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Environmental enteric dysfunction (EED) is a virtually ubiquitous, but poorly defined, disorder of the small
intestine among people living in conditions of poverty, which begins early in infancy and persists. EED is char-
acterized by altered gut structure and function, leading to reduced absorptive surface area and impaired intes-
tinal barrier function. It is hypothesized that recurrent exposure to fecal pathogens and changes in the
composition of the intestinal microbiota initiate this process, which leads to a self-perpetuating cycle of pathol-
ogy. We view EED as a primary gut disorder that drives chronic systemic inflammation, leading to growth hor-
mone resistance and impaired linear growth. There is currently no accepted case definition or gold-standard
biomarker of EED, making field studies challenging. The Sanitation Hygiene Infant Nutrition Efficacy
(SHINE) trial in Zimbabwe is evaluating the independent and combined effects of a package of infant feeding
and/or water, sanitation, and hygiene interventions on stunting and anemia. SHINE therefore provides an op-
portunity to longitudinally evaluate EED in a well-characterized cohort of infants, using a panel of biomarkers
along the hypothesized causal pathway. Our aims are to describe the evolution of EED during infancy, ascertain
its contribution to stunting, and investigate the impact of the randomized interventions on the EED pathway. In
this article, we describe current concepts of EED, challenges in defining the condition, and our approach to
evaluating EED in the SHINE trial.
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A key hypothesis of the Sanitation Hygiene Infant Nu-
trition Efficacy (SHINE) trial is that environmental en-
teric dysfunction (EED), a subclinical disorder of the
small intestine, is a major cause of child stunting [1].
Within SHINE, the cluster-randomized design will en-
able us to investigate the impact of water, sanitation, and
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hygiene (WASH) and infant and young child feeding
interventions on the pathogenesis of EED, and to eval-
uate other causes and consequences of EED through
observational substudies [1]. In this article, we discuss
current concepts of EED, challenges in defining the
condition, emerging biomarkers, and our approach to
evaluating the EED pathway in the SHINE trial.

CURRENT CONCEPTS OF EED

EED represents a population-wide shift in gut structure
and function in areas of poverty, where apparently
healthy people have abnormal small intestinal biopsy
findings, characterized by reduced villus height, increased
crypt depth, and lymphocytic infiltration [2-5]. Villi be-
come fused and broad, causing formation of leaves and
ridges, which reduces the absorptive surface area of the
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Figure 1.

Hypothesized causal pathway to stunting through environmental enteric dysfunction. Abbreviations: AGP, o-1 acid glycoprotein; CRP, C-reactive

protein; I-FABP, intestinal fatty acid binding protein; IGF-1, insulin-like growth factor 1; L:M, lactulose mannitol ratio; LPS, lipopolysaccharide; REG-1B,
regenerating gene 1B; sCD14, soluble CD14; sCD163, soluble CD163; STFR, soluble transferrin receptor.

gut and causes modest maldigestion and malabsorption of nutri-
ents [6]. Dysregulation of tight junction proteins leads to
increased small intestinal permeability, enabling microbial trans-
location and systemic inflammation [2, 7, 8]. We hypothesize that
recurrent exposure to fecal pathogens and changes in the compo-
sition of the intestinal microbiota initiate this process, which leads
to a self-perpetuating cycle of pathology (Figure 1), although the
precise sequence of events remains unclear [9].

Whether EED is one condition, or has several distinct pheno-
types, is unknown. There are multiple causes of intestinal dam-
age in developing countries, which overlap and interact; the
small intestine has a relatively limited repertoire of responses
to insult, so several different exposures could mediate similar
pathological findings [6]. EED appears almost universal in set-
tings where WASH coverage and practices are suboptimal, en-
teric pathogen carriage is high, nutritional deficiencies are

EED in the SHINE Trial ¢ CID 2015:61 (Suppl7) e S727



widespread, and other exposures (eg, mycotoxin contamination
of staple foods) are common; however, the relative contribution
of each is unknown [2, 6].

We lack understanding of the geographical variation in EED
because of challenges in defining the condition consistently,
although recent findings from the Malnutrition and Enteric
Disease (MAL-ED) study, which used standardized methods
to assess gut biomarkers in 8 birth cohorts across 3 continents,
confirm that this condition is almost ubiquitous among young
children in impoverished communities [10]. Infants across these
diverse settings had elevated markers of intestinal inflammation
that far exceeded levels typically seen among infants in devel-
oped countries [10]. We recently showed that Zimbabwean in-
fants have extremely high plasma concentrations of intestinal
fatty acid binding protein (I-FABP), indicating extensive dam-
age to small-intestinal villi, with levels exceeding those reported
among healthy children in Europe or among unhealthy children
with celiac disease [11]. Furthermore, we found that infants with
poor linear growth had elevated acute phase proteins and re-
duced concentrations of insulin-like growth factor 1 (IGF-1),
suggesting a central role for chronic inflammation and growth
hormone resistance in stunting [11].

