive barrier, dynamically regulating permeability of the 

microvasculature [24] but also acts as an active signal transducer for leukocyte trafficking 

[25], modulating hemostasis [26] and playing a pivotal role in angiogenesis and 

vasculogenesis, such that it is recognized as a multifunctional paracrine and endocrine 

“organ” that responds to metabolic, hemodynamic and inflammatory stimuli [27]. 

Phenotypic variation among endothelial cells may be related to their location in the vascular 

tree. In general, ECs in post capillary venules, where shear stress is lowest, are mainly 

responsible for mediating adhesion and recruiting leukocytes [28], while those in arterioles 

are primarily for vasomotor tone. There are two major functions for the renal endothelium- 

oxygen/nutrient delivery and filtration [29]. In contrast to other vascular beds, glomerular 

capillaries serve predominantly as a sieve of fluids and solutes. GEnCs covering 20% of the 

endothelial surface serve as a barrier for efficient absorption, secretion, and filtering [17]. 

After approximately 30% of the blood volume is filtered by the glomerulus, blood enters the 

efferent arterioles with increased viscosity. At each step from the hyperosmolar, hypoxic 

depths of the inner medulla to cortex, ECs in individual compartments perform different 

functions to maintain kidney homeostasis. Therefore, it is not surprising that ECs derived 

from each intrarenal compartment demonstrate individual chemokine expression patterns, 

mediating compartment-specific T cell and monocyte recruitment in inflammatory injury 

[30]. This variability may also lead to differential susceptibility to apoptosis and differential 

responses to microenvironment changes or stimuli [28].

In summary, the vasculature in the kidney is not only distinct from that of other organs, but 

also displays striking intra-renal heterogeneity in term of surface phenotype and protein 

expression in different vascular compartments. Understanding this heterogeneity may help 

to further direct research in EC dysfunction in progressive kidney injury and properly 

translate the results from bench to bedside.

RENAL ENDOTHELIAL DYSFUNCTION IN DN

Micro- and macrovascular impairment are major complications in diabetic mellitus. The 

former involves small vessels, such as capillaries, the latter predominately large vessels, 

such as arteries and veins. Nephropathy has been recognized as a common microvascular 

complication of diabetes. The so-called “silent phase” of DN usually leads to an 

underestimation of the underlying EC disorder [31].

How to Measure Renal EC Dysfunction?

As discussed above, renal EC functions vary according to their phenotype and 

compartmentalization in kidney. In vitro experiments are able to provide direct measurement 
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of vasodilation/vasoconstriction from isolated vessels and characteristics of both structural 

and functional characteristics of cultured ECs– from their morphology to proliferation, 

migration, adhesion, permeability, matrix secretion and angiogenesis properties. However, 

caution must be taken when these data are translated to clinical situations, because 

commonly used culture conditions may activate or transform endothelial phenotypes [32]. In 

vivo, new techniques to measure peripheral circulation non-invasively, such as peripheral 

arterial tonometry and brachial artery flow-mediated dilatation (FMD), have been developed 

in order to assess vascular health and endothelial function [33, 34], but their value to predict 

the risk factor in DN is still debated [35]. No gold standards have been developed yet to 

evaluate EC function in vivo. In general, EC function is largely evaluated experimentally by: 

1) assessment of the functional consequences of EC activity; 2) measurement of the 

concentration of chemical mediators for EC function [11]; and 3) testing competence of 

endothelial progenitor cells (EPCs), which may mediate regeneration, since EC has limited 

intrinsic capacity of self-repair with a low proliferative potential [36].

Endothelial Dysfunction-Related Pathophysiologic Abnormalities in DN

DN is a serious and progressive “microvascular” complication from both type 1 and type 2 

diabetes mellitus. Its pathophysiologic alterations manifest as microalbuminuria and 

hyperfiltration at early stages followed by deterioration to end-stage renal disease. 

Microalbuminuria is usually the first signal of renal complications and may progress to overt 

albuminuria [37, 38]. Approximately one fourth of people with type 2 diabetes have 

albuminuria, and the rate is still rising by 2% to 3% per year [39, 40]. Albuminuria can 

result from higher intra-glomerular pressure and glomerular basement membrane (GBM) 

permeability, and may be indirectly influenced by interactions of ECs with mesangial cell 

and podocytes in a paracrine fashion [41]. In type 2 diabetes, markers of endothelial 

dysfunction occur in patients with normal urine albumin excretion [42], which supports the 

hypothesis that endothelial dysfunction may not be a simple consequence, but may also play 

a key etiologic role in the vasculopathy [11].

