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Abstract

Traditionally, genetic testing has been too slow or perceived to be impractical to initial 

management of the critically ill neonate. Technological advances have led to the ability to 

sequence and interpret the entire genome of a neonate in less than 50 hours. As the cost and speed 

of testing decreases, the utility of whole genome sequencing (WGS) of neonates for acute and 

latent genetic illness increases. Analyzing the entire genome allows for concomitant evaluation of 

the currently identified 5,430 single gene diseases. When applied to a select population of ill 

infants in a level IV neonatal intensive care unit, WGS yielded a diagnosis of a causative genetic 

disease in 57% of patients. These diagnoses may lead to clinical management changes ranging 

from transition to palliative care for uniformly lethal conditions to alteration or initiation of 

medical or surgical therapy to improve outcomes in others. Thus, institution of 2-day WGS at time 

of acute presentation opens the possibility of early implementation of precision medicine. This 

implementation may create opportunities for early interventional therapies, which would 

frequently be novel or off-label, that may alter disease trajectory in infants with what would 
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otherwise be fatal disease. Widespread deployment of rapid WGS and precision medicine will 

raise ethical issues pertaining to interpretation of variants of unknown significance, discovery of 

incidental findings related to adult onset conditions and carrier status, and implementation of 

medical therapies for which little is known in terms of risks and benefits. Despite these challenges, 

precision neonatology has significant potential both to decrease infant mortality related to genetic 

diseases with onset in newborns and to facilitate parental decision-making regarding transition to 

palliative care.

Introduction

The completion of the first composite human genome sequence in April, 2003 marked the 

dawn of the promise of precision medicine – a new approach to medicine wherein diagnosis, 

treatment, and risk factor modification would be informed by an individual's unique genetic 

make-up. While mature models of precision medicine remain to be defined, changes in the 

speed and cost of whole genome sequencing (WGS) are bringing the details of initial 

applications into focus. NIH Director, Francis Collins, foresees a society in which every 

baby will have access to their sequenced genome in order to modify their strategies for 

disease prevention, detection and treatment[1]. In the 2015 State of the Union Address, 

President Barack Obama announced the creation of a precision medicine initiative, 

ultimately to provide each individual with personalized information to drive expedient 

diagnoses and individualized, more effective treatments. The transformation of healthcare 

through the use of personal WGS information has already begun in Neonatal Intensive Care 

Units (NICUs). Since 2011, neonatologists at our institution have, through research 

protocols, used research-based rapid WGS in acutely ill infants and their parents to diagnose 

the underlying genetic cause of the neonates’ conditions[2–4]. Furthermore, in a research 

setting, it is now possible to sequence human genomes at a cost of less than $1000 per 

individual. At this early stage in its evolution, we review the premise, practicality, and 

potential of rapid WGS for neonatal precision medicine.

Monogenic Diseases: Neonatal Impact and Incidence

Monogenic diseases are conditions causally related to genomic change(s), or variant(s), in a 

single gene. This collection of diseases is currently most amenable to diagnosis through 

WGS because the causative variants frequently involve one or a few contiguous DNA 

nucleotides in one or a handful of genes. These variants interfere with the efficient 

functioning of a gene product through disruption of transcription, translation, protein 

modification, complex assembly or function. They may be inherited from a parent or occur 

de novo as a mutation in the germ cell of one of the parents. It is estimated that each 

individual's germline genome harbors about 74 de novo single nucleotide variants [5–7]. 

When these de novo variants are associated with dominantly expressed phenotypes, they 

tend to present in the newborn period because they are often more deleterious than inherited 

variants due to the absence of evolutionary selection [8, 9].