We hypothesize that EED may have other adverse effects be-
yond linear growth failure. Induction of immune responses fol-
lowing oral vaccination may be impaired in the setting of an
inflamed gut, contributing to reduced oral vaccine efficacy in
developing countries [12]. The state of chronic inflammation
that arises from EED may plausibly contribute to anemia,
through elevation of hepcidin and/or anemia of inflammation,
and to dysregulated immune ontogeny, leading to immuno-
senescence, or premature aging of the immune system. As the
function of the microbiota-gut-brain axis becomes more appar-
ent [13], it is plausible that EED contributes to impaired neuro-
cognitive development, which is one of the most pervasive
sequelae of the stunting syndrome [14]. Finally, we hypothesize
that EED in women of reproductive age leads to microbial
translocation and chronic inflammation during pregnancy,
which may mediate adverse birth outcomes such as fetal growth
restriction and prematurity, as has been shown for infection or
inflammation at other extrauterine sites [15].

CHALLENGES IN DEFINING EED

EED was first termed tropical enteropathy [3], but was renamed
environmental enteropathy when it became clear that impover-
ished living conditions, rather than geographical location per se,
were the most important determinants of this subclinical pa-
thology [16]. A recent working group proposed the term envi-
ronmental enteric dysfunction to better capture the functional,
as well as structural, abnormalities associated with this condi-
tion [17]; however, the disorder remains poorly characterized

[9]. A major obstacle to better understanding EED is that
small-intestinal biopsies from young children are technically
and ethically difficult to obtain, meaning that most studies
now rely on noninvasive markers to define the disorder.
Where small-intestinal biopsies have been examined in adults,
the morphometric changes of EED can be quantified, but they
do not appear to correlate well with functional biomarkers [2].
There is therefore no currently accepted case definition of EED,
which provides a major problem for research studies [17].

DEFINING EED IN THE SHINE TRIAL

The SHINE trial provides an opportunity to investigate the
pathophysiology of the stunting syndrome, using the random-
ized interventions as a probe to explore mechanistic pathways
[1]. We view EED as a primary gut disorder that drives a chronic
systemic inflammatory process leading to growth hormone re-
sistance, which limits growth (Figure 1) [18]. There is no gold-
standard biomarker of EED, and it is unlikely that a single
marker would ever define this condition. In agreement with
others [17, 19], we consider that a range of biomarkers along
this pathway will provide the most informative picture of
the associations between gut pathology and linear growth (Fig-
ure 1, Table 1). It has been proposed that, in the absence of a
reliable biomarker, an “enteropathy index” may be required,
which would combine clinical and laboratory data to define
EED [20].

EED SUBSTUDY POPULATION

We have adopted a longitudinal approach to sample collection
in a subgroup of infants enrolled to SHINE, which will enable
us to describe the evolution of EED during infancy, ascertain its
contribution to stunting, and investigate the impact of the
randomized interventions on the EED pathway. All mothers
reaching their 32-week gestational visit from 1 May 2014
through the end of the trial are invited to enroll in the EED sub-
study, for a total sample size of at least 1000 human immuno-
deficiency virus (HIV)-unexposed infants (250 per trial arm).
HIV-unexposed infants are defined as those born to women
testing HIV negative at baseline and/or 32 gestational weeks.
All consenting HIV-infected mothers are enrolled, with infant
analyses stratified by maternal HIV status, because of the likely
impact of HIV exposure and infant cotrimoxazole prophylaxis on
underlying causal pathways. Infants of women who seroconvert
during follow-up (ie, women testing HIV negative at baseline
and/or 32 weeks, but HIV positive at 18 months postpartum)
will be excluded from analysis because of uncertain duration
of HIV exposure. Specimens are collected from mothers and in-
fants at 1 month of age (blood and stool), and from infants at 3,
6, 12, and 18 months (blood, stool, saliva, and urine).
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Table 1. Biomarkers of Environmental Enteric Dysfunction

Domain

Biomarker

Method

Sample Type

Intestinal absorption

Intestinal inflammation

Enterocyte damage

Mannitol recovery®
o-1 antitrypsin, neopterin, myeloperoxidase
I-FABP

Mass spectrometry
ELISA

Urine (2 h collection)
Stool

Intestinal regeneration REG-1B
Intestinal barrier function Lactulose recovery®
Microbial translocation
Systemic inflammation CRP, AGP

Growth hormone activity IGF-1

EndoCAb, LPS®, sCD14, sCD163

ELISA Plasma

ELISA Stool

Mass spectrometry Urine (2 h collection)
ELISA Plasma

ELISA Plasma

ELISA Plasma

In a subgroup of infants recruited to SHINE (250 human immunodeficiency virus [HIV]-unexposed infants per trial arm, and all HIV-exposed infants), urine, stool,
blood, and saliva samples are collected at 3, 6, 12, and 18 months of age. At 1 month of age, paired maternal and infant stool and blood are collected.

