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Abstract

Obesity is growing epidemic affecting 35% of adults in the United States. Previous genome-
wide association studies (GWAS) have identified numerous loci associated with obesity.
However, the majority of studies have been completed in Caucasians focusing on total
body measures of adiposity. Here we report the results from genome-wide and exome chip
association studies focusing on total body measures of adiposity including body mass index
(BMI), percent body fat (PBF) and measures of fat deposition including waist circumference
(WAIST), waist-hip ratio (WHR), subcutaneous adipose tissue (SAT), and visceral adipose
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tissue (VAT) in Hispanic Americans (nmax = 1263) from the Insulin Resistance Atherosclero-
sis Family Study (IRASFS). Five SNPs from two novel loci attained genome-wide signifi-
cance (P<5.00x10®) in IRASFS. A missense SNP in the isocitrate dehydrogenase 1 gene
(IDH1) was associated with WAIST (rs34218846, MAF = 6.8%, Ppom = 1.62x10°8). This pro-
tein is postulated to play an important role in fat and cholesterol biosynthesis as demon-
strated in cell and knock-out animal models. Four correlated intronic SNPs in the Zinc
finger, GRF-type containing 1 gene (ZGRF1; SNP rs1471880, MAF = 48.1%, Ppom =
1.00x10°®) were strongly associated with WHR. The exact biological function of ZGRF1 and
the connection with adiposity remains unclear. SNPs with p-values less than 5.00x107 from
IRASFS were selected for replication. Meta-analysis was computed across seven indepen-
dent Hispanic-American cohorts (nmax = 4156) and the strongest signal was rs1471880
(Poom = 8.38x107°) in ZGRF1 with WAIST. In conclusion, a genome-wide and exome chip
association study was conducted that identified two novel loci (IDH71 and ZGRF1) associ-
ated with adiposity. While replication efforts were inconclusive, when taken together with
the known biology, IDH1 and ZGRF1 warrant further evaluation.

Introduction

Obesity is a global health problem closely associated with an increased risk for multiple meta-
bolic diseases [1-3]. Body mass index (BMI) has been widely used in studies to estimate total
body adiposity. However, BMI is derived from total body weight which possesses inter-individ-
ual variability attributed to muscle mass, i.e. BMI is not a direct measure of fat deposition,
which is closely linked to health outcomes. Waist-hip ratio (WHR) and waist circumference
(WAIST) have been well-recognized as complementary approaches to estimate fat deposition.
However, they are often skewed by age and skeletal structure [4]. In addition to anthropometric
measures, computed tomography (CT) has been recognized as the gold standard for measuring
regional fat deposition [5]. Visceral adipose tissue (VAT) and subcutaneous adipose tissue
(SAT) can be estimated by CT scans with both being strong risk factors for metabolic distur-
bances [6-8]. Alternatively, dual-energy X-ray absorptiometry (DEXA) can provide a direct
measurement of total body fat volume [9] by partitioning total body mass into bone, lean, and
fat soft tissue components.

Genome-wide association studies (GWAS) have been successful in identifying obesity-
related loci with more than 100 loci identified to date [10-18]. However, over 80% of GWAS
variants fall outside protein coding regions, which impairs causal inference [19]. In addition,
associated variants possess small effect sizes providing limited information for disease risk pre-
diction [20]. More recent evidence suggests low frequency and rare variants (minor allele fre-
quency (MAF) <5%) also play a role in susceptibility to disease [21]. In addition, although the
overall risk of obesity is much higher in Hispanic populations compared to non-Hispanic
whites, i.e. 40.4% versus 34.3%, respectively [22], studies of the genetic contributors have been
few in number and limited in scope in the Hispanic population. Until now, VIVA LA
FAMILIA was the only cohort with published genome-wide significant obesity signals specific
to the Hispanic population [23].

In this study, we hypothesized that genetic factors are responsible for the increased obese
status in the Hispanic population. By combining more refined adiposity measures and
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genotypic information from GWAS and exome chip, we are able to conduct a comprehensive
scan of the genome with the potential to identify ethnic specific causal variants.

Materials and Methods
Ethics Statement

Participants included in this study were recruited from clinical centers in San Antonio, TX and
San Luis Valley, CO. The Institutional Review Board of each clinical (UT Health Science Cen-
ter San Antonio Review Board and Colorado Multiple Institutional Review Board, respectively)
and analysis (Wake Forest School of Medicine) site approved the study protocol and all partici-
pants provided their written informed consent.

Study Participants

Study design and recruitment for the Insulin Resistance Atherosclerosis Family Study
(IRASEFS) have been described [24]. Briefly, the IRASFS was designed to identify the genetic
and environmental basis of insulin resistance and adiposity. Hispanic Americans included in
this report (n = 1417 individuals, 90 pedigrees) were recruited from clinical centers in San
Antonio, TX and San Luis Valley, CO. While a diagnosis of diabetes was not required for par-
ticipation, about 12.7% of genotyped individuals had diabetes. A detailed description of the
phenotypes can be found in supplemental materials (S1 Text).