As a proportion of overall disease burden, monogenic diseases decrease in importance with 

age, and their impact is highest in fetal, perinatal, and neonatal care respectively. The 

incidence of each individual monogenic disease is rare, but in toto, they are common. It is 
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estimated that 60 million people in the United States and Europe have rare genetic diseases, 

of which 75% are children. Of these 45 million children, an estimated 30% will die before 

the age of 5 years[10]. Genetic diseases and birth defects are the leading cause of infant 

death in the United States with many of these being monogenic[11]. While the proportion of 

newborns admitted to the NICU with genetic disorders is unknown, 76% of NICU patients 

are admitted for reasons other than prematurity[12, 13]. A 1991 study from Scotland 

determined, in a cohort of 821 consecutive admissions to the NICU, that 5.7% of the 

admissions were for chromosomal or monogenic disorders[14]. This is likely a considerable 

underestimate given lack of NGS at that time. Infants with recognizable genetic disorders 

have disproportionately longer hospitalizations and more frequent neonatal death[15–20].

At present, newborns and infants with congenital malformations, syndromes, and inherited 

disorders typically undergo an extensive diagnostic process, with relatively low rates of 

etiologic diagnosis[4]. It is suspected that 3% of babies born in the US and Europe will have 

a major birth defect, with only 10–20% of these having an identifiable syndrome[21]. Acute 

management decisions are therefore typically made in the absence of a definitive diagnosis, 

which leads to delays in initiation of effectual treatments or to the use of empiric treatments 

that are ineffective, have adverse effects, or exacerbate symptoms. Thus, the timely return of 

definitive diagnoses of monogenic diseases during a NICU stay can potentially result in 

substantive changes in practice for neonatologists and consulting subspecialists[4]. In 

addition to having the potential to modify medical treatment in amenable cases, rapid 

genetic diagnosis allows for rational refocusing of care to diminish neonatal suffering and to 

support familial grieving in futile situations. These end-of-life decisions are common in 

neonatal genetic diseases, with most deaths resulting from withholding or withdrawing 

care[22]. Given the limitations to parental bonding and contact with the baby in the NICU 

setting, earlier holistic, end-of-life care decisions shifts focus from invasive medical 

management to the alleviation of suffering, allowing the family to bond, say “goodbye,” 

baptize or give last rites, and facilitate the grieving process. Thus, early definitive diagnosis 

may actually increase neonatal (28-day) mortality in patients with genetic diseases, whilst 

having the potential to decrease infant (1 year) mortality.

Genetic diseases also have significant societal costs associated with profound emotional, 

financial, social, and physical stress within families[23, 24]. The impact of newborn genetic 

diseases and birth defects on family structure is profound with studies identifying increased 

maternal depression and anxiety. The presence of maternal anxiety and depression are 

associated with childhood behavioral, developmental, and persistent health 

complications[25]. In a 1997 report, parental divorce occurred in 50 % of families with a 

child with a genetic disease[26]. Rapid, precise diagnosis coupled with robust treatment and 

support teams may offset not just direct medical expense but larger familial and societal 

costs of genetic disease in infancy.

Rapid Whole Genome Sequencing Methods

While the specifics of rapid WGS will differ from institution to institution, we have reported 

on our three year experience of sequencing selected neonates and infants for diagnosis of 

likely genetic diseases[2–4] described briefly as follows. Enrollment of parental and 
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proband trios is preferred, and every effort is made to sequence both parents. After informed 

consent is obtained, the presenting clinical features are ascertained by review of electronic 

health records and translated into structured Human Phenotype Ontology terms[2, 27]. 

These terms are then mapped to the approximately 5430 known monogenic disorders and 

3353 genes using either an in-house clinicopathologic correlation tool, Symptom & Sign 

Assisted Genome Analysis (SSAGA), or publically available software, such as Phenomizer,

[2, 3, 28, 29] generating a rank ordered differential diagnosis of diseases and assocatied 

genes. DNA is isolated from participants and sequenced using an Illumina HiSeq 2500 in 

rapid mode. Short reads are computationailly aligned to the GRCh37 human reference 

genome, and variants identified with software, including short nucleotide substitutions, 

deletions, and insertions.[2–4, 30, 31].