Animal experiments have suggested that dilatation of the afferent glomerular arteriole is 

mainly responsible for the hyperfiltration response, via increasing intraglomerular pressure 

and renal blood flow [43, 44]. Renal hyperfiltration has been proposed to be a common 

factor in early diabetes associated with vascular dysfunction, which may eventually lead to a 

decline of renal function and the development of glomerulosclerosis and tubulointerstitial 

fibrosis [45-47]. Endothelial dysfunction also diminishes the an tiatherogenic ability of ECs, 

which may also contribute to the abnormal renal function.

Vascular Lesion-Associated Pathologic Changes in DN

In addition to mesangial expansion, GBM thickening as a consequence of extracellular 

matrix accumulation, and Kimmelstiel–Wilson lesionsor global glomerulosclerosis are 

common pathologic features in DN [48, 49]. Dissociation of endothelial cells may disrupt 

the connections between the mesangial area and the GBM. Nodular sclerosis (Kimmelstiel–

Wilson lesions) or global glomerulosclerosisis seen in late stages of DN. Atherosclerosis 

links endothelial injury, dysfunction and activation [27], and arteriolosclerosis in both 

afferent and efferent is recognized as characteristic of vascular lesions in DN [48]. However, 
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hyalinosis of the efferent arteriole is relatively specific for DN, since afferent medial 

thickness may also be associated with concurrent hypertension [49] and is also seen in other 

settings [48, 50]. Intraglomerular capillary pressure secondary to an increased glomerular 

filtration rate is influenced by the constriction or relaxation of both glomerular afferent and 

efferent arteriole, but the latter may be more sensitive to angiotensin II, resulting in 

relatively decreased afferent arteriolar resistance and higher glomerular capillary pressure 

[51].

Endothelial-Myofibroblast Transition (EndoMT)

During EndoMT, endothelial cells lose endothelial markers (such as CD31 and vascular 

endothelial cadherin), while exhibiting mesenchymal markers, including α-smooth muscle 

actin (α-SMA). EndoMT has been suggested to play an important role in organ fibrosis and 

cancer progression [52]. Kidney fibrosis in DN, resulting from excess fibrous connective 

tissue, is a major sign of an advanced stage of disease and may develop in both the 

tubulointerstitial space and glomerulus. Zeisberg et al., presented the first evidence of 

possible EndMT in diabetic kidney fibrosis [53]: in a 6-month STZ-induced diabetic mouse 

model, they found that about 40% of all fibroblast-specific protein-1-positive and 50% of 

the α-SMA-positive cells co-labeled with CD31, implying that EndoMT may exist in the 

development and progression of DN. Based on these studies, EndoMT was considered as a 

potential new player in diabetic renal fibrosis. However, confirmation in human disease and 

elucidation of the underlying molecular pathways of EndoMT leading to renal fibrosis 

remain to be elucidated. Debate on the source of fibrosis-generating myofibroblasts (either 

from endothelial cells or vascular pericytes) in vivo is still raging [54].

Markers of EC Dysfunction

In addition to renal pathological abnormalities, chemical mediators can be utilized to 

estimate EC function. Renal endothelium secretes numerous vasoactive substances, such as 

the vasodilators, prostacyclin (PGI2) and nitric oxide (NO), and the vasoconstrictor, 

endothelin (ET)-1. Increased urinary and plasma endothelin are linked to renal damage 

progression in diabetic animal models [55] and patients with type 2 DN [56], while 

decreased urine PGI2 excretion has been reported in diabetic patients [57] and animal 

models [58]. NO is a particularly important molecular marker and endothelium-derived 

mediator in DN, due to its vasodilator, anti-platelet, anti-proliferative, anti-adhesive, 

permeability-decreasing and anti-inflammatory properties [59]. NO derived from L-arginine, 

is a free radical gaseous molecule and is synthesized by the action of nitric oxide synthases 

(NOS) [60]. Although both eNOS (endothelial NOS) and iNOS (inducible NOS) are 

expressed in EC, studies in mice with specific eNOS or iNOS deletion suggested thateNOS 

plays a predominant role in VEGF-induced angiogenesis and vascular permeability [61]. 