Genotyping and Quality Control

GWAS genotyping was supported through the Genetics Underlying Diabetes in Hispanics
(GUARDIAN) Consortium. Genotyping was attempted for 1039 Hispanic Americans plus 13
quality control (QC) duplicates using the Illumina OmniExpress Array (Illumina Inc.; San
Diego, CA, USA; n = 730,525 markers) with an additional 14 external controls included to ver-
ify reproducibility across genotyping runs. Exome chip genotyping was carried out on the Illu-
mina HumanExome Array v1.0 (n = 560) and v1.1 (n = 864) in the Center for Genomics and
Personalized Medicine Research at Wake Forest School of Medicine, Winston-Salem, NC,
USA. A detailed description of the quality control procedures can be found in supplemental
materials (S1 Text). Overall, 687,094 polymorphic autosomal SNPs from the OmniExpress and
81,599 SNPs from the exome chip were analyzed in 1034 and 1263 individuals, respectively.
Among them, 18,289 SNPs were overlapping between the two platforms. Genotype concor-
dance rate was over 99.9%.

Phenotypes

Anthropometric measures of adiposity were obtained using standard methods including
height, weight, waist circumference (minimum between 10" rib and iliac crest), and hip cir-
cumference (maximum circumference at the buttocks). BMI was calculated as weight in kilo-
grams divided by height in meters squared. A CT scan was performed to estimate visceral and
subcutaneous fat area (cm?). This procedure consisted of a single scout of the abdomen fol-
lowed by a 10-mm thick axial image at the L4-L5 disc space using a standard protocol. CT
images were read centrally at the University of Colorado Health Sciences Center. VAT and
SAT were computed as previously described [25]. Percent body fat (PBF) was measured using
DEXA at a 5 year follow-up exam, thus a reduced sample size as compared to other measures
was available. A whole body DEXA scan uses the differential attenuation of two low dose x-ray
beams to partition total body mass into bone, lean, and fat soft tissue components based on
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established mass-attenuation constants for bone mineral and lipid. Percent body fat (PBF) was
calculated using total fat mass divided by measured weight x 100.

Statistical Analysis for GWAS and Exome Chip

Phenotypes were transformed to best approximate the distributional assumptions of condi-
tional normality and homogeneity of variance. Specifically, BMI, WAIST, and WHR were nat-
ural log transformed, SAT and VAT values were square-root transformed and PBF required no
transformation. Admixture estimates were calculated using maximum likelihood estimation of
individual ancestries using ADMIXTURE [26]. Specifically, the largest set of uncorrelated
markers (r*<0.1) for K populations yielding the lowest cross validation (CV) error was used
for unsupervised calculation of ancestral proportions. Representative ancestral populations
from HapMap (CEU, YRI, CHN, and MEX) were included in the analysis. For GWAS, 117,347
LD-pruned SNPs for K = 5 populations (CV error = 0.48) were used. For exome chip, 10,566
uncorrelated SNPs for K = 5 populations (CV error = 0.52) were used. Three admixture esti-
mates explained the largest amount of variation within the data and were highly correlated
(r*>0.93) across platforms. Tests of association between individual variants and quantitative
traits were computed using the Wald test from the variance component model implemented in
Sequential Oligogenic Linkage Analysis Routines (SOLAR) [27]. Genetic models of association
were calculated adjusting for age, gender, recruitment center, and admixture estimates. The
primary inference was the additive genetic model. A lack of fit to the additive model was also
tested using the orthogonal contrast (-1, 2,-1). If that lack of fit was significant (P<0.05), the
model with the “best” p-value is the minimum of the dominant, additive, and recessive. Over-
all, the results were modestly inflated with inflation factors ranging from 1.04 to 1.08. QQ-plots
of the six adiposity traits are shown in S1-S6 Figs. For robust estimation purposes, the additive
and recessive genetic models were not computed if there were less than 10 and 20 individuals
homozygous for the minor allele, respectively (similar to a minimal MAF of 1% and 2%). Con-
ditional analysis was performed by adding the SNP with the strongest statistical significance to
the model as a covariate.

Power analysis

Power was computed using QUANTO (http://hydra.usc.edu/GxE).Simulations suggest that for
these pedigrees the effective sample size equivalent to unrelated individuals for a quantitative
trait is 92%. Thus, power calculations were based on a sample size of 951 for GWAS and 1162
for exome chip. The statistical power of our study to detect SNP-trait associations was com-
puted assuming a type 1 error rate of o = 5.0x10°®. Overall, the OmniExpress had power of
0.70, 0.80, and 0.90 to detect SNP-trait associations that explain 3.7%, 4.1% and 4.7% of the
trait variation, respectively. Similarly, the exome chip had power of 0.70, 0.80, and 0.90 to
detect SNP-trait associations that explain 3.0%, 4.1% and 4.7% of the trait variation,
respectively.

