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Abstract

Biobehavioral features associated with binge-eating disorder (BED) have been investigated,
however, few systematic reviews to date have described neuroimaging findings from studies of
BED. Emerging functional and structural studies support BED as having unique and overlapping
neural features as compared with other disorders. Neuroimaging studies provide evidence linking
heightened responses to palatable food cues with prefrontal areas, particularly the orbitofrontal
cortex (OFC), with specific relationships to hunger and reward-sensitivity measures. While few
studies to date have investigated non-food-cue responses, these suggest a generalized
hypofunctioning in frontostriatal areas during reward and inhibitory control processes. Early
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studies applying neuroimaging to treatment efforts suggest that targeting neural function
underlying motivational processes may prove important in the treatment of BED.
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Introduction

Binge eating disorder (BED) is the most prevalent specific eating disorder in epidemiologic
studies in the UST and abroad?, is associated strongly with severe obesity. Obesity, a
physical problem, is not required for the diagnosis of BED and many persons with BED are
not obesel 2. BED is distinct from other eating disorders® and forms of disordered eating®.
Relative to obese persons without BED, BED is phenomenologically distinct in many ways
including differences in age of onset, severity, and progression of obesity, eating patterns,
weight/shape concerns, dieting frequency, as well as substantially elevated frequencies of
co-occurring psychiatric disorders (notably mood, anxiety, impulse-control, and substance-
use disorders) and functional impairment®: 2. 46, Additionally, research suggests that BED is
a distinct familial phenotype in obese persons’.

While BED is the most prevalent eating disorder?, only very recently have brain imaging
studies investigated individuals with both BED and obesity independently from non-BED
obesity. Imaging techniques encompass multiple methodologies permitting the study of
brain structure, neurochemistry and function. Positron Emission Tomography (PET) uses
radiolabelled compounds that may link to metabolic processes or have affinities for specific
transporters or receptors of interest in the brain8. PET has the advantage of investigating
specific molecular entities (for example, specific receptor subtypes and neurochemical
release can be assessed over time). Nevertheless the spatial (1-6mm) and temporal (<1 min)
resolutions of PET are limited; additionally, injection of a radioactive isotope is invasive and
the procedure is relatively expensive. SPECT (Single Photon Emission Computed
Tomography) also tracks physiological and biochemical changes, but does not use short-
lived isotopes and therefore is arguably less technically demanding and more widely
available, but with poorer spatial and temporal resolution8: 9. Magnetic resonance imaging
takes advantage of distinctive paramagnetic properties of different tissue types and
hemoglobin states and therefore can provide both structural and functional information
without radiation exposure. With advances in acquisition parameters, functional magnetic
resonance imaging (fMRI) can have a spatial resolution less than 1mm and temporal
resolution less than 2 seconds — superior to both PET and SPECT imagining. Nonetheless,
fMRI relies on the Blood Oxygen Level Dependent (BOLD) signal, reflecting the changes in
the ratio of deoxygenated to oxygenated hemoglobin in the bloodstream®, and therefore
remains a proxy measure of neuronal activity in that area. Additionally, fMRI is susceptible
to artifacts. For example, minor movements such as chewing or swallowing can distort the
image, thereby precluding the study of actual food consumption during scanning.
Furthermore, cavities close to brain tissue can also distort sighaling, making regions such as
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the orbitofrontal cortex (a secondary taste cortex), which rests above the sinuses, prone to
scanning artifacts.

In sum, these neuroimaging techniques permit the study of unique aspects of brain-behavior
differences in vivo, thereby providing brain-based information relating to binge-eating and
BED. Importantly, these neuroimaging techniques confer the ability to examine patterns of
both conscious and non-conscious neural events (particularly as they relate to hedonic
processes). While neuroimaging can only provide a shapshot in time and provides limited
information on whether alterations represent a cause or a consequence to the disordered
behavior, researchers are beginning to creatively use these technologies. For example,
advances in analytic techniques for neuroimaging data are providing mechanistic
information; functional connectivity analyses are beginning to move beyond examining
regional activations and towards understanding how these regions function interactively
while tasting foods. Additionally, early studies linking imaging findings to treatment
response in BED are identifying potential therapeutic targets.