Alterations in eNOS-driven NO production and/or bioactivity are a well-accepted 

component of diabetic endothelial dysfunction [62]. In spite of the conflicting reports 

regarding eNOS gene regulation in animal model of diabetes mellitus, with reports of 

unchanged [63], diminished [64, 65] or increased [66, 67] expression, we and others have 

found that eNOS insufficiency accelerates nephropathy in mouse models of both type 1 and 

type 2 diabetes [68]. ADMA (asymmetric dimethylarginine), a product of arginine 

methylation, represents an endogenous inhibitor of endothelial NO synthase [69], and 

Cheng and Harris Page 5

Cardiovasc Hematol Disord Drug Targets. Author manuscript; available in PMC 2015 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



elevated plasma levels have been found in patients with type 1 [70] or type 2 [71] DN, 

although it is remains uncertain whether alterations in ADMA levels are causal or are simply 

increased as a consequence of impaired renal function [72].

Given the broad function of renal EC and the complicated endothelial pathophysiology 

observed in DN, hemostatic (plasminogen activator and its endogenous inhibitor, PAI-1), 

inflammation (IL-1β, IL-6 and TNF-α) and oxidative stress biomarkers are also of 

significance in EC research. It is likely that new biomarkers will emerge to assist risk 

prediction, prognosis and pharmaceutical responses in EC injury.

MECHANISMS OF RENAL ENDOTHELIAL INJURY DURING DN

Glucose acutely autoregulates its uptake into muscle cells [73] but may not have similar 

autoregulation in endothelial cells [74]; thus, hyperglycemia may increase the intracellular 

accumulation of glucose and its metabolites in ECs. Extended exposure to high glucose may 

result in increased susceptibility to vascular endothelial cell injury in diabetes. The 

pathogenesis of diabetic EC injury is a complicated process, with multiple signal pathways 

being activated and numerous mediators being involved (Fig. 1).

Etiology of Diabetic Renal Endothelial Impairment

Both genetic and environmental factors are involved in the development of endothelial 

dysfunction during DN. A large multiethnic populations genome-wide association study 

(The Family Investigation of Nephropathy and Diabetes study) mapped genes underlying 

susceptibility to DNA and found the strongest evidence for linkage to chromosomes 7q21.3, 

10p15.3, 14q23.1 and 18q22.3 [75]. Association of chromosome 18q22.3 with DN in type 2 

diabetes was also confirmed in Turkish patients [76]. Environmental factors, such as 

smoking [77] and high fat diet [78] may also be important factors that superimpose to 

produce microvascular complications. Nevertheless, there is no doubt that chronic 

hyperglycemia and the subsequent metabolic derangements play a major role in diabetic EC 

injury and can lead to the over production of advanced glycation end products (AGE), 

activated protein kinase C (PKC) signaling cascades and accumulated reactive oxygen 

species (ROS). Hemodynamic alterations along with renin-angiotensin system (RAS) 

regulation seem to be another pivotal contributor to dysfunction of renal endothelium in both 

glomerular afferent and efferent arteries.

Hyperglycemia Activated Signal Pathways

Various signal pathways are activated during DN; here we concentrate on the three signaling 

pathways likely to be involved in endothelial dysfunction:

The DAG (Diacylglycerol)/PKC (Protein Kinase C) Pathway—PKC comprises a 

superfamily of isoenzymes, activated by cofactors such as DAG and phosphatidyl serine. 

Hyperglycemia, along with other metabolic and hemodynamic factors, induces an elevation 

in DAG, which activates the PKC pathway. PKC plays an important role inthe regulation of 

endothelial permeability, vasoconstriction, cell growth, angiogenesis, and leukocyte 

adhesion [79]. Indirectly, high glucose-induced reactive oxygen species (ROS) contribute to 

vascular dysfunction via a PKC-dependent activation of nicotinamide adenine dinucleotide 
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phosphate (NADPH) oxidase [80]. Multiple PKC isoforms have been documented to be 

involved in mediation of endothelial dysfunction in diabetic nephropathy. Based on 

experiments with isoform-specific knock-out mice and a specific PKC-β inhibitor 

(ruboxistaurin, a bisindolylmaleimide) treatment, PKC-α activation appears crucial for the 

development of albuminuria, whereas PKC-β activation appears to be mainly involved in 

mesangial expansion, basement membrane thickening and renal hypertrophy in the 

development of DN [81]. Activation of other PKC isoforms: PKC-δ and -ε by 

hyperglycemia-induced oxidative stress has also been reported in diabetic rat kidney [82], 

but the linkage of other PKC isoforms with diabetic vascular dysfunctions remains under 

investigation [83-85].