De novo Genotyping in IRASFS and IRAS

In an effort to directly replicate the top association signals observed from exome chip and to
search for potential causal SNPs at the IDHI and ZGRF1 loci, a total of 76 SNPs were geno-
typed using the Sequenom MassARRAY Genotyping System (Sequenom, San Diego, CA,
USA). Among these, 51 SNPs from the exome chip were chosen for genotyping in IRAS

(n = 184) for replication (P<5.0x107°). Another 25 SNPs (including 13 missense SNPs) within
the IDH1 and ZGRF!1 loci which were not covered by GWAS or exome chip were chosen for
genotyping in IRASFS. Overall, genotyping efficiency was greater than 95%. To evaluate
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genotyping accuracy, 12 and 72 blind duplicate samples were included in IRAS and IRASEFS,
respectively. For all SNPs, genotyping was 99% concordant. PedCheck was computed for
IRASFS genotype data and resulted in zeroing of 24 genotypes due to Mendelian inconsisten-
cies [28]. Association analysis in IRASFS was computed using SOLAR as described. Analysis of
data from IRAS was computed using QSNPGWA (https://www.phs.wakehealth.edu/public/
home.cfm). Overall, 38 of the 51 SNPs were polymorphic and all SNP genotypes conformed to
Hardy-Weinberg expectation (P>0.05).

Replication and Meta-analysis

Six cohorts participating in the GUARDIAN consortium [29] provided in silico replication
data: the Insulin Resistance Atherosclerosis Study (IRAS, n,., = 184) [30], BetaGene (nyx =
1218) [31-34], the Troglitazone in Prevention of Diabetes Study (TRIPOD, 1, = 125) [35,
36], the Hypertension-Insulin Resistance Family Study (HTN-IR n,,.x = 666) [37, 38], the
Mexican-American Coronary Artery Disease Study (MACAD, n,.x = 749) [39-41] and the
NIDDM-Atherosclerosis Study (NIDDM-Athero, n,., = 179) [42]. A detailed description of
the replication cohorts can be found in the supplemental materials (S1 Text). All cohorts,
including IRASFS, were genotyped centrally as described above. All study protocols were
approved by the local institutional review committees and all participants gave their informed
consent.

A total of 71 GWAS SNPs (P<5.00x10°°) from the six adiposity phenotypes were selected
for replication in the six cohorts in the GUARDIAN consortium. Meta-analysis of BMI,
WAIST, and WHR was computed using the fixed effect model implemented in METAL (www.
sph.umich.edu/csg/abecasis/metal/) as well as a random effect model in Metasoft [43] (http://
genetics.cs.ucla.edu/meta/). For PBF, only IRASFS, BetaGene, MACAD, and HTN were
included. For SAT and VAT, as they were not available in replication cohorts, a weighted
meta-analysis of the p-values and samples sizes using surrogate phenotypes was performed.
For example, BMI was used as the surrogate for PBF in IRAS, TRIPOD, and HTN-IR; BMI for
SAT in all six replication cohorts; and WAIST for VAT in all six replication cohorts.

Evaluation of previously identified signals

A total of 127 independent signals (r*<0.8) associated with adiposity and adiposity-related
traits with genome-wide significance from previously published studies were evaluated [10]. A
complete list of phenotypes used for the query can be found in supplemental material (S1
Text). Proxy SNPs (r*>0.8) for each of the 127 tag SNPs were also identified using SNAP
Proxy Search [44] under the 1000 Genomes Pilot 1 SNP data set with a distance limit of 500kb.
Association analysis was computed for all proxy SNPs with the six adiposity traits in IRASES.
Imputation of targeted variants not present on the OmniExpress Array was performed using
IMPUTE2 [45]. All IRASES samples genotyped on the OmniExpress Array (n = 1034) were
imputed together using the 1000 Genomes Integrated Reference Panel (March 2012). In addi-
tion, 67 SNPs with associations to BMI and obesity from the 127 SNPs were selected for risk
score analysis. The risk score was generated based on the number of risk alleles of the 67 SNPs.
Associations of the risk score with six obesity phenotypes was conducted using SOLAR adjust-
ing for age, gender, center, and admixtures.

Results

Characteristics of the study samples are shown in Table 1. Across all studies there was a higher
proportion of females. On average, individuals were overweight with a mean BMI greater than
28kg/m”. The IRASES exome chip analysis included an additional 229 samples (n = 1263)
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Table 1. Demographic characteristics of the study populations.