In this way, structural and functional studies have begun to identify biological features
differentially associated with BED. Some studies have simultaneously investigated other
eating disorders (e.g. BN), with results supporting BED as having unique features. The
recent growth of neuroimaging publications in this area justifies a critical review of the
current state of information in order to guide further research. A literature search was
conducted using PubMed for articles published between January 1950 and February 2015
using combinations of the search terms ‘binge-eating disorder’ and ‘neuroimaging’ to find
articles. This search produced 29 articles. Inclusion criteria were that articles: (a) focused on
an adult population identified with BED; (b) were original studies and peer-reviewed; and,
(c) were written in English. The abstracts of articles were read to confirm relevant content
and inclusion criteria adherence. This search identified 8 studies: 4 of these examined
reward processing, either using food-cues® 11, taste cues!?, or generalized (monetary)
rewards!3. Another fMRI study examined cognitive control'4, and 2 recent studies related
imaging to treatment in BED1> 16, Cross references of the selected articles were also
checked and identified 2 additional food-reward studies'’- 18, 1 PET study!® and 1 structural
study20. Here, we review this work and seek to synthesize and integrate the findings and
further highlight areas of distinction as well as overlap with other disorders. The inclusion of
Tables 1 and 2 also summarize the main points and findings of these studies. We also
discuss early findings related to clinical considerations and to treatment outcome and
provide some future study directions.

Food-Cue Reward Processing

Understanding the neural underpinnings of hedonic processes is particularly relevant for
BED, as the overconsumption of high-fat and high-sugar foods during binges suggests
alterations in reward sensitivity in this population. To date, most neuroimaging studies in
BED examine food-cue reactivity; neural responses are investigated as individuals are
exposed to palatable food stimuli in the scanner (Table 1). The first neuroimaging study in
BED applied SPECT (Single Photon Emission Computed Tomography) in 8 females with
BED, and also included 2 control groups: an obese non-BED group and a lean control (LC)
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groupl8. Relative to both of these groups, a food-exposure task produced greater regional
cerebral blood flow (rCBF) to frontal and prefrontal regions in the BED group. Additionally,
this prefrontal activity was linked to increased hunger feelings in the BED group, but not in
the control groups. Consistent with the SPECT findings, an fMRI study’ also reported
increased prefrontal activation to food stimuli in obese females with BED. This study was
also one of the first to distinguish between lean and obese individuals with BED. Notably,
lean females with BED did not show any significant prefrontal differences relative to the
control groups. While these results were in a very small sample (n=5 per group) and still
preliminary, they nonetheless hint at activation differences related to conjoint obesity and
binge-eating status.

A food-cue stimuli presentation during fMRI by Schienle and colleagues!? also reported
increased prefrontal activity; food pictures elicited significantly greater medial orbitofrontal
cortex (OFC) activity in the BED group. Notably, contrasts were performed relative to both
lean and overweight control groups, but also to a BN group (purging type), with a similar
degree of bingeing and disorder duration. Not only did BED individuals report significantly
greater reward sensitivity, but this measure correlated positively with medial OFC activity,
further supporting the idea of increased sensitivity to food reward in the BED group. The
OFC constitutes a secondary taste cortex?l: 22, but is also part of an extensive system
encoding subjective values of a variety of rewards?3. Increased OFC recruitment suggests
alterations in value representation — this is further supported and linked to correlations with
reward sensitivity. Structural differences are also observed: increased grey-matter volume is
reported in BED relative to LC groups, particularly in medial OFC and anterior cingulate
areas??. Given the importance of the OFC in guiding choice behavior, misrepresentations of
value signals could have detrimental effects on decision-making processes.

Few neuroimaging studies to date have examined negative valence processing in BED
individuals. However, the Schienle et al. study specifically examined the neural substrates in
response to disgust pictures; BED individuals showed significantly reduced activity in OFC
and insula areas relative to LC participantsi®. Although valence ratings did not differ
between groups, reduced neural responses in insular and lateral OFC areas suggest, among
other possibilities, potential alterations in disgust responsiveness in the BED group.
Examining responses to negative valence stimuli is particularly relevant to binge-eating
syndromes where responses to aversive qualities of food or satiety signals may be altered.
An important future direction will be to clarify how eating restraint relates to appetitive and
non-appetitive stimuli.

Findings of OFC alterations in BED are consistent with the role of this brain area in coding
for the subjective motivational value of reinforcers, including food (for reviews see?4-26),
Multiple fMRI studies demonstrate how OFC activity increases in response to an appetitive
stimulus, and decreases as the stimulus becomes less rewarding or aversive (for example,
when eating chocolate beyond satiety?’: 28). Some research also differentiates further
localization of function within different OFC subregions, with reward value coded in medial
areas and negative or punishing stimuli signaled in more lateral areas?®. By processing
salience attribution and the relative reward value of a reinforcer, the OFC contributes
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importantly to decision-making and guiding goal-directed behavior. In this way, alterations
in OFC signaling could have significant influences on choice behavior.

