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Abstract

Permutation testing has been widely implemented in voxel-based morphometry (VBM) tools. 

However, this type of non-parametric inference has yet to be thoroughly compared with traditional 

parametric inference in VBM studies of brain structure. Here we compare both types of inference 

and investigate what influence the number of permutations in permutation testing has on results in 

an exemplar study of how grey matter proportion changes with age in a group of working age 

adults. High resolution T1-weighted volume scans were acquired from 80 healthy adults aged 25–

64 years. Using a validated VBM procedure and voxel-based permutation testing for Pearson 

product-moment coefficient, the effect sizes of changes in grey matter proportion with age were 

assessed using traditional parametric and permutation testing inference with 100, 500, 1000, 5000, 

10000 and 20000 permutations. The statistical significance was set at P < 0.05 and false discovery 

rate (FDR) used to correct for multiple comparisons. Clusters of voxels with statistically 

significant (PFDR < 0.05) declines in grey matter proportion with age identified with permutation 

testing inference (N ≈ 6000) were approximately twice the size of those identified with parametric 

inference (N = 3221 voxels). Permutation testing with 10000 (N = 6251 voxels) and 20000 (N = 

6233 voxels) permutations produced clusters that were generally consistent with each other. 

However, with ≥ 1000 permutations there were approximately 20% more statistically significant 

voxels (N = 7117 voxels) than with 10000 permutations. Permutation testing inference may 

provide a more sensitive method than traditional parametric inference for identifying age-related 

differences in grey matter proportion. Based on the results reported here, at least 10000 

permutations should be used in future univariate VBM studies investigating age related changes in 

grey matter to avoid potential false findings. Additional studies using permutation testing in large 

imaging databanks are required to address the impact of model complexity, multivariate analysis, 
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number of observations, sampling bias and data quality on the accuracy with which subtle 

differences in brain structure associated with normal ageing can be identified.
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1. Introduction

Brain MRI data are often analysed using parametric statistical methods, for example the 

general linear model (GLM) [1–3]. These methods make a number of assumptions about the 

generation and statistical distributions of these imaging data. Specifically, subject samples 

are assumed to have been acquired randomly from their population and distributions of data 

are assumed to be approximately statistically Normal, or “Gaussian” [4–6]. Previous seminal 

work in voxel-based morphometry (VBM) has used voxel-wise smoothing, i.e. averaging, to 

circumvent the issue of statistical Normality [1,2]. Permutation testing was proposed at a 

similar time [7], and has recently been widely implemented in VBM methods, for example 

FMRIB Software Library (FSL; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise), to address 

the assumptions of random samples and homoscedasticity [8,9]. Current implementations of 

permutation testing in VBM are optimised for t-tests and analysis of variance (ANOVA). 

These provide robust tools for assessing differences in, for example, the proportion of grey 

matter voxels between two or more groups. Reductions in grey matter volume are a 

commonly observed feature of normal ageing [10], and are also seen in diseases such as 

amyotrophic lateral sclerosis [11], epilepsy [12], Alzheimer’s disease [13] and schizophrenia 

[14]. However, differences in tissue structure can be subtle and difficult to identify 

consistently between studies [14,15].

Effect size statistics, for example Cohen’s d for two groups or Pearson product-moment 

coefficient (r) for continuous data such as age [16,17], may be a useful addition to imaging 

statistics derived from existing implementations of permutation testing. Measures of effect 

size provide standardised results that can be more easily compared across different studies 

and populations [16,17]. However, the influence of parametric versus permutation inference 

for effect sizes and the impact of the number of permutations on results have not yet been 

formally tested in VBM studies.

In the present study we therefore describe a framework for permutation testing of effect size 

in VBM studies of brain structural MRI data. We then compare parametric and permutation 

testing inference and assess the impact of the number of permutations on the latter in an 

exemplar study of changes in brain grey matter proportion with age in structural MRI data 

acquired from a cohort of healthy subjects with ages spanning normal working age 

adulthood.
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2. Materials and Methods

2.1 Subjects

Eighty clinically normal, right-handed, healthy volunteers (40 males, 40 females) aged 25–

64 (median 43, IQR 17) years were recruited by advertisement from staff working at the 

University of Edinburgh, the Western General Hospital and the Royal Infirmary, Edinburgh, 

United Kingdom. All subjects gave written informed consent. Health status was assessed 

using medical questionnaires and all structural MRI scans were reported by a fully qualified 

neuroradiologist. To aid identification of age-related differences in brain volumes, the cohort 

was divided into four 10-year age bands as detailed in Table 1.

2.2 MRI acquisition

All brain MRI data were acquired using a GE Signa Horizon HDxt 1.5T clinical scanner 

(General Electric, Milwaukee, WI, USA) equipped with a self-shielding gradient set (33 mT 

m−1 maximum gradient strength) and manufacturer supplied 8-channel phased-array head 

coil. The imaging protocol consisted of whole brain axial T2-, T2*- and FLAIR-weighted 

structural sequences, and a high resolution 3D T1-weighted inversion-recovery-prepared fast 

spoiled gradient-echo (FSPGR) volume scan acquired in the coronal plane with 180 

contiguous 1.3 mm thick slices resulting in voxel dimensions of 1 × 1 × 1.3 mm.