IRASFS Replication Cohorts
GWAS Exome IRAS TRIPOD BetaGene HTN-IR MACAD NIDDM-Athero
Chip
n 1034 1263° 184 125 1218 666 749 179
Male (%) 411 41.1 41.1 0 28.4 40.6 43.3 41.8
Age (years)b 40.6+£13.7 42.8+14.6 54.0£8.2 34.846.3 34.5+£8.2 37.4+142  34.5+8.8 31.8+9.69
Body Mass Index (BMI; kglmz)b 28.345.8 28.916.1 28.2+5.1 30.615.4 29.5+6.1 28.8£5.5 28.9+5.1 28.616.3
Waist circumference (WAIST; cm)® 88.2+13.6  89.4+155 90.13122 91.4+12.6 9424140 90.7+14.5 92.7+12.5 91.3+14.8
Waist Hip Ratio (WHR)b 0.85+0.083 0.86+0.085 0.87 0.86 0.89 0.88 0.89 0.84+0.087
+0.088 +0.061 +0.073 +0.084 +0.076
Subcutaneous Adipose Tissue (SAT; 329.8 339.1 NA NA NA NA NA NA
cm?)° +151.7 +154.7
Visceral Adipose Tissue (VAT; cm?)°  106.6+57.0 114.0x61.3 NA NA NA NA NA NA
Percent Body Fat (PBF)° 33.548.7 34.0£8.7 NA NA 34.4£8.4 32.6+9.1% 32.2+8.3 NA

8HTN-IR has only 139 individuals with PBF measurements

PValues are expressed as the mean # standard deviation

CIncludes 161 diabetics

Abbreviations: IRASFS, Insulin Resistance Atherosclerosis Family Study; IRAS, Insulin Resistance Atherosclerosis Study; TRIPOD, Troglitazone in
Prevention of Diabetes Study; BetaGene, Family-based study of obesity, insulin resistance, and beta-cell dysfunction; HTN-IR, Hypertension-Insulin
Resistance Family Study; MACAD, Mexican-American Coronary Artery Disease Study; NIDDM-Athero, NIDDM-Atherosclerosis Study.

doi:10.1371/journal.pone.0134649.t001

compared to GWAS (n = 1034), of which 161 were individuals with T2D. This resulted in
modestly increased means in adiposity-related traits.

In IRASES, 687,094 polymorphic autosomal SNPs from the OmniExpress and 81,599 SNPs
from the exome chip were analyzed in 1034 and 1263 individuals, respectively. A summary of
the association results are shown in Fig 1 and Table 2. In total, five SNPs from two loci reached
genome-wide significance (P<5.00x10"®). Among these were four highly correlated SNPs
(rs13144672, rs7696816, rs1471880, rs12054518; r*>0.96) associated with WHR in the Zinc
finger, GRF-type containing 1 gene (ZGRF1). SNP rs1471880 (MAF = 48.1%), an intronic vari-
ant, showed the strongest signal of association under a dominant genetic model (WHR, Ppopm
= 1.00x10'8) and explained 2.7% of the variance in WHR. On average, minor allele carriers
have 2.3% lower of WHR (0.84+0.082 as compared to 0.86+0.085 in non-carriers). The second
genome-wide significant signal was rs34218846 (MAF = 6.8%) with WAIST (Ppowm = 1.62x10°
%). This SNP explains 2.1% of the phenotypic variance and marks a valine to isoleucine change
(V178I) in the Isocitrate Dehydrogenase 1 gene (IDHI) on chromosome 2. De novo genotyp-
ing of additional, putatively functional SNPs at these loci in the IRASFES cohort did not identify
additional statistically significant variants (S1 Table).

Replication of signals from the IRASFS GWAS (n = 71 SNPs with P<5.00x107%) was
attempted through meta-analysis with six additional Hispanic-American cohorts. Overall, no
SNP attained genome-wide significance after meta-analysis (Table 3 and S2 and S3 Tables).
The most significant signal remained to be rs1471880 (Ppoy = 8.38x10°°) at the ZGRFI locus
associated with WAIST, which was also the strongest signal identified by GWAS (WHR, Ppom
=1.00x10°%, WAIST Ppopm = 6.47x107). Among replication cohorts, similar allele frequencies
and a consistent direction of effect were observed in five of the larger cohorts while the two
smaller cohorts, TRIPOD (n = 125) and NIDDM-Athero (n = 179), had an opposite direction
of effect (S7 Fig). For IDH1, the top SNP rs34218846 was identified from exome chip and was
not available for in silico replication among the additional cohorts. Analysis of two GWAS
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Fig 1. Manhattan plots for genome-wide and exome chip association analysis in IRASFS Hispanic Americans. (A). Body Mass Index (BMI), (B). Waist
Circumference (WAIST), (C). Waist-Hip Ratio (WHR), (D). Subcutaneous Adipose Tissue (SAT), (E). Visceral Adipose Tissue (VAT), and (F). Percent Body
Fat (PBF). Results were adjusted for age, gender, recruitment center (San Antonio, TX or San Luis Valley, CO), and admixture estimates. P-values are
shown under the b%st fit model. The blue line at —logo(PVAL) = 4 represents a best P-value = 10~ and the red line at —log;o(PVAL) = 5.5 represents a best
P-value = 3.16x10™.

doi:10.1371/journal.pone.0134649.g001

Table 2. Significant signals of association from genome-wide and exome chip association analyses in IRASFS.