The Polyol Pathway—Hyperglycemia increases glucose metabolism via the polyol 

pathway, causing the accumulation of intracellular sorbitol. It has been suggested that 

elevated levels of sorbitol increase superoxide production, interfere with NO bioavailability 

and promote PGH2 (prostaglandin H2) /TXA2 (thromboxane A2) release [86], which 

disturbs regulation of arterial vasomotor responses. Hence activation of the polyol pathway 

may contribute to the development of microvascular dysfunction in diabetes mellitus. 

Inhibition of aldose reductase, a key enzyme in the polyol pathway, attenuated proteinuria, 

decreased GBM thickening in diabetic rats [87] and reduced glomerular hyperfiltration in 

humans [88].

TGF-β (Transforming Growth Factor-β) Signaling—Hemodynamic alterations and 

hyperglycemia and its associated metabolic alterations stimulate secretion of inflammatory 

molecules, including TGF-β1, in diabetic animal models [89] and in patients [90]. Increased 

TGF-β1 promotes extra cellular matrixprotein accumulation in the vasculature [91], 

activates Smad (Mothers against decapentaplegic homolog) -2 and Smad-3 and is involved 

in angiogenesis by mediating the balance of the proangiogenic factor, VEGF, and 

antiangiogenic growth factor, thrombospondin-1 (TSP-1) [92]. TGF-β signaling may also 

interact with other signal pathways [93]. Various anti-TGF-β1 approaches are under 

investigation in clinical trials [94]. Hopefully they will lead to potential therapeutic 

innovations. However, activation of the TGF-β1-Smad signaling pathway also induces 

upregulation of eNOS in endothelial cells [95], which may be beneficial to ECs. Inhibition 

of TGF-β could be a double-edged sword in DN, due to its anti-proliferative and anti-

inflammatory properties [96].

Impairment of eNOS/NO Bioactivity

There are multiple mechanisms by which hyperglycemia may impair NO production in renal 

ECs. Hyperglycemia-induced eNOS impairment leads to increased oxidative stress and 

scavenging of NO, which represents initiation event(s) for development of endothelial 

dysfunction [97]. There is increasing evidence of eNOS /NO dysfunction during DN [98, 

99]. Patients with either type 1 or 2 diabetes exhibit abnormal endothelium dependent 

vasodilation [100]. Studies from our own group and others have demonstrated accelerated 

glomerular injury in diabetic mice with eNOS deficiency, which strongly supports a key role 

for eNOS dysfunction in the pathogenesis of DN [68a, 101]. Investigation in patients with 

type 2 DN suggested that certain eNOS gene polymorphisms are linked to eNOS function 

Cheng and Harris Page 7

Cardiovasc Hematol Disord Drug Targets. Author manuscript; available in PMC 2015 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and associated with advanced DN [102]. Nevertheless, there are conflicting reports for 

eNOS gene expression in animal diabetic models: with eNOS expression described to be 

either unchanged [63], diminished [64, 65] or increased [66, 67]. Regulation of eNOS 

bioactivity is multifactorial. In our study from glomeruli of db/db mice at 34 weeks, there 

was no significant change in eNOS monomer expression, but a significant decrease in the 

dimerized form [99]. Under physiological conditions, eNOS functions as a “homodimer”. 

Coupled eNOS transports electron from a flavin-containing reductase domain to a heme-

containing oxygenase domain. Homodimer uncoupling leads to superoxide anion (O2
−) 

formation instead of NO production [103]. Optimal concentrations of the eNOS substrate, L-

arginine and the co-factor tetrahydrobiopterin (BH4) are essential to maintain eNOS 

dimerization. Active eNOS requires formation of a homodimer through a linkage between 

the N-terminal oxygenase domains; BH4 stabilizes formation of the eNOS dimer, increases 

NOS affinity for L-arginine, and undergoes distinct redox transitions with the heme group 

[104]. When either the essential substrate, L-arginine, or the essential cofactor, BH4, is 

limited, electron transfer from eNOS flavins becomes uncoupled from L-arginineoxidation, 

and superoxide is produced from the oxygenase domain [60, 103, 105], which may further 

reduce NO bioactivity and increase oxidative stress within endothelial cells by scavenging 

NO and forming peroxynitrite [106]. Insufficient L-arginine may link to onset of 

microalbuminuriain type 2 diabetic patients [107]; and long term L-arginine 

supplementation therapy has been shown to improve vascular function and glucose 

homeostasis instreptozotocin-induced diabetic rats [108] and diabetic patients [109]. 