Each individual sample sequence yields 4 to 5 million nucleotide variants that differ from 

the human reference genome. Through a variety of commercially available and in-house 

computer programs, each of these variants is genotyped and annotated[2]. The annotation 

process incorporates data from ENSEMBL Variant Effect Predictor software[32] comparing 

variants from the NCBI Single Nucleotide Polymorphism Database, Human Gene Mutation 

Database disease-causing variants[33, 34], and performing additional in silico prediction of 

variant consequences using RefSeq and ENSEMBL gene interpretations[35, 36]. Variants 

are categorized according to ACMG recommendations for reporting sequence variation[34, 

37] along with a minor allele frequency from our in-house database[2]. Variants are filtered 

using a minor allele frequency of <1% and ACMG categories 1–5 (With a focus on Cat 1–3 

known pathogenic, likely pathogenic, or unknown significance respectively). Analysis is 

further limited to variants in genes that ranked high in correspondence to the phenotype of 

the affected infant or child. If a single, likely-causative variant is identified for an autosomal 

recessive condition, the entire coding region is manually inspected using the Integrated 

Genomics Viewer[38]. Expert interpretation and literature curation are performed for all 

likely-causative variants with regard to evidence for pathogenicity[37]. Rapid WGS, from 

sample procurement to test result, can be completed in less than 50 hours[2]. Currently, all 

causative variants identified by WGS are confirmed by Sanger sequencing prior to clinical 

reporting. If the subject's phenotype differs from those previously reported for mutations in 

the suspected disease gene, additional expert consultation and functional confirmation is 

performed. We do not currently report variants of unknown significance, carrier status, or 

predisposition for adult onset diseases. Reports in the health record are limited to confirmed 

variants that explain the presenting phenotype of the infant.

Experience with Whole Genome Sequencing in Neonates

Our early experience with rapid WGS involved 35 acutely ill infants whose genomes were 

sequenced with their families as parent-child trios[4]. All infants were less than 4 months of 

age at time of enrollment, had a suspected genetic cause of their symptoms, and lacked a 

molecular or genetic diagnosis. The infants enrolled for sequencing had diverse 

presentations, with symptoms typically apparent at birth (Table 1) and received multiple 

standard genetic tests in addition to WGS. In this highly selected group of NICU infants, 

rapid WGS provided a genetic diagnosis in 20 patients (57%), in contrast to only 9% 

diagnostic rate with standard genetic testing in the same individuals. Sanger sequencing 
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confirmed 100% of WGS diagnostic findings. In all cases examined, WGS analysis also 

identified variants of unknown significance that did not explain the etiology of illness or 

lacked sufficient evidence of pathogenicity and were not reported. The significance of these 

variants may change as more information is acquired on the role and functions of these 

genes and variants.

No presenting symptoms seemed to confer a higher diagnostic rate with WGS (Table 1). 

Recurrent genes with causative variants were PTPN11 (Noonan/LEPOARD syndrome), 

CHD7 (CHARGE syndrome), and SCN2A (Early infantile epileptic encephalopathy). 

Dominant de novo mutations were the most commonly found mechanism of disease variant 

accrual (65%). The recognition of de novo and somatic mutations as common causes of 

neonatal genetic diseases was important since family history is negative in such situations 

and the disease appears to be sporadic in origin. WGS of parent – infant trios is critical for 

recognition of de novo variants as the absense of the variant in the unaffected parents lends 

strong indirect support to the pathogenicity of the variant identified in the patient. WGS also 

provides good coverage of the mitochondrial genome and yielded one maternally-inherited 

diagnosis in the 35 cases. Of five patients with autosomal recessive inheritance, four had 

compound heterozygous variants, and one, from a genetically isolated population, had a 

homozygous causative variant. This mix of inheritance patterns is similar to that seen in 

recently published large case series of exome and genome sequencing (Table 2).