SNP Chr: Position (hg19) Gene Alleles’ N MAF® Beta+/-SE P-Value

Body Mass Index (BMI)

rs34218846° 2:209108317 IDH1 T/C 1253 0.070 -0.10+£0.020 4.81E-08°
Waist Circumference (WAIST)

rs34218846° 2:209108317 IDH1 T/C 1257 0.068 -0.080+0.010 1.62E-08°
Waist-Hip Ratio (WHR)

rs1471880% 4:113546107 ZGRF1 C/A 1034 0.48 -0.02710.0047 1.00E-08°
rs13144672° 4:113472958 ZGRF1 C/T 1034 0.47 0.027+0.0048 3.15E-08¢
rs12054518% 4:113549989 ZGRF1 AIG 1034 0.48 0.027+0.0048 3.23E-08¢
rs7696816% 4:113539969 ZGRF1 C/T 1034 0.48 0.027+0.0048 4.35E-08°

2SNP identified from GWAS

PSNP identified from exome chip

°Dominant Model

9Recessive Model

°Minor allele frequency based on the entire population
*Minor/Major allele on the positive strand

doi:10.1371/journal.pone.0134649.1002
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Table 3. Fixed-effect meta-analysis results (P<2.0x107®) for significant signals of association (5.00x10°) from IRASFS.

SNP Chr:Position (hg19)

Waist Circumference (WAIST)?

rs1471880
rs6435435
rs13144672
rs7696816
rs12054518
rs1869479
rs6734788
rs7937515

4:113546107
2:209112551
4:113472958
4:113539969
4:113549989
11:44343856
2:209093069
11:71841325

Waist-Hip Ratio (WHR)?

rs7696816
rs13106629
rs12054518
rs2129405
rs10770244
rs13144672
rs6734788

4:113539969
4:113459416
4:113549989
4:113447137
12:17848331
4:113472958
2:209093069

Alleles® Effect SE Weight  Zscore  Direction’ Gene Name P-value
A/C 0.0221 0.005 ++t-t+- ZGRF1 8.38E-06¢
A/G 0.0307 0.0077 +-t++-++ IDH1 6.74E-05°
A/G -0.0131 0.0033 —+—+ ZGRF1 6.90E-05°
AG -0.0126 0.0033 —+—+ ZGRF1 1.01E-04°
A/G 0.0125 0.0033 - ZGRF1 1.24E-04°
A/C 0.0176 0.0047 +ot-t+- HSD17B12/CD82 2.01E-04¢
A/G -0.0194 0.0058 --tt+++ CCNYL1/IDH1 7.98E-04°
A/G 0.0141 0.0046 +-t- FAM86C1/FOLR3 2.00E-03°
A/G -0.0116 0.0028 —+— ZGRF1 4.34E-05°
A/G 0.0116 0.0028 +++—++ C40rf32/ZGRF1 4.39E-05°
A/G 0.0115 0.0028 +++—++ ZGRF1 5.43E-05°
A/G 0.0113 0.0028 +++—++ C40rf32/ZGRF1 6.24E-05°
A/G -0.0091 0.0023 —++-+ MIR3974/Y_RNA 6.67E-05¢
A/G -0.0111 0.0028 —++— ZGRF1 7.22E-05°
A/G -0.0109 0.0028 —+-++-+ CCNYL1/IDH1 9.02E-05°

#Meta-analysis was computed based on beta and SE
® Reference/alternate allele

°Additive model
9Dominant model
°Recessive model

Direction follows as: IRASFS, IRAS, BetaGene, TRIPOD, HTN-IR, MACAD, NIDDM-Athero

doi:10.1371/journal.pone.0134649.1003

proxy SNPs, rs6435435 (r* = 0.91 with rs34218846, Ppon = 1.73x10° for BMI) and rs6734788
(r® = 0.37 with rs34218846, Popp = 7.33x10” for WAIST), near IDH] resulted in decreased sig-
nificance (rs6435435 Ppon = 0.11 with BMI and rs6734788 Papp = 7.98x10* with WAIST)
with inconsistent directions of effect. De novo genotyping of variants at the IDHI locus in
IRAS (n = 187) revealed five nominally associated SNPs (P<0.05), of which two SNPs,
rs12105636 (BMI P pp = 0.046) and rs16840781 (BMI Py = 0.030), were significant with a
consistent direction of effect. However, the top IDHI missense SNP (rs34218846) was not sig-
nificant (WAIST Ppp = 0.45) with an opposite direction of effect (S4 Table). SNP rs12105636
and rs16840781 had nominal association signals in the IRASFS GWAS (WAIST Ppoym =
3.94x107 and Ppoy = 2.33x1073, respectively) and were poorly correlated with rs34218846 (?
= 0.34).