Reduced BH4 has been observed in diabetic rats [109a, 110], with more profound depletion 

in endothelial cells than plasma [109a]. Acute intraarterial infusion of BH4 induced acute 

increases in forearm blood flow in response to endothelium-dependent vasodilators in 

patients with type 2 diabetes [111]. Sepiapterin is the immediate precursor of BH4 via the 

biopterin salvage pathway, but is less sensitive to oxidative stress than BH4 [112]. Our 

recent studies provided further evidence for a direct beneficial role of both arginine and BH4 

supplement, sepiapterin on GEnCs in DN, independent of vasodilation [99].

Post-translational regulation also plays a vital role in control of eNOS bioactivity due to its a 

long half-life at baseline (10–35 h) [113]. eNOS is subject to a variety of posttranslational 

regulatory mechanisms, including reversible enzyme acylation, regulation of subcellular 

localization, protein–protein interactions, S-nitrosylation and phosphorylation [114]. Our 

studies in both diabetic mouse glomeruli and high glucose-stimulated GEnCs demonstrated 

a decrease in eNOS phosphorylation at Ser1179 without a significant alteration at Thr497. 

Akt-dependent phosphorylation of eNOS at Ser1179 is critical for endothelium-dependent 

relaxation [115], while phosphorylation at Thr497 is considered inhibitory [116]. Reduced 

phosphorylation of eNOS at Ser1179 has previously been reported in moderately 

hyperglycemic diabetic rats [117]. These post-translation modifications may contribute to 

eNOS dysfunction.

eNOS activity is also regulated by its location within the cell. Under baseline conditions, 

eNOS predominately localizes to the plasma membrane, but it may traffic into the cytoplasm 

in response to certain stimuli. Microenvironments in cytoplasmic regions of the Golgi, the 

mitochondria and the nucleus may be less optimal for NO production, primarily due to 
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insufficient access to calcium-calmodulin [118]. Caveolin-1 (Cav-1) has been suggested to 

be an inhibitor of eNOS in some phenotypes of ECs; conjugated Cav-1-eNOS in caveolae 

maydecrease eNOS-dependent NO release [119]. eNOS activity may also be inhibited by its 

endogenous inhibitor, ADMA (Asymmetric Dimethylarginine). Elevated plasma ADMA has 

been found in patients with both types DN [71, 72, 120].

Oxidative Stress

The imbalance between NO and reactive oxygen species (ROS) generation is a central 

pathophysiologic denominator in diabetic endothelial dysfunction. High glucose increases 

ROS production in ECs [2], and reduces endogenous antioxidant systems [121], resulting in 

oxidative stress. The superoxide anion may interact with NO, generating peroxynitrite [122]. 

Peroxynitrite is increased in patients with type 2 diabetes [123] and diabetic mice [99] and 

peroxynitrite-mediated endothelial dysfunction has been reported in DN [124]. It is well 

known that hyperglycemia leads to increased AGEs and upregulates its receptor, RAGE. 

ROS stimulates the formation of AGEs [125]. Furthermore, ROS oxidizes BH4 to an 

inactive metabolite, promoting eNOS uncoupling [126], in addition to inactivating 

prostacyclin synthetase [127].

Interaction of Renal ECs with Other Cells in DN

In kidney, ECs is in close contact with other renal resident and blood cells. Together, they 

not only provide a permeability barrier, but also act as multifunctional paracrine and 

endocrine regulators, coordinating immune responses, hemostasis, angiogenesis, 

extracellular matrix accumulation and modulation of blood flow and vascular tone (Fig. 2). 

Growth factors, cytokines and diabetic vasoactive agents mediate the cross talk [128], 

including angiogenesis factors, such as vascular endothelial growth factor (VEGF) and pro- 

or anti-inflammatory cytokines, such as tumor necrosis factor (TNF)-α.