Abbreviations: AGP, o-1 acid glycoprotein; CRP, C-reactive protein; ELISA, enzyme-linked immunosorbent assay; EndoCAb, endotoxin core antibody; I-FABP,
intestinal fatty acid binding protein; LPS, lipopolysaccharide; REG-1B, regenerating gene 1B; sCD14, soluble CD14; sCD163, soluble CD163; SHINE, Sanitation

Hygiene Infant Nutrition Efficacy.

@ Lactulose-mannitol (LM) testing is conducted at 3, 6, 12, and 18 months. Prior to testing, a pre-LM urine sample is collected to measure baseline mannitol. Infants
are fasted for at least 30 minutes before ingesting 2 mL/kg of a solution containing mannitol (60 mg/mL) and lactulose (250 mg/mL). Total urine is collected in an
adhesive bag for 2 hours, during which time the mother is encouraged to feed her infant regularly to permit collection of an adequate volume of urine. Collected urine
is preserved using chlorhexidine to prevent overgrowth of bacteria, measured, and taken back to the laboratory for storage at —80°C for subsequent measurement of

lactulose and mannitol concentrations by mass spectrometry.

b LPS will be measured in mothers only, because endotoxin-free conditions of blood collection cannot be guaranteed in infants.

SPECIMEN COLLECTION, TRANSPORT, AND
PROCESSING

Infant blood is collected at each time-point into a PAXgene tube
(PreAnalytiX GmbH, Switzerland) for subsequent transcriptom-
ic analysis, and an EDTA tube (BD Biosciences) for point-of-care
hemoglobin measurement (HemoCue Hb 301, Angelholm,
Sweden), CD4 count and HIV DNA polymerase chain reaction
testing (HIV-exposed infants only), plasma storage (for bio-
marker analysis), and peripheral blood mononuclear cell (PBMC)
isolation (for flow cytometry). Salivary samples are collected
using oral swabs (Salimetrics LLC, Carlsbad, California); stool
samples are collected into plain tubes without fixative, prior to
ingestion of lactulose-mannitol (LM) solution, and urine is col-
lected prior to and for 2 hours after administration of LM solu-
tion (see below). Samples are carried in cool boxes to field
laboratories, where they are processed and aliquoted for storage
at —20°C or —80°C with a backup generator.

BIOMARKERS OF EED

Our choice of biomarkers (Table 1) is based on a combination
of prior EED studies, extrapolation from other intestinal diseas-
es, and biological plausibility, although the final panel of mark-
ers may change depending on emerging data. A consortium
supported by the Bill & Melinda Gates Foundation is evaluating
a number of candidate biomarkers, and in some sites work is
under way to correlate biomarkers with gut biopsies or confocal
laser endomicroscopic findings.