In addition to the search for novel adiposity variants, 127 independent signals (r*<0.8) asso-
ciated with adiposity and adiposity-related traits with genome-wide significance from previ-
ously published studies were evaluated in the IRASFS. Among these, 116 SNPs were directly
genotyped or successfully imputed in IRASFS (S5 Table). Overall, 71 SNPs showed nominal
association (P<0.05) with consistent direction of effect for at least one of the six adiposity
traits. These included 23 SNPs for BMI, 17 SNPs for WAIST, 13 SNPs for WHR, 31 SNPs for
SAT, 21 SNPs for VAT, and 13 SNPs for PBF. A two-sided nonparametric sign test was com-
puted for the p-value thresholds of 0.10, 0.05, 0.01, and 4.31x10™* (based on a Bonferroni cor-
rection of 116 variants) and the results were summarized in S6 Table. In brief, significantly
higher replication signal concordance was observed with SAT and VAT (P<0.05). However,
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no replication signal survived Bonferroni correction. The strongest signal observed was
rs2820464 located intergenically between lysophospholipase-like 1 gene (LYPLALI) and solute
carrier family 30, member 10 gene (SLC30A10) associated with SAT (Papp = 7.06x10™*). This
variant was identified in a European cohort for an association with WHR (P = 7.00x10°) [15].
Risk score analysis of the 67 previously identified obesity SNPs showed the strongest signal for
SAT (P = 5.9x10™*). BMI, WAIST, and PBF were nominally associated with P-values 2.2x107,
7.7x107%, and 3.2x107?, respectively. Not surprising, VAT (P = 0.22) and WHR (P = 0.83) were
not associated with the risk score as they are measures of adiposity depositions instead of total
fat volumes.

Discussion

Here we present a combined study of genome-wide and exome chip arrays to investigate the
genetic determinants of adiposity measures in the Hispanic-American population. The com-
plementary approach of using GWAS and exome chip enabled a broader coverage of both
common and rare functional variants, resulting in an increased chance to identify causal muta-
tions. Obesity-related traits evaluated included anthropometric (WAIST, WHR, and BMI), CT
(SAT and VAT), and DEXA (PBF) measures. The assessment of CT and DEXA scans provided
more accurate estimates of regional and total adiposity, respectively. We evaluated associations
among Hispanic Americans from IRASFS (n,,,, = 1263) using GWAS and exome chip analysis
with replication in six independent Hispanic cohorts (n,, = 4155). Association studies
revealed ZGRF1 and IDH]I as two possible novel adiposity-related loci: ZGRF1 was associated
with waist-hip ratio (Ppoy = 1.00x10°®) and IDHI was associated with waist circumference
(Ppom = 1.62x107%).

Opverall, three intronic variants and one missense SNP in ZGRFI were identified above
genome-wide significance for WHR (Table 2). The missense mutation (rs7696816) marks an
asparagine to serine amino acid change with a benign effect predicted by PolyPhen [46]. The
specific function of this gene remains unclear. The overall expression of ZGRF1I in the human
body is relatively low with the exception in brain and testis [47]. Direct replication of the
ZGRF1 signals was performed across six cohorts and the strongest signal from meta-analysis
was rs1471880, Ppon = 8.38x107 (Table 3). A consistent direction of effect was observed
across the five larger cohorts (n,,, = 3645) However, the statistical significance decreased (S7
Fig). Examination of this region in the GIANT (Genetic Investigation of Anthropometric
Traits) Consortium for BMI and class 1 obesity (BMI>30) failed to reveal significant signals of
association at the ZGRFI locus (P>0.01; S8 Fig) [15, 48]. Interestingly, previous studies have
identified ALPK1 (rs4833407), 100kb proximal to ZGRF1, to be associated with obesity in
European populations [49]. However, the two SNPs in ALPK1 and ZGRF1 were poorly corre-
lated in both CEU and IRASFS Hispanic Americans (r* = 0.005 and 0.013, respectively). In
IRASES, most association signals centered around the ZGRFI locus with a few in NEUROG2
and very weak signals in ALPK1 (Fig 2). NEUROG2 is a proneural protein neurogenin and has
been shown to control cortical neuron migration through the regulation of small GTP-binding
protein Rnd2 [50] and no direct link with adiposity has been established. Conditional analysis
of this region with rs1471880 as a covariate abolished all association signals in ZGRFI as well
as the signals in nearby NEUROG2 without changes in ALPK1 (Fig 2).

