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Abstract

Learning probabilistic predictive models that are well calibrated is critical for many prediction and 

decision-making tasks in Data mining. This paper presents two new non-parametric methods for 

calibrating outputs of binary classification models: a method based on the Bayes optimal selection 

and a method based on the Bayesian model averaging. The advantage of these methods is that they 

are independent of the algorithm used to learn a predictive model, and they can be applied in a 

post-processing step, after the model is learned. This makes them applicable to a wide variety of 

machine learning models and methods. These calibration methods, as well as other methods, are 

tested on a variety of datasets in terms of both discrimination and calibration performance. The 

results show the methods either outperform or are comparable in performance to the state-of-the-

art calibration methods.

1 Introduction

A rational problem solving agent aims to maximize its utility subject to the existing 

constraints [11]. To be able to maximize the utility function for many practical prediction 

and decision-making tasks, it is crucial to develop an accurate probabilistic prediction model 

from data. Unfortunately, the majority of existing data mining models and algorithms are not 

optimized for obtaining accurate probabilities and the predictions they produce may be 

miscalibrated. Generally, a set of predictions of a binary outcome is well calibrated if the 

outcomes predicted to occur with probability p do occur about p fraction of the time, for 

each probability p that is predicted. This concept can be readily generalized to outcomes 

with more than two values. Figure 1 shows a hypothetical example of a reliability curve [3, 

9], which displays the calibration performance of a prediction method. The curve shows, for 

example, that when the method predicts Z = 1 to have probability 0.5, the outcome Z = 1 

occurs in about 0.57 fraction of the instances (cases). The curve indicates that the method is 

fairly well calibrated, but it tends to assign probabilities that are too low. In general, perfect 

calibration corresponds to a straight line from (0,0) to (1,1). The closer a calibration curve is 

to this line, the better calibrated is the associated prediction method.
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Producing well-calibrated probabilistic predictions is critical in many areas of science (e.g., 

determining which experiments to perform), medicine (e.g., deciding which therapy to give 

a patient), business (e.g., making investment decisions), and others. However, model 

calibration and the learning of well-calibrated probabilistic models has not been studied in 

literature as extensively as for example discriminative machine learning models that are 

built to achieve the best possible discrimination among classes of objects. One way to 

achieve a high level of model calibration is to develop methods for learning probabilistic 

models that are well-calibrated, ab initio. However, this approach would require one to 

modify the objective function used for learning the model and it may increase the cost of the 

associated optimization task. An alternative approach is to construct well-calibrated models 

by relying on the existing machine learning methods and by modifying their outputs in a 

post-processing step to obtain the desired model. This approach is often preferred because of 

its generality, flexibility, and the fact that it frees the designer of the machine learning model 

from the need to add additional calibration measures into the objective function used to learn 

the model. The existing approaches developed for this purpose include histogram binning, 

Platt scaling, or isotonic regression. In all these the postprocessing step can be seen as a 

function that maps output of a prediction model to probabilities that are intended to be well-

calibrated. Figure 1 shows an example of such a mapping.

Existing calibration methods can be divided into parametric and non-parametric methods. 

An example of a parametric method is Platt’s method that applies a sigmoidal 

transformation that maps the output of a model (e.g., a posterior probability) [10] to a new 

probability that is intended to be better calibrated. The parameters of the sigmoidal 

transformation function are learned using the maximum likelihood estimation framework. A 

limitation of the sigmoidal function is that it is symmetric and does not work well for highly 

biased distributions [6]. The most common non-parametric methods are based either on 

binning [13] or isotonic regression [1].

In the histogram binning approach, also known as quantile binning, the raw predictions of a 

binary classifier are sorted first, and then they are partitioned into B subsets of equal size, 

called bins. Given a (uncalibrated) classifier prediction pin, the method finds the bin 

containing that prediction and returns as pout the fraction of positive outcomes (Z = 1) in the 

bin. Histogram binning has several limitations, including the need to define the number of 

bins and the fact that the bins and their associated boundaries remain fixed over all 

predictions [14]. The isotonic regression algorithm can be viewed as a special adaptive 

binning approach that assures the isotonicity (monotonicity) of the probability estimates. 

Although isotonic regression based calibration yields a good performance in many real data 

applications [9, 2, 14], the violation of isotonicity assumption in practice is quite frequent 

secondary to the choice of the learning models and algorithms. This could specifically 

happen in learning data mining models in large scale problems in which we have to make 

simplifying assumption in building computationally tractable models. So, the relaxation of 

the isotonicity constraints may be appropriate.