Intestinal Markers
Stool samples will be used to measure intestinal inflammation
and epithelial regeneration. The Mal-ED study showed that a
combination of 3 fecal inflammatory markers predicted subse-
quent deficits in linear growth better than any single marker; we
are therefore measuring fecal neopterin (GenWay Biotech, San
Diego, California), myeloperoxidase (Immundiagnostik, Ben-
sheim, Germany) and o-1 antitrypsin (Biovendor, Brno,
Czech Republic) by enzyme-linked immunosorbent assay
(ELISA), as previously described [10]. Regenerating gene 1§
(REG-1B) protein is a C-type lectin family member, which
can be measured in stool by ELISA (Techlab Inc, Blacksburg,
Virginia) and reflects epithelial injury and regeneration [21].
In infants from Peru and Bangladesh, higher stool REG-1B con-
centrations at 3 months of age were independently associated
with lower attained linear growth through 24 months [22].
The LM test remains widely used to assess intestinal absorp-
tive capacity and permeability [20]. Among studies reporting
LM ratios (or separate mannitol and lactulose excretion values)
and growth in children, most [7, 23-26], but not all [27, 28],
found inverse associations with linear growth. However, the
test has certain limitations: first, it is a cuambersome test that re-
quires fasting and prolonged urine collection from young in-
fants; second, comparison across studies is difficult due to
methodological differences in test performance and analysis
[20]; third, the ingested solute load may alter gut transit times
[29] and intestinal permeability [30, 31]; and fourth, analysis is
expensive and technically challenging. Nevertheless, it remains
a potentially useful marker in large field trials where biopsy
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samples are not feasible [20]. We are conducting LM tests on
EED substudy infants in their homestead, using a standard op-
erating procedure based on experience from the Mal-ED study
[32]. Although 5-hour urine collections have been used in many
previous studies that included LM tests, longer durations are
more demanding on caregiver and fieldworker time, and lactu-
lose recovery partly reflects colonic permeability [33]. Shorter
collection times have a practical advantage for fieldworkers,
and lactulose recovery better reflects small intestinal permeabil-
ity [33]; we have therefore chosen a 2-hour urine collection pro-
cedure in SHINE. The disadvantages of a 2-hour collection are
that the test sometimes has to be extended in duration until the
infant passes urine, and analysis must be by mass spectrometry
(rather than high-performance liquid chromatography) because
of lower urinary sugar concentrations (Margaret Kosek, person-
al communication). Because mannitol can be found naturally in
the urine [30], a baseline urine sample is collected where possi-
ble prior to dual sugar ingestion to correct for this in analysis;
however, the need to collect and analyze 2 samples per child in-
creases test complexity and costs further.

A dedicated facility in the central Harare laboratory manufac-
tures 20-mL aliquots of LM solution (containing 250 mg/mL lac-
tulose and 50 mg/mL mannitol in sterile water). LM solution is
maintained at 2°C-8°C and transported by cold chain to field lab-
oratories, where it is carried in a dedicated cool box to the partic-
ipant’s home. Upon arrival, the fieldworker weighs the infant and
attaches an adhesive urine bag; the mother continues to breast-
feed the infant until a baseline urine sample is collected. The in-
fant then fasts for 30 minutes prior to administration of 2 mL/kg
LM solution by oral syringe or cup. A new urine bag is attached
and the infant fasts for 30 minutes prior to resuming breastfeed-
ing. The bag is emptied frequently over a 2-hour period, and each
aliquot of urine is preserved with chlorhexidine to prevent micro-
bial overgrowth, then placed in a cool box for storage. Two hours
after LM ingestion, the test is stopped; if an infant has not passed
any urine, the test is extended until urine is collected. The total
volume of LM urine is measured in the field laboratory and sam-
ples are frozen in aliquots for subsequent measurement of lactu-
lose and mannitol by mass spectrometry.

Plasma I-FABP is easy to measure using a commercial ELISA
(Hycult Biotech, Uden, the Netherlands), reflects small-
intestinal villus damage, and has a short half-life, meaning it
is a dynamic marker of the intestinal epithelium [34]; it is a use-
ful biomarker of celiac disease [35], and studies are under way in
Zambia to correlate I-FABP concentrations with epithelial
breaches detected by confocal laser endomicroscopy (Paul
Kelly, personal communication).

Microbial Translocation and Inflammation
It is hypothesized that impaired intestinal barrier function en-
ables organisms and microbial products to translocate from the

gut to the mesenteric lymph nodes, liver, and systemic circula-
tion [17-19]; however, this is a difficult domain of the causal
pathway to evaluate. Lipopolysaccharide (LPS, or endotoxin)
is found in the outer membrane of gram-negative bacteria, mak-
ing it a plausible marker of translocation from the gut; however,
measurement of plasma LPS requires blood specimens to be
collected under scrupulously endotoxin-free conditions, and
this is challenging in young infants, in whom a closed venipunc-
ture system often cannot be used. LPS elicits a strong immune
response, and several studies have measured immunoglobulin
M or immunoglobulin G antibodies to the core domain of en-
dotoxin (EndoCAb) by ELISA, finding variable associations
with growth [7, 11, 36]; there are also technical problems with
the commercially available assay [32]. LPS also stimulates circu-
lating monocytes and tissue macrophages to release soluble
CD14 and soluble CD163; while these may plausibly represent
alternative markers of translocation, no studies to date have
demonstrated relationships with linear growth.