Cross-Talk of GEnCs with Podocytes and Mesangial Cells—The glomerular 

filtration barrier is a multicomponent apparatus [129]; renal glomerular capillaries consist of 

three layers: a fenestrated endothelium, the intervening glomerular basement membrane, and 

podocytes. Intraglomerular mesangial cells are located in the interstitium between GEnCs 

(Fig. 2A). Podocytes generate several angiogenic growth factors, such as vascular 

endothelial growth factor (VEGF-A), and Angiopoetin-1 (Ang-1) [130], while GEnCs 

express corresponding receptors. There are several members (at least A, B, C, D) of the 

VEGF family; VEGF –A appears to play the major role in podocyte-EC interactions. 

Podocyte derived VEGF–A regulates GEnCs function mainly via paracrine action [131], 

although the contribution via autocrine VEGF–A signaling to normal barrier function cannot 

be completely excluded. Elevated VEGF–A has been reported in the initial phases of 

diabetes [132], while a subsequent decrease has been documented in numerous human or 

animal studies [133-135].

Elevated VEGF has been shown in a diabetic mouse model with NOS deficiency [136], 

while NO attenuated VEGF–A induced endothelial proliferation [137]. This condition of 

low NO bioavailability associated with high VEGF-A expression was termed as “uncoupling 

of VEGF-A with NO” [135]. Both activation and inhibition of the VEGF-A dependent 
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signal transduction cause functional defects of the renal glomeruli [138, 139]. Initial 

upregulation of glomerular VEGF-A expression may increase glomerular permeability, 

while the subsequent decreases in receptor-bound VEGF on the endothelium may underlie 

inability of effective capillary repair with more advanced disease [140]. Despite a few 

studies showing marked amelioration of albuminuria in somediabetic animal models from 

inhibition of VEGF activity by neutralizing antibodies or small molecule inhibitors of VEGF 

receptor kinase signaling [141, 142], VEGF displayed protective effects for glomerular 

microvasculature in diabetes overall; deletion of VEGF-A in type 1 diabetic mice promotes 

endothelial injury, accelerating the progression of glomerular lesion [143].

Another podocyte-derived angiogenesis growth factor, Ang-1, also contributes to the 

maintenance of the integrity of the glomerular filtration barrier [144]. Ang-2, from the same 

angiopoietin family, is also expressed in the kidney during development, but is significantly 

downregulated in adult [145]. Ang-2 is a competitive antagonist of Ang-1, since both of 

them share the same receptor in ECs [144]. Upregulated Ang-2 that stimulates vascular 

permeability has been reported in DN [146]. Imbalance of Ang-1/2 may underlie 

dysfunctional crosstalk between podocytes and GEnCs during DN.

Mesangial cells provide structural support for glomerular capillary loops and respond to 

capillary stretch, possibly playing an important role inregulation of glomerular flow and 

pressure. Hyperglycemia-activated mesangial cells are responsive to the increased EC-

derived PDGF (platelet-derived growth factor), the major mediator between mesangial cells 

and GEnC [147]. It has been suggested that GEnC promote mesangial cell growth via a 

PDGF-Like substance [148].

Cross-Talk between Renal Proximal Tubular Cells (PTCs) and Endothelial 
Cells—Diabetic injury initially is detected in glomeruli, but the decline of renal function 

correlates with the degree of renal tubule interstitial fibrosis [149]. There is direct evidence 

of high glucose-induced collagen secretion by PTC [150]. Peritubular capillaries are 

essential for renal transport, reabsorption and oxygen supply to the tubules [151]. Recently, 

Tasnim et al., investigated the interactions between renal tubular epithelial cells and 

adjacent endothelial cells in a co-culture system and found that primary cultured renal 

proximal tubular cells stimulated endothelial cells to express a functionally balanced 

combination of various factors, including VEGF, TGF-β along with its antagonist α2-

macroglobulin and HGF (Hepatocyte growth factor). In turn, endothelial cells appeared to 

promote survival, proliferation and differentiation of the proximal tubule cells [152].