A new non-parametric calibration method called adaptive calibration of predictions (ACP) 

was recently introduced [6]. ACP requires a 95% confidence interval (CI) around a 
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particular prediction pin to define a bin. It sets pout to be the fraction of positive outcomes (Z 

= 1) among all the predictions that fall within the bin.

In this paper we introduce two new Bayesian non-parametric calibration methods. The first 

one, the Selection over Bayesian Binnings (SBB), uses dynamic programming to efficiently 

search over all possible binnings of the posterior probabilities within a training set in order 

to select the Bayes optimal binning according to a scoring measure. The second method, 

Averaging over Bayesian Binnings (ABB), generalizes SBB by performing model averaging 

over all possible binnings. The advantage of these Bayesian methods over existing 

calibration methods is that they have more stable, well-performing behavior under a variety 

of conditions.

Our probabilistic calibration methods can be applied in two prediction settings. First, they 

can be used to convert the outputs of discriminative classification models, which have no 

apparent probabilistic interpretation, into posterior class probabilities. An example is an 

SVM that learns a discriminative model, which does not have a direct probabilistic 

interpretation. Second, the calibration methods can be applied to improve the calibration of 

predictions of a probabilistic model that is miscalibrated. For example, a Naïve Bayes (NB) 

model is a probabilistic model, but its class posteriors are often miscalibrated due to 

unrealistic independence assumptions [9]. The methods we describe are shown empirically 

to improve the calibration of NB models without reducing its discrimination. The methods 

can also work well on calibrating models that are less egregiously miscalibrated than are NB 

models.

The remainder of this paper is organized as follows. Section 2 describes the methods that we 

applied to perform post-processing calibration. Section 3 describes the experimental setup 

that we used in evaluating the calibration methods. The results of the experiments are 

presented in Section 4. Section 5 discusses the results and describes the advantages and 

disadvantages of proposed methods in comparison to other calibration methods. Finally, 

Section 6 states conclusions, and describes several areas for future work.

2 Methods

In this section we present two new Bayesian non-parametric methods for binary classifier 

calibration that generalize the histogram-binning calibration method [13] by considering all 

possible binnings of the training data. The first proposed method, which is based on 

Bayesian Model selection, is called Selection over Bayesian Binnings (SBB). We also 

generalize SBB by model averaging over all possible binnings; it is called Averaging over 

Bayesian Binnings (ABB). There are two main challenges here. One is how to score a 

binning model, and we use a Bayesian score. The other is how to efficiently search over 

such a large space of binnings, and we use dynamic programming to address this issue.

2.1 Bayesian Calibration Score

Let  and Zi define respectively an uncalibrated classifier prediction and the true class of 

the i’th instance. Also, let D define the set of all training instances ( , Zi). In addition, let 

S be the sorted set of all uncalibrated classifier predictions { } and Sl,u be a 
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list of the first elements of S, starting at l’th index and ending at u’th index, and let Pa 

denote a partitioning of S into a fixed number of bins. A binning model M induced by the 

training set is defined as:

(2.1)

where, B is the number of bins used to define Pa, and Θ is the set of all the calibration 

model parameters Θ = { θ1, …, θB}, which are defined as follows. For a bin b, which is 

determined by Slb,ub, the distribution of the class variable P(Z = 1|B = b) is modeled as a 

binomial distribution with parameter θb. Thus, Θ specifies all the binomial distributions for 

all the existing bins in Pa. We note that our binning model is motivated by the model 

introduced in [7] for variable discretization, which is here customized to perform classifier 

calibration. We score a binning model M as follows:

(2.2)

The marginal likelihood P(D|M) in Equation 2.2 is derived using the marginalization of the 

joint probability of P(D, Θ) over all parameter space according to the following equation:

(2.3)

Equation 2.3 has a closed form solution under the following assumptions: (1) All samples 

are i.i.d and the class distribution P(Z|B = b),which is the class distribution for instances 

located in bin number b, is modeled using a binomial distribution with parameter θb, (2) the 

distribution of class variables over two different bins are independent of each other, and (3) 

the prior distribution over binning model parameters θs are modeled using a Beta 

distribution. We also assume that the parameters of the Beta distribution α and β are both 

equal to one, which corresponds to having a uniform distribution over each θb. The closed 

form solution to the marginal likelihood given the above assumptions is as follows [5]:

(2.4)

where nb is the total number of training instances located in bin b. Also, nb0 and nb1 are 

respectively the number of class zero and class one instances among all nb training instances 

in bin b.