Among infants receiving WGS diagnoses, the degree of overlap between the classical 

clinical features of the disease and the presenting symptoms of the infants was frequently 

modest. Of the 20 infants receiving a diagnosis by WGS, 9 (45%) were conditions that had 

not been considered in the differential diagnosis at the time of enrollment. These infants 

either had yet to develop the classical disease presentations (i.e. to “grow into their 

phenotype”) or represented unappreciated disease pleiotropy. Prior to WGS, there has not 

been a generalizable method for genetic disease diagnosis in newborns, and it is anticipated 

that our current knowledge of newborn presentations of genetic diseases may represent the 

tip of the phenotypic iceberg. In two of 35 cases, the genetic disease was novel and 

previously unpublished. It was encouraging in these situations that rapid WGS, nevertheless, 

yielded diagnoses. However, as noted above, there is probably yet an under-diagnosis of 

genetic diseases in infants with variants of unknown significance with our methods that will 

be clarified with time. There likely are many more novel genetic diseases that present as 

stillbirths or as extreme presentations of otherwise normal neonatal illness.

For this preliminary data, the average age at enrollment for WGS was 26 days, with the 

median time to confirmed, reported diagnosis of 23 days. Median time from enrollment to 

WGS analysis was 5 days, with interpretation and Sanger confirmation taking the remaining 

time to report clinically. Of the 35 infants in this initial experience, the median NICU or 

PICU stay was 42 days with a range of 3 – 387 days. 120-day mortality was 40% overall (14 

of 35) but higher in those with a genetic diagnosis identified by WGS (55%, 11 of 20). 

These data indicate limitations of rapid WGS at present. First, the window for possible 

intervention is small when one accounts for the delay in enrollment coupled with the 

significant early mortality in the patients with genetic diagnoses. Additionally, if an infant is 

acutely ill due to an early presentation of an inborn error of metabolism, the turn-around 
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time for basic biochemical testing is still more rapid than rapid WGS. WGS complements 

but does not replace conventional tandem mass spectrometry (MS/MS) newborn screening. 

Where a singular genetic disease diagnosis is likely, and if conventional molecular testing 

can be performed in-house, rapid WGS is unlikely to be superior due to current research 

restrictions and required Sanger confirmation which currently adds nearly a week to return 

of results.

Clinical Outcomes and Impact of Genomic Diagnoses

The clinical impact of WGS testing was positive in 65% of diagnoses according to clinician 

report. Specific services enabled by these rapid genetic diagnoses included institution of 

palliative care, initiation of new subspecialist consultant, or change in medication, diet, 

imaging study, surgical procedure, or specific genetic counseling. Of the 13 diagnoses made 

prior to discharge or death, 11 (85%) were considered to have acute clinical utility. 

Palliative care was instituted more often in infants receiving a genetic diagnoses than those 

who did not (6 of 20, 30%, versus 0 of 15, respectively).

Two Illustrative Cases of Clinical Impact

Of the previously published cases, two are presented as illustrations of potential clinical 

impact[4]. The first, CMH487, was admitted to the NICU at birth with multiple congenital 

anomalies. He developed acute hepatic failure on day of life (DOL) 56. Intravenous 

corticosteroids and immunoglobulin were started empirically on DOL 67 and 69, 

respectively. The infant-parent trio was enrolled on DOL 71. Rapid WGS gave a provisional 

molecular diagnosis of hemophagocytic lymphohistiocytosis. Since this diagnosis was 

actionable and the infant was at imminent risk of death, the provisional molecular diagnosis 

was reported verbally on DOL 74, before confirmatory testing. Subsequently, this diagnosis 

was confirmed by Sanger sequencing, and formally reported on DOL 77. The diagnosis was 

further solidified by functional studies on NK cells. On DOL 81, the knowledge of the 

genetic diagnosis allowed institution of published treatment protocols for this patient with 

discontinuation of extraneous and potentially harmful empiric therapies. The patient had 

resolution of coagulopathy by DOL 88. At 24 months of age, the child has normal liver 

function.

CMH569 was admitted to the PICU on DOL 34 with a blood glucose of 18 mg/dL. 