Interaction of ECs with Inflammatory Cells—Diabetes has been recognized as an 

inflammatory process [153]. Vascular cell adhesion molecule-1 (VCAM-1) was found to be 

upregulated in patients with DN [154], which may promote the adhesion of inflammatory 

cells to the endothelium and recruit circulating immune cells into the diabetic kidney. Renal 

tissue macrophages, T cells, and neutrophils, along with reactive oxygen species, pro-

inflammatory cytokines, metalloproteinases, and growth factors, modulate the local response 

and promote inflammation and fibrosis within the diabetic kidney [153].
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EC-Pericyte Communication—Pericytes are vascular mural cells embedded within the 

vascular basement membrane of blood microvessels (Fig. 2B). In the kidney, they are 

localized in the tubulointerstitial space on peritubular capillaries. Mesangial cells are 

categorized as specialized pericytes within the glomerulus [155]. These cells closely contact 

with the endothelium, regulating vascular development, stabilization, maturation, and 

remodeling. Endothelial–pericyte communication largely depends on growth factors, 

including TGF β, angiopoietins, PDGF, spingosine-1-phosphate, and Notch ligands along 

with their respective receptors [156]. Among them, PDGF receptor-β (PDGFRβ) is critically 

involved in pericyte recruitment and proliferation [157]. It has been suggested that pericytes 

play a central role in diabetic complications. Loss of pericytes is one of the first observable 

changes in diabetic retinopathy, ultimately followed by increased vascular permeability 

[158]. Knockout of PDGF-B or PDGFR-β results in deformity of pericyte-like mesangial 

cells, leading to defective glomerulogenesis and glomerulosclerosis [159]. Duffield et al., 

recently described renal pericytes as a major source of myofibroblast precursors in the 

kidney [54, 155].

In summary, high glucose along with its metabolites and other stimuli activate various 

pathways via similar mechanisms in different cell types of the kidney; induce numerous 

growth factors, cytokines, ROS generation and eNOS impairment, leading to renal EC 

dysfunction. The injured endothelium acts as an active signal transducer for metabolic, 

hemodynamic and inflammatory factors that modify the function and morphology of the 

vessel wall and interacts with adjacent cells. The self-protective mechanisms in response to 

oxidant, chemical, and shear stress may in turn produce a cascade of factors that promote 

inflammatory, proliferative and profibrotic responses in progressive diseases. Hence EC 

dysfunction is considered as a potential contributor in the progression of DN [160] (Fig. 1).

POTENTIAL EC REGENERATIVE THERAPIES IN DN

With the development of regenerative medicine, studies have suggested potential strategies 

for EC regenerative therapy in DN [161]. In addition to the mechanism-based 

pharmacological and growth factors (or their inhibitors) therapeutic innovation mentioned 

previously, stem/progenitor cellular strategies may prove to be effective approaches to 

regeneration of ECs. Rat experiments have suggested that bone marrow-derived endothelial 

progenitor cells may participate in glomerular endothelial cell turnover [162]. However, the 

effect of endothelial progenitor cells in long-standing asymptomatic type 1 diabetic patients 

remains inconclusive [163]; it provides hope, but its long term safety and beneficial impact 

need to be cautiously evaluated.
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Fig. (1). Pathogenesis of Renal EC dysfunction during DN
Hyperglycemia, along with its metabolites and other stimuli, activates various signaling 

pathways and induces numerous growth factors, cytokines, ROS generation and eNOS 

impairment, leading to renal EC dysfunction. Injured ECs may further contribute to the 

progression of DN in turn. RAS: renin-angiotensin System; GFs: growth factors; eNOS: 

endothelial Nitric Oxide; AGE: advanced glycation end products; RAGE: the receptor of 

AGE; ROS: reactive oxygen species; GFR: glomerular filtration rate.
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Fig. (2). Interaction of renal ECs with adjacent cells
A. In glomeruli, GEnCs are surrounded by the interdigitated foot process from podocytes. 

Glomerular mesangial cells (glomerular pericytes) are located in the area between GEnCs. 

The injured endothelium serves as an active signal transducer for metabolic, hemodynamic 

and inflammatory factors that modify the function and morphology of the vessel wall and 

interacts with adjacent cells. Growth factors involved in this crosstalk include 

VEGF:Vascular endothelial growth factor; Ang: Angiopoietins and PDGF: Platelet-derived 

growth factor. B. Pericytes are embedded within the vascular basement membrane of blood 

microvessels. Circulating and renal resident inflammatory/immune cells, pericytes and renal 

ECs interact each other, influence to effect tissue repair/fibrosis processes. Pro-

inflammatory, pro-fibrotic and adhesive cytokines, metalloproteinases, and growth factors 

mediate this communication.VCAM-1: Vascular cell adhesion molecule-1, ILs: interleukins, 

MMPs: Matrix metalloproteinases. PTX: proximal tubular cell, HGF: hepatic growth factor.
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