The term P(M) in Equation 2.2 specifies the prior probability of a binning of calibration 

model M. It can be interpreted as a structure prior, which we define as follows. Let Prior(k) 

be the prior probability of there being a bin boundary between  and  in the binning 

given by model M, and model it using a Poisson distribution with the mean parameter λ. For 

k from 1 to N − 1, we define the prior(k) function as:

(2.5)
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where,  represents the distance between the two (uncalibrated) classifier 

output  and , and  is greater than . For the boundary cases where k = 0 and k = N, 

we define Prior(0) = 1 and Prior(N) = 1 which correspond to have a bin boundary at the 

lowest and the highest possible uncalibrated probabilities in S.

Consider the prior probability for the presence of bin b, which contains the sequence of 

training instances Slb,ub according to model M. Assuming independence of the appearance of 

partitioning boundaries, we can calculate the prior of the boundaries defining bin b by using 

the Prior function as follows:

(2.6)

where the product is over all training instances from Slb to Sub−1, inclusive. Expression 2.6 

gives the prior probability that no bin boundary is presented between any consecutive pairs 

of values  in the sequence Slb,ub and at least one bining boundary between the values 

and . Combining Equations 2.6 and 2.4 into Equation 2.2, we obtain the following 

Bayesian score for calibration model M:

(2.7)

2.2 The SBB and ABB models

We can use the above Bayesian score to perform model selection or model averaging. 

Selection involves choosing the best partitioning model Mopt and calibrating a prediction x 

as P(x) = P(x|Mopt). As mentioned, we call this approach Selection over Bayesian Binnings 

(SBB). Model averaging involves calibrating predictions over all possible binnings. We call 

this approach Averaging over Bayesian Binnings (ABB) model. A calibrated prediction in 

ABB is derived as follows:

(2.8)

where N is the total number of predictions in D (i.e., training instances).

Both (SBB) and (ABB) consider all possible binnings of the N predictions in D, which is 

exponential in N. Thus, in general, a brute-force approach is not computationally tractable. 

Therefore, we apply dynamic programming, as described in the next two sections.
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2.3 Dynamic Programming Search of SBB

This section summarizes the dynamic programming method used in SBB. Recall that S is the 

sorted set of all un-calibrated classifier’s outputs { } in the training data set. 

Let S1,u define the prefix of set S including the set of the first u uncalibrated estimates 

{ }. Consider finding the optimal binning models M1,u corresponding to the 

subsequence S1,u for u ∈ 1, 2, …, N of the set S. Assume we have already found the highest 

score binning of these models M1,1, M1,2, …, M1,u−1, corresponding to each of the 

subsequences S1,1, S1,2, …, S1,u−1. Let  denote the respective scores of the 

optimal binnings of these models. Let Scorei,u be the score of subsequence 

{ } when it is considered as a single bin in the calibration model M1,u. For 

all l from u to 1, SBB computes , which is the score for the highest scoring 

binning M1,u of set S1,u for which subsequence Sl,u is considered as a single bin. Since this 

binning score is derived from two other scores, we call it a composite score of the binning 

model M1,u. The fact that this composite score is a product of two scores follows from the 

decomposition of Bayesian scoring measure we are using, as given by Equation 2.7. In 

particular, both the prior and marginal likelihood terms on the score are decomposable.

In finding the best binning model M1,u, SBB chooses the maximum composite score over all 

l, which corresponds to the optimal binning for the training data subset S1,u; this score is 

stored in . By repeating this process from 1 to N, SBB derives the optimal binning of set 

S1,N, which is the best binning over all possible binnings. The computational time 

complexity of the above dynamic programming procedure is O(N2).

2.4 Dynamic Programming Search of ABB

The dynamic programming approach used in ABB is based on the above dynamic 

programming approach in SBB. It focuses on calibrating a particular instance P(x). The ABB 

algorithm uses the decomposability property of the Bayesian binning score in Equation 2.7. 