Actual consumption of hyperpalatable foods in the scanning environment remains difficult
and has not yet been directly examined in a BED population. However, a recent study2 in
compulsive overeaters (as assessed by the Binge-Eating Scale) tasting food provides
consistent findings with those demonstrated to pictorial food cues. The receipt of high-
calorie taste cues (such as chocolate milk) on the tongue also produces greater responses in
OFC, striatal and insula regions in compulsive overeaters relative to tasting water!2,
Analyses demonstrated how connectivity between the ventral striatum and other reward
areas appeared stronger during high-calorie tastes versus water; moreover, this relationship
was stronger with increasing binge-eating scores. As this study did not include a control
group, this finding may simply represent the response between palatable versus neutral
tastes. Nonetheless, this study represents an important direction in mechanistic
investigations related to food-reward processing. Understanding basic associative learning
mechanisms underlying food-reward pairing has implications for identifying therapeutic
targets. For example, if high-calorie tastes alter connectivity in reward neurocircuitry in
some overeaters, interventions might focus on limiting intake of such foods, particularly in
those at-risk for binge eating or obesity, including children, whose reward neurocircuitry is
still developing. With increased knowledge of the underlying neurobiology,
pharmacological interventions might target neural systems involved in reward-related
learning. More broadly, public health campaigns might educate the public about
neurological tendencies and potentially reduce stigma around these conditions=C.

A recent study further applied a classification analysis to data from a 2009 study1© in which
BED, OB, BN and HC participants viewed food, disgust and neutral pictures during fMRI.
The reanalysis demonstrates how neural correlates during food-cue processing might be
used to discriminate between BED, BN and non-disordered obese groups!l. Regions of
Interest (ROIs) included the anterior cingulate cortex (ACC), OFC, amygdala, insula and
striatum. Activity in insular, striatal, ACC and OFC areas correctly classified participant
groups with a decoding accuracy of around 70% in these areas. Of note, the ventral striatum
provided the best separation between the BED group and the obese and BN groups, albeit on
different sides of the brain. Thus, neural information encoded during food-cue processing
may be used to discriminate between clinical conditions, thereby further supporting the
diagnostic autonomy between different types of disordered eating, including BED. Notably
clinical condition for the four different groups (BED, OB, BN and HC) could be decoded
from reward-processing regions, particularly those implicated in motivational signaling
during food-cue processing. This first study applying classification analyses in BED
demonstrates a data-driven approach in which brain response patterns may be used not only
to study underlying physiological disturbances but also to potentially characterize and
diagnose specific psychiatric conditions.

In sum, food-cue studies provide evidence linking positive affective food-cue responses with
prefrontal activity, in particular with OFC recruitment. Relationships between heightened
responsiveness in the BED group (but not observed in other populations) with hunger and
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reward sensitivity measures support this area as a motivational marker of eating pathology in
this group.

To date only one study has applied PET to examine specific neurotransmitter systems in
BED. Wang and colleagues!® conducted a [11C]raclopride scan investigating dopaminergic
functioning with a therapeutic dose (20mg) of methylphenidate (MPH) in obese individuals
with and without BED. This drug has previously been shown to increase striatal dopamine
(DA) release in HC participants during food stimulation; therefore, MPH may be used to
gauge DA alterations during food stimulation across OB and BED participants. A food
stimulation task (including both olfactory and gustatory cues) produced significantly
increased extracellular DA levels in the caudate nucleus in BED individuals, relative to a
non-BED obese group. In the BED group, caudate activity further correlated with higher
binge-eating scores, but not body mass index (BMI; which was matched across groups) —
suggesting a relationship between DA systems and eating pathology. Given the importance
of the dorsal striatum in motivation and habit formation, this relationship between DA levels
and binge-eating pathology is suggestive of this neurotransmitter’s role in coding for
motivational, rather than consummatory, properties of food reward. This relationship is also
consistent with the positive relationship observed between OFC activity and reward
sensitivity scores during a food-cue fMRI study9; this prefrontal reward —sensitivity
relationship with food cues could further reflect ensuing effects from DA striatal
activationl®. While ventral striatal activity is attributed a role in reward prediction3, more
dorsal striatal areas are implicated in habit formation and automatic behaviors32. Thus, it
would be of interest to examine if a similar relationship occurs in lean BED individuals, or
those experiencing escalation in bingeing. Nonetheless, these findings demonstrate how
BED and non-BED obese groups may demonstrate distinct patterns of dopaminergic
transmission with caudate function related to BED pathophysiology.