Hypoglycemia was refractory to glucose infusion and diazoxide. Hyperinsulinemia was 

detected. The infant-parent trio received rapid WGS on day of life 41. A provisional 

molecular diagnosis of type 1 familial hyperinsulinism was reported on DOL 45. 

Furthermore, rapid WGS suggested the disease to be focal (adenomatous hyperplasia that 

involved only part of the pancreas). The Sanger-sequence confirmed diagnosis was reported 

on DOL 50. Functional imaging confirmed focal pancreatic lesions, allowing targeted partial 

pancreatectomy instead of the previously planned total pancreatectomy which would have 

led to life long brittle diabetes mellitus. Rapid WGS shortened the PICU stay by 

approximately three weeks, as well as the morbidity associated with breakthrough 

hypoglycemia. At 17 months of age, the patient is euglycemic without need for insulin 

therapy.
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Ongoing Research

Using our baseline three year experience with rapid WGS of selected neonates and infants 

for diagnosis of likely genetic diseases, we developed a prospective study of the diagnostic, 

clinical, and psychosocial utility of rapid WGS in the NICU (ClinicalTrials.gov Identifier: 

NCT02225522). This study is part of a multicenter investigation funded by the NIH under 

the Newborn Sequencing In Genomic medicine and public HealTh (NSIGHT) collaborative 

which seeks to explore the implications, challenges, and opportunities associated with the 

use of genomic sequence information in the newborn period.

At our site, we are understaking a prospective, random blinded study of the utility of rapid 

WGS in the care of ill neonates. Potentially eligible newborns are nominated for the study 

by neonatologists in our level IV NICU, which has an annual census of approximately 900 

neonates. Inclusion criteria for enrollment require that either a genetic test or genetic 

subspecialty consult has been ordered, a major congenital anomaly or multiple minor defects 

is present, or a poor response to routine care for a condition is identified (raising the 

suspicion of an underlying genetic etiology). Exclusion criteria include infants > 4 months 

of age, features pathognomonic for a known chromosomal anomaly, or a confirmed 

molecular genetic diagnosis. Upon acceptance of nominations, informed consent from both 

parents is obtained prior to participation as required by the IRB. Efforts are made to enroll 

and sequence the proband and both parents when possible. To date, timely nomination (i.e. 

within days of life 0–5) has proven difficult; the rates of nomination vary widely by 

neonatologist (from 0 – 10%) and consent is obtained in ~50% of accepted nominations. 

Major reasons for failure to obtain consent are the unavailability of a second parent, 

underage parents, mothers who do not wish the father contacted, and unwillingness to 

undergo WGS (primary stated reason is related to perceived limitations of the Genetic 

Information Nondiscrimination Act of 2008). Enrolled infants and family members then 

undergo sequencing and variant identification as described above.

Current Limitations

Rapid WGS is a quickly evolving technology that still has multiple limitations. Causative 

larger, structural variants that affect single loci are sought using computational tools, but 

these methods currently lack sufficient sensitivity and specificity for clinical use. The short 

sequences generated in rapid WGS preclude their use for diagnosis of triplet repeat 

expansion disorders and in some disease genes with nonfunctional but highly homologous 

intronic regions called pseudogenes. Sequencing advances will likely be able to address 

these limitations in the near future. A much more difficult hurdle in rapid WGS application 

involves interpretation of variant pathogenicity. That is, determining if the variant both 

effects the gene function, and if that effect reasonably may be causing the patient’s 

symptoms. Each patient has many variants that are unique or private to them and 

determination of whether the variant may be pathogenic may be inferred from various 

sources, including similar changes that have been reported or in silico analysis of the 

importance of the variant. However, determining variant causality in the absence of prior 

literature involves functional testing. This method of testing for each variant, while 

compelling, is expensive and labor intensive.
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Outside of variants of unknown significance, there are technologic limitations of rapid WGS 

that need to be understood. False positive results are variants labeled in the literature as 

pathogenic or predicted to be pathogenic by software tools that are actually not disease 

causing. The “over-interpretation” of variant pathogenicity was an even greater problem 

prior to WGS or exome sequencing, when only a few candidate genes were sequenced. At 

this early phase of precision medicine, some false positive errors due to erroneous medical 

literature are unavoidable and may become more common as testing moves to wider groups 

of newborns with lower pre-test probability of genetic disease. In one sense, even with 