IDH]I encodes cytosolic NADP+ dependent isocitrate dehydrogenase (IDPc) which has
been proposed as a key enzyme for supplying cytosolic NADPH [51]. The most significant
association signal observed was SNP rs34218846 (MAF = 0.068; Ppon = 1.62x10°%) encoding a
missense mutation from valine to isoleucine in exon 6 and was predicted as “probably damag-
ing” by PolyPhen [46]. This mutation is located at the subunit dimerization interface,
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Fig 2. Regional plot of ZGRF1 (C4orf21) for association with waist-hip ratio. (A). Analysis results in IRASFS for SNPs from genome-wide and exome
chip datasets; (B). Conditioned on the most significant variant (rs1471880).—log+o(p-values) under the best fit model are indicated on the left-hand Y axis.
Association analyses were computed with adjustment for age, gender, recruitment center, and admixture estimates with SNP rs1471880 as an additional
covariate in panel B. The recombination rates are indicated on the right-hand Y axis based on HapMap. The color of each SNP annotates its correlation (%)
with the index SNP and was taken from the 1000 Genomes AMR population. A circle denotes intronic and intergenic SNPs, a triangle denotes a missense
SNP, and a square denotes a SNP in the untranslated region (UTR).

doi:10.1371/journal.pone.0134649.g002
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suggesting a potential regulatory role in gene function (S9 Fig). Previous genetic studies have
suggested a strong correlation between IDHI mutations and cancer [52]. A biological link
between IDHI and adiposity has been postulated using cell models. Specifically, stable transfec-
tion of IDHI ¢cDNA positively correlated with adipogenesis of 3T3-L1 cells whereas decreased
IDPc expression using an antisense IDPc vector retarded 3T3-L1 adipogenesis [53]. A more
recent study reported knockdown of IDPc expression by RNA interference (RNAi) which
inhibited adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes. In addition, in
diet-induced obese mice transduced with IDPc short-hairpin RNA, a loss of body weight and
reduction of triglyceride levels were observed [51]. The evaluation of serum triglyceride levels
in IRASEFS revealed carriers of rs34218846 T allele (adiposity protective allele) had a 20mg/dL
decrease in triglyceride levels compared to non-carriers (Ppom = 7.79x107%). Taken together,
IDH] appears to play an important role in fat metabolism. SNP rs34218846 was not directly
genotyped among the replication cohorts. Therefore, two proxy SNPs, rs6435435 (Ppom =
1.73x10°° for BMIL, r* = 0.91 with rs34218846) and rs6734788 (Papp = 7.33x10” for WAIST, 12
=0.37 with rs34218846), were selected for meta-analysis. However, these proxies failed to repli-
cate (rs6435435 Ppoy = 6.74x107° for WAIST and rs6734788 Papp = 9.02x107° for WHR).
Lack of association was similarly observed in IRAS (n = 184) with direct genotyping of
rs34218846 (P = 0.45; S4 Table), which could be attributed reduced power given the small sam-
ple size. To search for additional putatively causal variants in IDHI, we conducted de novo
genotyping in IRASFS which revealed an intronic SNP (rs59684347) showing stronger evi-
dence of association (Ppp = 7.42x10°%; WAIST) (Fig 3). However, rs34218846 and
r$59684347 were highly correlated (r* = 1.00) and all evidence of association in the region was
abolished after inclusion of rs34218846 as a covariate in the analysis (Fig 3). Overall, IDH] rep-
resents a promising locus with evidence of association to adiposity-related traits, especially
waist circumference. Notably, larger cohorts from European-derived populations in the
GIANT Consortium have identified BMI associated signals in CRYGD (rs10932241), which is
100kb proximal to IDHI. However, there was no signal of association for the IDH1 locus in
GIANT and rs10932241 was poorly correlated with rs34218846 (r* = 0.057) and only nomi-
nally associated with BMI (p-value = 0.057; S10 Fig) in IRASFS despite a similar minor allele
frequency observed in European populations (MAF = 5.31%) [15, 48].