Generalized Reward Processing

To date, only one fMRI study has specifically examined non-food reward processing using
the monetary incentive delay task (MIDT)3. Examining cognitive mechanisms beyond food
cues represents an important area in BED research; alterations in basic cognitive processing
(e.g. generalized reward processing) may relate to vulnerability and maintenance factors in
BED (see Table 2 for summary). The MIDT employs monetary, rather than food-cue
rewards, to parse anticipatory from outcome phases of reward. Understanding anticipatory-
outcome distinctions is particularly relevant to obesity research, as anticipatory processing
may relate particularly to food intake33. On the MIDT, anticipatory processing distinguished
obese BED from non-BED obese groups with decreases in the ventral striatum noted in the
BED group, versus increased recruitment in the non-BED obese group. Divergent striatal
recruitment during reward processing between BED and non-BED obese groups is
consistent with ensemble coding findings reported by Weygandt and colleagues, who found
that the left ventral striatum provided the best differential diagnostic separation between
these two groups!t. These findings lend further support to the idea of the ventral striatum
playing an important role in the pathophysiology of the disorder, given the critical role of
this brain region in goal-directed behaviors and affective state34-36. These results are also
consistent with blunted anticipatory processing reported in other disorders characterized by
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problems of self-regulation, including alcohol dependence3’, pathological gambling38, and
attention-deficit hyperactivity disorders3®.

Outcome processing on the MIDT demonstrated generalized hyporesponsiveness to non-
food cues in the BED group; relative to non-BED obese and LC groups, outcome processing
produced diminished OFC and insula activation!4. Similar blunted prefrontal and insular
activity has previously been noted during palatable food consumption in BN40. It is also
noteworthy that patients with fronto-temporal dementia, a neurodegenerative disease
resulting in atrophy patterns in the striatum, as well as frontal, insular and temporal cortices,
often develop compulsive overeating*L.

Overall, this first study examining monetary reward processing in BED demonstrated
diminished fronto-striatal processing of rewards and losses during both anticipatory and
outcome processing, specifically in areas relevant to reward processing and self-regulation.
Similar patterns of activation to monetary cues of both wins and losses suggests that fronto-
striatal signaling is less valenced in BED, relative to the other comparison groups, although
more study of negative valence processing is necessary. Hypofunctioning of frontostriatal
circuitry in this population may represent a neural precursor contributing to the development
of BED, where an individual may overeat to stimulate a sluggish reward system.
Alternatively, patterns of food exposure may lead to changes such as those observed in
BED. The differences in OFC and insular areas noted in contrasts between both LC and
obese groups suggest alterations in interoceptive awareness, given the important role of
these areas in homeostasis and in updating on the motivational state of an organism?#2-44,
although this possibility warrants further direct examination.

Taken together, findings suggest in BED heightened activation to food-reward in reward
neurocircuitry, but a decreased response to generalized (i.e., non-food or specifically
monetary) reward. Although direct comparison between these two types of reinforcers is still
necessary, these early studies lend support to the idea that a reduced response to generalized
rewards may represent a vulnerability factor to consume palatable foods in an effort to
stimulate a reward system.

Inhibitory Control

A better understanding of the neural underpinnings of inhibition is particularly relevant to
BED studies, given difficulties in this population in controlling food intake. Although no
imaging study has specifically examined inhibitory processing in relation to food cues or
intake in BED, one study has examined generalized cognitive control using the Stroop color-
word interference task during fMRI4, Relative to both a BMI-matched non-BED obese
group and a LC group, the BED group showed reduced activity in the OFC, inferior frontal
gyrus (IFG), insula, and temporal areas. Activity differences specifically appeared to be
driven by the BED group that demonstrated reduced recruitment of these areas during
incongruent trials. Measures of eating restraint also demonstrated a differential pattern of
correlations with Stroop performance across the 3 experimental groups. Restraint scores in
the BED group correlated negatively with OFC, insula and IFG activity — brain areas heavily
implicated in self-regulation, inhibition and homeostatic regulation. Notably, these areas
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were also identified during disgust processing in the Schienle et al., study2?; as such, these
regions may contribute importantly to multiple facets of BED.

Conversely, Stroop performance in the non-BED obese group demonstrated a positive
correlation between restraint scores and increased IFG and insula recruitment. Opposite
correlational patterns across the BED and non-BED obese groups suggest that these groups
may differ in both their restraint applications and the neural mechanisms underlying thesel4.
Given the role of the IFG, OFC and insula in self-regulation, these findings intimate that
BED individuals may be impaired in recruiting brain areas critical for inhibitory control. A
better understanding of neural underpinnings of cognitive control in BED is important, as
the choice to diet is cognitively mediated and involves maintaining long-term goals in mind
while repeatedly discounting more proximal food cues.