Assume we have already found in one forward run of the SBB method the highest score 

binning of the models M1,1, M1,2, …, M1,N, which correspond to each of the subsequences 

S1,1, S1,2, …, S1,N, respectively; let the values  denote the respective scores 

of the optimal binning for these models, which we cache. We perform an analogous 

dynamic programming procedure in SBB in a backward manner (from highest to lowest 

prediction) and compute the highest score binning of these models MN,N, MN−1, N, …, M1,N, 

which correspond to each of the subsequences SN,N, SN−1,N, …, S1,N, respectively; let the 

values  denote the respective scores of the optimal binning for these 

models, which also cache. Using the decomposability property of the binning score given by 

2.7, we can write the Bayesian model averaging estimate given by Equation 2.8 as follows:

(2.9)

where p̂l,u(x) is obtained using the frequency1 of the training instances in the bin containing 

the predictions Sl,u. Remarkably, the dynamic programming implementation of ABB is also 
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O(N2). However, since it is instance specific, this time complexity holds for each prediction 

that is to be calibrated (e.g., each prediction in a test set). To address this problem, we can 

partition the interval [0, 1] into R equally spaced bins and stored the ABB output for each of 

those bins. The training time is therefore O(RN2). During testing, a given pin is mapped to 

one of the R bins and the stored calibrated probability is retrieved, which can all be done in 

O(1) time.

3 Experimental Setup

This section describes the set of experiments that we performed to evaluate the calibration 

methods described above. To evaluate the calibration performance of each method, we ran 

experiments using both simulated data and real data. In our experiments on simulated data, 

we used logistic regression (LR) as the base classifier, whose predictions are to be 

calibrated. The choice of logistic regression was made to let us compare our results with the 

state-of-the-art method ACP, which as published is tailored for LR. For the simulated data, 

we used two synthetic datasets in which the outcomes were not linearly separable. The 

scatter plots of the two simulated datasets are shown in Figure 2. These extreme choices 

allow us to see how well the calibration methods perform when the classification model 

makes over simplifying (linear) assumptions in learning nonlinear concepts. Also, in the 

simulation data we used 600 randomly generated instances for training the LR model, 600 

random instances for learning calibration-models, and 600 random instances for testing the 

models 2

We also performed experiments on three different sets of real binary classification data. The 

first set is the UCI Adult dataset. The prediction task is a binary classification problem to 

predict whether a person makes over $50K a year using his or her demographic information. 

From the original Adult dataset, which includes 48842 total instances with 14 real and 

categorical features, after removing the instances with missing values, we used randomly 

2000 instances for training classifiers, 600 for calibration-model learning, and 600 instances 

for testing.

We also used the UCI SPECT dataset, which is a small biomedical binary classification 

dataset. SPECT allows us to examine how well each calibration method performs when the 

calibration dataset is small in a real application. The dataset involves the diagnosis of 

cardiac Single Proton Emission Computed Tomography (SPECT) images. Each of the 

patients is classified into two categories: normal or abnormal. This dataset consists of 80 

training instances, with an equal number of positive and negative instances, and 187 test 

instances with only 15 positive instances. The SPECT dataset includes 22 binary features. 

Due to the small number of instances, we used the original training data as both our training 

and calibration datasets, and we used the original test data as our test dataset.

1we actually use smoothing of these counts, which is consistent with the Bayesian priors in the scoring function
2Based on our experiments the separation between training set and calibration set is not necessary. However, [13] states that for the 
histogram model it is better to use another set of instances for calibrating the output of classifier in order to prevent overfitting; thus, 
we do so in our experiments.
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For the experiments on the Adult and SPECT datasets, we used three different classifiers: 

LR, naïve Bayes, and SVM with polynomial kernels. The choice of the LR model allows us 

to include the ACP method in the comparison, because as mentioned it is tailored to LR. 

Naïve Bayes is a well-known, simple, and practical classifier that often achieves good 

discrimination performance, although it is usually not well calibrated. We included SVM 

because it is a relatively modern classifier that is being frequently applied 3.

The other real dataset that we used for evaluation contains clinical findings (e.g., symptoms, 

signs, laboratory results) and outcomes for patients with community acquired pneumonia 

(CAP) [4]. The classification task we examined involves using patient findings to predict 

dire patient outcomes, such as mortality or serious medical complications. The CAP dataset 

includes a total of 2287 patient cases (instances) that we divided into 1087 instances for 

training of classifiers, 600 instances for learning calibration models, and 600 instances for 

testing the calibration models. The data includes 172 discrete and 43 continuous features. 

For our experiments on the naïve Bayes model, we just used the discrete features of data, 

and for the experiments on SVM we used all 215 discrete and continuous features. Also, for 

applying the LR model to this dataset, we first used the PCA feature transformation because 

of the high dimensionality of data and the existing correlations among some features, which 

produced unstable results due to singularity issues.