Sanger technical confirmation, these diagnoses remain provisional until either enough 

literature is accumulated to confirm that association, the child develops a full phenotypic 

manifestation of disease, or orthogonal functional testing is performed. The ACMG has 

recently issued detailed guidelines for structured methods for evaluating the evidence in 

support of a variant being disease causing[37]; however, the adoption of these new 

guidelines is time consuming and necessitates highly expert laboratory directors.

There will also inevitably be false negative results with expanded use of WGS. These can 

occur from missing variant calls, miscategorization of variants in introns, untranslated 

regions and regulatory elements as “silent”, or from inherent insensitivity of WGS for 

detection of structural variants. The most common form of false negative, though, likely 

comes from undiscovered disease genes, changes in deep intronic regions that affect gene 

expression, and incomplete knowledge of the spectrum of clinical presentations of known 

disease genes. At present there are more than twenty novel disease gene discoveries or 

substantive phenotype expansions reported each month. As our knowledge of gene function, 

network function and regulatory mechanisms grow, these gaps in diagnosis will diminish. 

An additional source of error is identification of the wrong pattern of inheritance, which can 

lead to erroneous genetic counseling. One example is under-reporting of de novo variants, 

which have extremely low likelihood of recurrence. These difficulties with variant 

interpretation are the basis from which many ethical arguments arise.

Ethics of Widespread Genome Sequencing

The prospect of WGS of infants is forcing society to grapple with ethical issues such as the 

child’s right to an open future, a family's right to know about health predispositions, the 

nature of informed consent, and returning of results related to adult onset diseases or risk 

factors of conditions not manifesting during infancy and/or childhood. Much literature exists 

related to the issue of return of secondary (or incidental) genetic variant findings, but 

without coalescence to a consensus. Initially, the ACMG had suggested that all genomic 

sequencing tests should report incidental findings on 56 disease genes for which treatments 

are available, irrespective of the reason for the sequencing. This has now been modified with 

a position statement allowing parents and patients to opt out of receiving this information. 

The original position statement raised concerns about engendering anxiety within the 

families of our patients and impinging on the right of pediatric patients to be free from the 

burden of predisposition to adult onset diseases. This "Right to an Open Future" informed 

our current practice of restricting our search for disease-causing variants to changes in genes 

with some reported relationship to the presenting symptoms. As mentioned above, many of 

our patients with rapid WGS diagnoses had not yet fully manifested the classical symptoms 
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of their diagnosis, so this approach may be overly restrictive. However, through discussion 

with our pediatric bioethics center, filtering our examination of variants by the patient's 

presenting symptoms was deemed to be the best compromise between increasing sensitivity 

of diagnosis and protecting the child's rights. Specifically, if we do not review the variants 

for breast cancer or Alzheimer disease, then we cannot report this information. Even in the 

analysis of relevant variants, though, finding some variants with impact on adult onset 

conditions is inevitable. Our solution to addressing these issues is to not to return any results 

clinically that do not directly impact on the nominating symptoms. Parents are informed of 

this policy prior to obtaining consent. These measures provide some guidance for returning 

results, but ethical issues associated with testing are still present. For these unforeseen cases, 

we turn to advice from our colleagues in pediatric bioethics to help guide decision making.