Neuroimaging and BED treatments

Linking neuroimaging with treatment outcomes in BED provides a means to examine
mechanisms of change and recovery processes. A better understanding of BED
pathophysiology could potentially guide the development or refinement of therapeutic
methods. Applying neuroimaging to identify neurobiological factors linked to treatment
response has only just begun in BED. A pilot study,examining generalized reward
neurocircuitry recruitment, related hypofunctioning frontostriatal areas to treatment
outcome?®. Prior to commencing treatment, BED participants completed the MIDT,
examining anticipatory-outcome monetary reward processing while undergoing fMRI.
Individuals who still reported bingeing following treatment demonstrated reduced striatal
and IFG recruitment during anticipatory reward processing®, relative to individuals who
had stopped binge-eating. This is consistent with other findings relating reduced striatal
response to food cues with weight gain®0: 45, Importantly, individuals ceasing or persisting
in binge-eating did not differ in BMI or binge frequency at treatment onset. Therefore, this
initial pilot study demonstrates how specific reward processing regions may provide
therapeutic targets in the future. For example, IFG recruitment while viewing palatable food
cues has previously been linked to sustained weight loss*6. During outcome win processing,
individuals who persisted in binge-eating also showed reduced medial prefrontal cortex
(mPFC) recruitment — an area linked to processing monetary reward outcomes, emotional
arousal and decision-making3>: 47-49. Altogether, these findings suggest reduced reward
circuitry recruitment is associated with persistent bingeing in BED. The striatum and
prefrontal areas are projection areas for DA50: 51 — to date, however, no study has
specifically examined dopaminergic alterations in relation to BED treatment.

One of the first pharmacological neuroimaging studies!® examined actions of an opioid
antagonist on food-cue responsivity in obese individuals with moderate binge-eating
symptoms. While selectively blocking mu-opioid receptors, the antagonist GSK1521498
reduces high-fat and high-sugar food intake52: 53. Using a double-blind, placebo-controlled,
parallel-group design, this antagonist reduced activity in pallidum-putamen areas as
individuals viewed highly palatable food-cues, without affecting subjective liking of the
cues. The therapeutic efficacy of this drug may link to motivation-hedonic distinctions
previously mentioned; the opioid-receptor antagonist may reduce motivation for food while
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leaving the subjective reward value of food unaffected. In particular, the pallidum/putamen
is highlighted as an opioid hedonic hotspot for reward>#, highlighting the motivation-
hedonic relationship. These early neuroimaging studies therefore demonstrate evidence for
divergent neural systems related to motivational and hedonic systems and that targeted
treatments may be possible and effective for BED.

Future Directions and Clinical Implications

To date, neuroimaging studies in BED have included multiple control groups including
BMI-matched non-BED obese individuals, non-BED binge-eating groups (e.g. BN) with
comparable degree of binge-eating frequency and disorder duration, and LC groups.
Nonetheless, the majority of neuroimaging studies to date are predominantly in females;
therefore, future studies with larger groups could examine potential gender-related
differences. Additionally, most studies have only used cross-sectional designs, making it
difficult to disentangle causes and consequences. Longitudinal studies are needed to
investigate these processes and how specific factors (e.g., increasing weight or escalating
binge frequencies) may relate to neurobiological features. More generally, it will be
important to understand the neural substrates underlying processes as eating behaviors shift
from pleasurable to more compulsive. While multiple investigations now demonstrate
alterations in IFG areas in BED, few studies examine the development of aversive states and
how negative valence relates to inhibition and restraint in this population. Nonetheless, it is
noteworthy that frontostriatal associations with motivational measures often occur in the
BED group (e.g., reward sensitivity, hunger or bingeing), rather than in non-BED groups,
and support the idea of alterations here as motivational markers of pathology in BED.

The findings highlighted in this review give insight into potential biomarkers in striatal and
OFC areas in BED. While dopaminergic projection sites suggest potential clinical targets for
this neurotransmitter, pharmacological neuroimaging studies are only just beginning.
Anticipatory-hedonic distinctions identified in neuroimaging research already demonstrate
how targeting motivational processes may prove to be critical in the treatment of BED and
might eventually serve to inform or refine intervention methods. These specific
neurobiological alterations may prove central in understanding the mechanisms and guiding
targeted treatments for BED.
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