Skip to main content
. 2015 Nov 24;10(11):e0143197. doi: 10.1371/journal.pone.0143197

Table 3. Correctly classified percentages of grapevine leaves for each Savitzky-Golay filter and algorithm combination for N = 20 and N = 5 number of varieties.

Number of varieties Savitzky-Golay filter PLS-DA SVM ANN significance
N = 20 D1W5 45.3 B 77.5 A a 81.2 A b * * *
D1W11 44.4 B 69.7 A b 67.3 A c * * *
D2W5 51.0 B 78.0 A a 84.3 A a * * *
D2W11 43.2 B 76.7 A a 79.8 A b * * *
significance n.s. * * * * *
N = 5 D1W5 81.5 a 87.8 b 88.0 b n.s.
D1W11 72.5 B b 79.3 A c 81.0 A c *
D2W5 84.5 B a 91.2 A a 91.6 A a * * *
D2W11 66.0 B c 87.8 A b 86.9 A b * * *
significance * * * * * * * *

The values shown are the varieties correctly classified percentage. Each value is, in turn, the average of the results obtained using and not using scatter correction and, for SVM and ANN, the 12 parameter sets.

PLS-DA: Partial Least Squares Discriminant Analysis; SVM: Support Vector Machine; ANN: Artificial Neural Network.

Uppercase and italic lowercase letters attend respectively to row-wise (comparison among algorithms) and column-wise (comparison among Savitzky-Golay filters) values comparison. n.s.: not significant (p ≥ 0.05); *: p < 0.05; * *: p < 0.01; * * *: p < 0.001.