4 Experimental Results

This section presents experimental results of the calibration methods when applied to the 

datasets described in the previous section. We show the performance of the methods in 

terms of both calibration and discrimination, since in general both are important.

For the evaluation of the calibration methods, we used 5 different measures. The first two 

measures are Accuracy (Acc) and the Area Under the ROC Curve (AUC), which measure 

discrimination. The three other measures are the Root Mean Square Error (RMSE), 

Expected Calibration Error (ECE), and Maximum Calibration Error (MCE). These measures 

evaluate calibration performance. The ECE and MCE are simple statistics that measure 

calibration relative to the ideal reliability diagram [3, 9] (Figure 1 shows an example of a 

reliability diagram). In computing these measures, the predictions are sorted and partitioned 

into K fixed number of bins(K = 10 in our experiments). The predicted value of each test 

instance falls into one of the bins. The ECE calculates Expected Calibration Error over the 

bins, and MCE calculates the Maximum Calibration Error among the bins, using empirical 

estimates as follows:

where oi is the true fraction of positive instances in bin i, ei is the mean of the post-calibrated 

probabilities for the instances in bin i, and P(i) is the empirical probability (fraction) of all 

3The output of the SVM model is mapped to interval [0, 1] using a simple sigmoid function
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instances that fall into bin i. The lower the values of ECE and MCE, the better is the 

calibration of a model.

The Tables [1a, 1b, …, 1k] show the comparisons of different methods with respect to 

evaluation measures on the simulated and real datasets. In these tables in each row we show 

in bold the two methods that achieved the best performance with respect to a specified 

measure.

As can be seen, there is no superior method that outperforms all the others in all data sets on 

all measures. However, SBB and ABB are superior to Platt and isotonic regression in all the 

simulation datasets. We discuss the reason why in Section 5. Also, SBB and ABB perform 

as well or better than isotonic regression and the Platt method on the real data sets.

In all of the experiments, both on simulated datasets and real data sets, both SBB and ABB 

generally retain or improve the discrimination performance of the base classifier, as 

measured by Acc and AUC. In addition, they often improve the calibration performance of 

the base classifier in terms of the RMSE, ECE and MCE measures.

5 Discussion

Having a well-calibrated classifier can be important in practical machine learning problems. 

There are different calibration methods in the literature and each one has its own pros and 

cons. The Platt method uses a sigmoid as a mapping function. The parameters of the 

sigmoidal transformation function are learned using a maximum likelihood estimation 

framework. The main advantage of the Platt scaling method is its fast recall time. However, 

the shape of the sigmoid function can be restrictive, and it often cannot produce well 

calibrated probabilities when the instances are distributed in feature space in a biased 

fashion (e.g. at the extremes, or all near separating hyper plane) [6].

Histogram binning is a non-parametric method which makes no special assumptions about 

the shape of mapping function. However, it has several limitations, including the need to 

define the number of bins and the fact that the bins remain fixed over all predictions [14]. 

ABB alleviates these problems by performing Bayesian averaging over all set of possible 

binning models on the training data.

Isotonic regression-based calibration is another non-parametric calibration method, which 

requires that the mapping (from pre-calibrated predictions to post-calibrated ones) is chosen 

from the class of all isotonic (i.e., monotonicity increasing) functions [9, 14]. Thus, it is less 

restrictive than the Platt calibration method. The pair adjacent violators (PAV) algorithm is 

one instance of an isotonic regression algorithm [1]. The PAV algorithm can be considered 

as a binning algorithm in which the boundaries of the bins are chosen according to how well 

the classifier ranks the examples[14]. It has been shown that Isotonic regression performs 

very well in comparison to other calibration methods in real datasets [9, 2, 14]. However, 

isotonic regression has some weaknesses. The most significant limitation of the isotonic 

regression is its isotonicity (monotonicity) assumption. As seen in Tables [1a, 1b] in the 

simulation data, when the isotonicity assumption is violated through the choice of classifier 

and the nonlinearity of data, isotonic regression performs relatively poorly, in terms of 
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improving the discrimination and calibration capability of a base classifier. The violation of 

this assumption can happen in real data secondary to the choice of learning models and 

algorithms, specifically when we encounter large scale classification problems in which we 

have to make simplifying assumptions to build the learning models. In order to mitigate this 

pitfall, Menon et. al [8] proposed a new isotonic based calibration method using a 

combination of optimizing AUC as a ranking loss measure, plus isotonic regression for 

building an accurate ranking model. However, this is counter to our goal of developing post-

processing methods that can be used with any existing classification models. There is also 

another interesting extension of isotonic regression for calibrating the output of multiple 

classifiers [15], but it is not included in our experiments, since we focus on calibrating the 

output of a single binary classifier in this paper.