In summary, although encouraging results have been revealed, there are several study limi-
tations. Like most minority studies, sample size largely limited the power, especially for rare
variants assessed on the exome chip. In addition, the utility of the Illumina HumanExome
Array in Hispanic Americans is not optimal as only 81,559 out of 242,901 SNPs on the array
were polymorphic, likely attributable to a design based on findings in Caucasians and African
Americans. The application of Illumina OmniExpress BeadChip has similar concerns: the
SNPs on the chip may not tag the LD structure as well in Hispanic Americans. Another issue is
the lack of replication signals: all signals fell below the significance threshold after meta-analy-
sis. There are several possible reasons: first, the replication cohorts were limited to directly gen-
otyped GWAS variants and we were unable to replicate signals from the exome chip among all
cohorts. Second, some replication cohorts did not have CT and DEXA measures for replica-
tion, necessitating the use of surrogate phenotypes. Third, while all cohorts were of Hispanic
ancestry, different ascertainment criteria were used. For example, BetaGene recruited partici-
pants at high risk of gestational diabetes while HTN-IR recruited participants at high risk of
hypertension. This differs from IRASFES which is a population-based study recruited based on
large family size. Additionally, the sample sizes for IRAS, TRIPOD, and NIDDM-Athero were
relatively small. This may explain why the more significant associations, e.g. rs1471880 demon-
strated an opposite direction of effect in TRIPOD (n = 125) and NIDDM-Athero (n = 179) (S7
Fig). Another concern is the large effects of IDHI (2.1%) and ZGRF1 (2.7%) in this study are
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Fig 3. Regional plot of IDH1 for association with waist circumference. (A). Analysis results in IRASFS for
SNPs from genome-wide and exome chip datasets as well as de novo genotyping of the region; (B).
Conditioned on rs34218846.—logo(p-values) under the best fit model are indicated on the left-hand Y axis.
Association analyses were computed with adjustments for age, gender, recruiting center, and admixtures
with SNP rs34218846 as an additional covariate in panel B. The recombination rates are indicated on the
right-hand Y axis based on HapMap. The color of each SNP annotates its correlation (r) with the index SNP
and was taken from the 1000 Genomes AMR population. A circle denotes intronic and intergenic SNPs, a
triangle denotes a missense SNP, and a square denotes a SNP in the untranslated region (UTR).

doi:10.1371/journal.pone.0134649.g003

weak from previous European population studies (S8 and S10 Figs). One explanation is the
potential for ethnic-specific variants or that the signals are the result of gene-environment
effects. It is also possible that the signals observed are not causal and they were detected due to
along range LD with other loci.

Until now, VIVA LA FAMILIA was the only cohort with published genome-wide signifi-
cant obesity-related signals specific to the Hispanic population [23]. Further evaluation of the
obesity-related loci from VIVA LA FAMILIA in IRASFS revealed nominal association for
152823615 (Ppom = 7.86x10°> with SAT), an intronic SNP in the Family with Sequence
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Similarity 222 Member A gene (FAM222A). This SNP has been shown to be associated with
increased respiratory quotient in VIVA LA FAMILIA and increased SAT in IRASFS.

In summary, we computed a combined study of genome-wide and exome chip arrays in the
IRASFS Hispanic-American population. Six obesity related traits were analyzed for association.
ZGRF1 and IDHI attained genome-wide significance in IRASFS and replication of significant
signals was evaluated in six additional Hispanic cohorts (ny.x = 4155). Meta-analysis suggested
decreased levels of significance (ZGRFI rs1471880, Ppom = 8.38x10°%; IDHI rs6435435, Pponm
= 6.74x107). These results highlight the importance of GWAS and exome chip research in
minority populations where an increased prevalence of adiposity-related diseases may be asso-
ciated with a differential genetic architecture than in European-derived populations.

Supporting Information

S1 Fig. QQ plots of the association results from IRASFS for BMI.
(PNG)

S2 Fig. QQ plots of the association results from IRASFS for WAIST.
(PNG)

$3 Fig. QQ plots of the association results from IRASFS for WHR.
(PNG)

$4 Fig. QQ plots of the association results from IRASFS for SAT.
(PNG)

S5 Fig. QQ plots of the association results from IRASFS for VAT.
(PNG)

S6 Fig. QQ plots of the association results from IRASFS for PBF.
(PNG)

S7 Fig. Forest plot of the effect for ZGRF1 SNP rs1471880 in all 7 cohorts for WAIST based
on the A allele under the dominant genetic model. For each study, data presented represent
the log(WAIST) beta coefficient indexed to the standard error. Bars mark the 95% confidence
intervals.

(TIF)

S8 Fig. ZGRF1 (C4orf21) regional signals from the GIANT consortium. A. BM[; B. Class 1
obesity. -logo(p-values) are indicated on the left-hand Y axis. The recombination rates are
indicated on the right-hand Y axis based on HapMap.

(TIF)

S9 Fig. Protein structure and regional view of human cytosolic NADP(+)-dependent isoci-
trate dehydrogenase. The two dimers are colored in white and yellow. A. Amino acid 178
(rs34218846 valine to isoleucine) is indicated by an arrow. B. A regional view of amino acid
178 with the side chain colored in red.

(TTF)

$10 Fig. IDH]1 regional signals from the GIANT consortium. A. BMI; B. Class 1 obesity.—
log;o(p-values) are indicated on the left-hand Y axis. The recombination rates are indicated on
the right-hand Y axis under 1000 Genomes CEU.

(TIF)

§1 Table. Summary of de novo genotyping in IRASFS.
(XLSX)
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