Future Implications for Precision Medicine

The evidence to date, while retrospective, strongly suggests that rapid WGS does have 

utility for timely genetic disease diagnosis for ill NICU infants, even before a fully 

developed symptom complex evolves. However, prospective evidence has not yet been 

published. A goal of the Children’s Mercy NSIGHT study is to prospectively assess the 

diagnostic yield of rapid WGS with that of standard genetic testing in a randomized, 

controlled study. We seek to also address important questions of which diseases and 

presentations rapid WGS does or does not have diagnostic effectiveness, those in which 

diagnoses change acute medical management, and whether there are potential harms of rapid 

WGS in the NICU. The provision of a diagnosis frequently holds power for a family 

regardless of the impact on clinical management. Families speak of ‘not having to search 

anymore,’ of ‘being able to give a name to the disease,’ and feel like they can ‘stop looking.’ 

With increased connectedness, this also allows families of children with rare diseases to find 

support from others with the same or similar diagnosis, even when separated by great 

distances. Thus, rapid WGS is also anticipated enable personalized genetic counseling and, 

in some cases, allow a more natural death with retraction of medical technology that 

separates the parents and child. This study will further allow the collection of multiple use 

cases, from which initial answers to these questions can be informed. In particular, there is a 

great need to define processes for clear communication of genetic disease diagnoses with 

counseling and support to help parents to process this information and navigate their options 

for their babies who will have a future of major morbidity from a genetic disease. While a 

diagnosis alone is impactful for families, the great hope for rapid WGS-based diagnoses is 

that earlier instigation of precise, effective care – before irreversible organ damage or 

disease progression – will result in change in care and improved clinical outcomes in a 

subset of infants (Box 1, Figure 1). While that subset may be small today, the ability to 

make a timely diagnosis may render some genetic diseases tractable from a pharmaceutical 

development standpoint[39]. Currently, for many genetic diseases of newborn onset there is 

not an evidenced-based therapeutic literature. These diseases are individually very rare, thus, 

precluding adequate power for standard randomized trial designs of investigational new 

treatments (INDs) that compare multiple strategies for optimal efficacy[39]. Newborn-onset 

genetic diseases also frequently have rapid progression – 120-day mortality was more than 

50% in our case series[4]. This rapid progression, when combined with delayed molecular 
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diagnosis, negates any window for consideration or implementation of INDs. Rapid WGS 

has the potential to alter this dynamic by efficiently identifying diagnoses that are so rare as 

to be without accepted treatments thereby creating the time interval needed to define and 

implement a modified N-of-1 therapeutic study guided by the effected biological pathway 

involving currently unproven treatments[39]. Such N-of-1 studies would identify novel 

therapeutic approaches by examination of the mechanism whereby a mutated gene causes 

pathophysiology through literature review, seeking molecular opportunities to intervene, and 

evaluating other genes for which drugs have been developed with which the disease gene 

product may interact to cause pathophysiology[39]. N-of-1 studies would also be based on 

the premise of case reports of prior novel therapeutic interventions in that specific disease, 

which, although not rising to the status of a proven treatment, merit additional study. 

Currently approved medications (which are likely to be off-label for these very rare 

conditions) and/or dietary supplements could then be repurposed in the setting of a 

structured, IRB-approved, N-of-1 study, with defined end-points, surrogate biochemical 

effect markers, and dose escalation[39].

For example, Kabuki syndrome is a rare genetic disease characterized by typical facial, 

minor skeletal anomalies, intellectual disability, and growth deficiency. Patients with 

Kabuki syndrome frequently have increased susceptibility to infections and autoimmune 

disorders, seizures, endocrine abnormalities, feeding problems, and deafness[40]. Kabuki 

syndrome is caused by heterozygous mutation in KMT2D or KDM6A. The FDA approved 

antibiotic, gentamicin, can induce read-through of nonsense codons that result in 

haploinsufficiency of KMT2D and KDM6A in cell lines derived from patients with Kabuki 

syndrome[41]. Thus, an N-of-1 study of gentamicin[42, 43] in Kabuki syndrome could 

potentially be designed, in which the expression of KMT2D target genes and post-natal 

growth were employed as a surrogate markers of treatment effect[41]. Markers of potential 

adverse effects of nephrotoxicity and ototoxicity would also require careful monitoring in 

the case of gentamicin use.