It is postulated that translocated microbial products stimulate
innate immune cells to release proinflammatory cytokines (in-
terleukin [IL] 6, IL-1B, and tumor necrosis factor o), which
then trigger hepatic synthesis of acute phase proteins, such as
C-reactive protein (CRP) and al-acid glycoprotein (AGP)
[17-19].1In a previous study, we showed that a range of inflam-
matory markers (IL-6, CRP, AGP) were inversely associated
with IGF-1 concentrations; the average level of CRP between
6 weeks and 12 months of age had the strongest associations
with stunting [11]. CRP is easy to measure on small quantities
of plasma using a commercial assay (R&D Systems, Inc, Minne-
apolis, Minnesota), making it appealing for infant studies; AGP
is similarly straightforward to measure by ELISA (R&D Sys-
tems, Inc), and is an acute phase protein with a longer half-
life [37]; however, a broader range of multiplexed pro- and
anti-inflammatory cytokines may allow a more detailed evalua-
tion of the inflammatory milieu. In a subgroup of infants, we
will undertake immunophenotyping on thawed PBMCs by
flow cytometry, to describe lymphocyte ontogeny, activation,
and senescence across trial arms.

Growth Hormone—IGF-1 Axis

Growth hormone is released in a pulsatile manner and stimu-
lates hepatic synthesis of IGF-1, which circulates in a ternary
complex with its principal binding protein, IGF binding protein
3, and an acid-labile subunit [38]. IGF-1 stimulates clonal ex-
pansion of chondrocytes to directly promote linear growth,
and is therefore an attractive biomarker in studies of stunting
as it directly mediates the effects of growth hormone [39]. Plas-
ma IGF-1 is easily measured by ELISA (R&D Systems, Inc), and
we have shown that concentrations are significantly reduced in
infants with poor linear growth [11], likely due to growth hor-
mone resistance in the setting of chronic inflammation [40].
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Oral Vaccine Responses

In a subgroup of infants, we will measure plasma immunoglob-
ulin A (IgA) responses to rotavirus and poliovirus, prevaccina-
tion (1 month) and postvaccination (3 months), to compare
seroconversion rates and IgA titers between infants. We will in-
vestigate whether vaccine immunogenicity is related to bio-
markers of EED; whether WASH interventions can augment
vaccine immunogenicity; and whether infants at risk of oral
vaccine failure can be identified prior to vaccination.

Biomarkers of Anemia

In addition to the biomarkers of EED already described, we will
measure a panel of markers (ferritin, soluble transferrin recep-
tor, and hepcidin) to better understand the relative contribu-
tions of inflammation and iron deficiency to infant anemia.

Morbidity Data

Mothers of infants in the EED substudy will keep a daily mor-
bidity diary, using stickers to record episodes of illness (diarrhea;
blood or mucus in stools; cough; fast or difficult breathing;
fever; or lethargy preventing feeding) so that incidence and
prevalence of acute and persistent diarrhea, and other intercur-
rent infections, can be estimated.

ANALYSIS APPROACH

To test hypotheses pertaining to EED, an intent-to-treat analy-
sis will be carried out on each domain in the causal pathway.
First, we will use generalized estimating equations to construct
prediction equations for child length-for-age z score (LAZ) at
18 months. We will multiply regression coefficient estimates
for the treatment effect of the WASH intervention on EED ex-
posure among children in the WASH arm of the trial by those
partial regression coefficients for the association of EED with
child LAZ among children in the standard-of-care arm to attain
the estimated effect of the WASH intervention on child LAZ at
18 months as mediated by EED. Variability in each domain of
the pathway will be characterized either as a continuous func-
tion or as categories. For some domains, we will explore the
computation of summary indices, such as the disease activity
score developed by Mal-ED using 3 intestinal inflammatory
markers [10], which has been adopted by other groups [41],
or an “enteropathy index” [20]. Thereafter, for each link in
the pathway, we will study the association between variability
in the upstream domains/variables and variability in the subse-
quent domains/variables. Second, we will calculate maximum
likelihood estimates of these same parameters using a path anal-
ysis approach. Path analysis techniques enable a more rigorous
assessment of mediation than is possible through causal step
approaches [42]. We will estimate the indirect effect of the
WASH intervention on child LAZ as mediated by EED. The

same approach will be taken to assess mediation by diarrhea,
to evaluate the relative contributions of diarrhea and EED in
the pathogenesis of stunting.

CONCLUSIONS

EED is a virtually ubiquitous, but poorly defined, disorder of the
small intestine of people living in conditions of poverty that be-
gins early in infancy and persists. It may plausibly impact linear
growth, neurodevelopment, oral vaccine responses, and im-
mune ontogeny, and several trials are under way to evaluate
the impact of preventive or treatment approaches for EED
[43]. Several research groups are actively evaluating novel mark-
ers of EED, but currently there is no accepted case definition or
gold-standard biomarker, making field studies challenging. The
SHINE trial provides an opportunity to longitudinally explore
disease mechanisms, using the most robust current and emerg-
ing biomarkers of EED to better understand the impact of pub-
lic health interventions on the causal pathway to stunting.
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