A classifier calibration method called adaptive calibration of predictions (ACP) was 

recently introduced [6]. A given application of ACP is tied to a particular model M, such as 

a logistic regression model, that predicts a binary outcome Z. ACP requires a 95% 

confidence interval (CI) around a particular prediction pin of M. ACP adjusts the CI and uses 

it to define a bin. It sets pout to be the fraction of positive outcomes (Z = 1) among all the 

predictions that fall within the bin. On both real and synthetic datasets, ACP achieved better 

calibration performance than a variety of other calibration methods, including simple 

histogram binning, Platt scaling, and isotonic regression [6]. The ACP post-calibration 

probabilities also achieved among the best levels of discrimination, according to the AUC. 

ACP has several limitations, however. First, it requires not only probabilistic predictions, 

but also a statistical confidence interval (CI) around each of those predictions, which makes 

it tailored to specific classifiers, such as logistic regression [6]. Second, based on a CI 

around a given prediction pin, it commits to a single binning of the data around that 

prediction; it does not consider alternative binnings that might yield a better calibrated pout. 

Third, the bin it selects is symmetric around pin by construction, which may not optimize 

calibration. Finally, it does not use all of the training data, but rather only uses those 

predictions within the confidence interval around pin. The proposed ABB method mitigates 

these problems by performing a Bayesian averaging over all set of possible binning models 

on the training data. As one can see from the tables, ACP performed well when logistic 

regression is the base classifier, both in simulated and real datasets. Also, SBB and ABB 

performed as well or better than ACP in both simulation and real data sets.

In general, the SBB and ABB algorithms appear promising, especially ABB, which overall 

outperformed SBB. Neither algorithm makes restrictive (and potentially unrealistic) 

assumptions, as does Platt scaling and isotonic regression. They also are not restricted in the 

type of classifier with which they can apply, unlike ACP.

The main disadvantage of SBB and ABB is their running time. If N is the number of training 

instances, then SBB has a training time of O(N2), due to its dynamic programming algorithm 

that searches over every possible binning, whereas the time complexity of ACP and 

histogram binning is O(NlogN), and it is O(N) for isotonic regression [6]. Also, the cached 

version of ABB has a training time of O(RN2), where R reflects the number of bins being 

used. Nonetheless, it remains practical to use these algorithms to perform calibration on a 

desktop computer when using training datasets that contain thousands of instances. Note 
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that, the amount of data that is needed to calibrate classification models is much less than the 

amount needed to train them, because the calibration feature space has only one single 

dimension 4. In addition, the testing time is only O(b) for SBB where b is the number of 

binnings found by the algorithm and O(1) for the cached version of ABB. Table 2 shows the 

time complexity of different methods in learning for N training instances and recall for only 

one instance.

6 Conclusion

In this paper we introduced two new Bayesian, non-parametric methods for calibrating 

binary classifiers, which are called SBB and ABB. The proposed methods post process the 

output of a binary classification algorithm; thus, it can be readily combined with many 

existing classification algorithms. The approach can be viewed as a refinement of the 

histogram-binning calibration method in that it considers all possible binnings of the training 

data and their combination to yield more robust calibrated predictions. Neither algorithm 

makes restrictive assumptions, as does Platt scaling and isotonic regression. They also are 

not restricted in the type of classifier with which they can apply, unlike ACP. Experimental 

results on simulated and real data support that these methods perform as well or better than 

the other calibration methods that we evaluated.

In future work, we plan to explore how the two new methods perform when using Bayesian 

model averaging over the hyper parameter λ. We also will extend them to perform multi-

class calibration. Finally, we plan to investigate the use of calibration methods on posterior 

probabilities that are inferred from models that represent joint probability distributions, such 

as maximum-margin Markov-network models [12, 17, 16].
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Figure 1. 
The solid line shows a calibration (reliability) curve for predicting Z = 1. The dotted line is 

the ideal calibration curve.
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Figure 2. 
Scatter plots of the simulated data
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