Through the development of a culture of N-of-1 studies of genetic diseases in the NICU, a 

knowledge base of treatments of rare diseases can eventually be built. It should be noted that 

many genes act through common biochemical pathways, so evidence generated in one 

genetic disease may support the use of a treatment in another, guided by an understanding of 

gene pathways.

In this protected population, precision neonatology must avoid heroic efforts that prolong 

suffering without the promise of significant therapeutic benefit. Guiding these measures 

must be respect for the infant and family, with benefits maximized, and risks must be 

reasonable and minimized. Parents must be informed of the experimental nature of such 

trials and only non-exploitative procedures should be used. The challenge going forward 

will be to develop teams and practices that can respond to rapid genetic diagnosis with 

specific interventions and treatments, including pharmacologic interventions, pulling from 

multispecialty teams that will realize the promise of precision medicine[39].

In cases where diagnosis leads to either palliation or effective treatments, rapid WGS is 

anticipated to shorten hospital stays, reduce empiric treatments, and simplify the diagnostic 
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work-up increasing the cost-effectiveness of rapid genomic analysis. There are multiple 

current formats for WGS at present and an acuity guided strategy seems most appropriate at 

present, where rapid WGS is reserved for acutely ill infants in whom a diagnosis may be 

genetic. Exome sequencing, for example, costs about one third that of standard WGS but 

incurs about one day of additional turnaround time. Standard WGS takes approximately 5 

days of additional turnaround time. Two day WGS is about three to four times more 

expensive than standard WGS. Even faster formats are now possible. We can now 

reproducibly perform WGS and analysis in ~30 hours, and strategies have been described 

that can reduce this to less than 20 hours[44]. From a practical standpoint, the greatest 

benefit is likely if rapid WGS is instituted within the first day of life and completed within 2 

days (Figure 2). As noted above, average age at NICU enrollment was 23 days[4], somewhat 

blunting the current impact of diagnosis and certainly arguing that a standard WGS or 

exome protocol would provide comparable results in most cases.
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Box 1

Precision Medical Management following rapid genetic disease diagnosis 
in the NICU

1 Psychosocial benefits for parents (answers, knowledge of prognosis, 

planning, psychological and religious support).

2 Precision treatments for affected infants that prevent death, diminish disease 

severity, delay progression or improve quality of life.

4 Earlier avoidance of futile or painful treatments, unnecessary or invasive 

testing, and planning of withdrawal of care.

5 Time to plan and implement investigative new treatments.

6 Basis for increased coordination of care among providers.

7 Genetic counseling regarding recurrence risk.

8 Parental referral to specific support groups.

9 Reduced lifetime cost of care.
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Figure 1. 
Actual and desired 120-day mortality of NICU infants receiving rapid genetic disease 

diagnoses. In suffering neonates with hopeless diagnoses, rapid diagnosis will allow planned 

withdrawal of support in a more timely manner. Precision medicine interventions in 

remaining infants are anticipated to reduce infant mortality.
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Figure 2. 
Actual and desired time to genetic disease diagnosis by rapid WGS (STATseq). Ideally, 

blood samples would be obtained at birth and diagnoses would be returned by DOL 2 to 

optimize provision of precision medicine.
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Table 1

Clinical findings in 20 infants who received genetic disease diagnoses by rapid WGS.

Demographics Value

Symptom onset (Average, range, days) 0.5 (0–7)

Multisystem Congenital Anomalies 5 (25%)

Neurologic findings 4 (20%)

Cardiac findings/Heterotaxy 3 (15%)

Hydrops/Pleural Effusion 2 (10%)

Metabolic findings (inc. Hypoglycemia) 2 (10%)

Renal findings -

Arthrogryposis 2 (10%)

Respiratory findings -

Hepatic findings 1 (5%)

Dermatologic findings 1 (5%)
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