2.3 Voxel-based morphometry

The T1-weighted volume scans were first converted from DICOM to NIfTI–1 format (http://

nifti.nimh.nih.gov/nifti-1) using MRIcron’s “dcm2nii” tool (http://www.nitrc.org/projects/

mricron). A modified FSL-VBM pipeline was then employed to process these imaging data 

and produce grey matter proportion volumes for each subject. The first step in this pipeline 

consisted of randomly selecting a subject for manual, slice-by-slice, brain extraction. This 

subject was then non-linearly registered to all other subjects to produce initial brain masks 

for the whole cohort [18]. These initial brain masks were manually edited slice-by-slice and 

applied to the raw imaging data to produce brain extracted T1-weighted volumes for each 

subject. These brain extracted T1-weighted volumes were then processed using the standard 

FSL-VBM pipeline [19]. Briefly, each subject’s T1-weighted scan was segmented into grey 

matter, white matter and cerebrospinal fluid volumes using signal intensity and spatial 

information [20]. These grey matter volumes contained the proportion of grey matter tissue 

within each voxel in native space. No subject had white matter hyperintensities on FLAIR-

weighted MRI (hypointense on T1-weighted MRI) which might confound the grey matter 

segmentations. After segmenting these three tissue types, all data were aligned to Montréal 

Neurological Institute (MNI) standard space. A study specific atlas was created by 

registering all subjects to the initial average of all subjects aligned in MNI space. The grey 

matter proportion volumes were then smoothed using a 3 mm Gaussian kernel in standard 

space. There are currently no standard optimal parameters for Gaussian kernels [21], and our 

reasoning for choosing 3 mm smoothing was that, based on visual assessment of the imaging 

data, it provided a reasonable middle ground between removing noise and maintaining the 

underlying anatomy. Finally, a 4D volume of voxel-wise grey matter proportions was 

created by concatenating all individual grey matter volumes together in the axial direction in 

standard space; effect sizes and P-values were then calculated using this cohort 4D volume.
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2.4 Permutation testing for effect sizes

We provide the Pearson product-moment coefficient (r) as a measure of effect size. This was 

proposed as a measure of effect size by Cohen [16] and is valid for continuous variable data. 

Absolute effect sizes of approximately ± 0.1 are considered small, approximately ± 0.3 

medium and approximately ± 0.5 large [16]. Effect size r was calculated using Equation

(1)

where n is the number of pair-wise observations, x̄ is the mean of variable x, ȳ is the mean 

of variable y, σx is the standard deviation (SD) of variable x and σy is the SD of variable y. In 

the present study, x is age and y is grey matter proportion in each voxel.

Permutation testing is a very simple concept. For i permutations (for example 1000), the 

order of independent variables is randomly shuffled and the test statistic of interest (in this 

case, effect size) is calculated in each random permutation (see Figure 1). This is supposedly 

equal to producing 1000 pseudo random samples and the P-value of the effect size is defined 

as the number of times this effect size could be produced by chance, i.e. in each random 

permutation of the data (see Figure 1).

We report both parametrically defined P-values and non-parametric permutation testing P-

values for effect sizes with the latter assessed using 100, 500, 1000, 5000, 10000 and 20000 

permutations. For 20000 permutations the smallest achievable P-value is 0.00005, a value 

twenty times smaller than that used in previous “extensive simulations” [9]. False discovery 

rate (FDR) was used to correct for multiple comparisons [22–24], and we provide 1-PFDR 

corrected and 1-P uncorrected volumes as outputs. Alpha (P-value cut off) and lambda 

(FDR corrected P-value cut off) were set at 0.05.

3. Results

3.1 Observed effect sizes

Observed effect sizes of age (25 to 64 years) versus grey matter proportion are shown in 

Figure 2. Reductions in grey matter proportion are seen across the brain at an effect size of 

−0.01 to −0.5, which become increasingly localised, in particular, to clusters in right 

hemisphere frontal and parietal/occipital regions as r becomes more negative.

3.2 Parametric inference

Figure 3 provides illustrations of the statistical significance of effect sizes obtained with 

parametric inference, while brain regions with parametric effect sizes of PFDR < 0.05 are 

displayed in Table 2. Overall, there are 3221 voxels which have significant reductions in 

grey matter proportion with parametric effect sizes of PFDR < 0.05. The largest clusters of 

voxels with the largest effect sizes are found in the right inferior frontal gyrus, precuneous 

cortex, right lateral occipital cortex and right precentral gyrus. There is also a small 

concentration (84 voxels) of large effect sizes in the left frontal pole.
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3.3 Permutation testing inference

Figure 4 provides illustrations of statistically significant effect sizes with permutation testing 

inference from 100 to 20000 permutations. Brain regions with permutation testing effect 

sizes of PFDR < 0.05 for 1000, 5000, 10000 and 20000 permutations are displayed in Tables 

3 to 6, respectively. (Permutation testing with 100 or 500 permutations did not produce 

effect sizes with P-values sufficient to survive FDR correction.) With 1000 permutations 

there are 7117 voxels which have significant reductions in grey matter proportion with 

permutation testing effect sizes of PFDR < 0.05, with 5000 permutations there are 6294 

voxels with effect sizes of PFDR < 0.05, while with 10000 permutations there are 6251 

voxels with effect sizes of PFDR < 0.05. Finally, with 20000 permutations, there are 6233 

voxels with permutation testing effect sizes of PFDR < 0.05.

3.4 Comparison of parametric and permutation testing inference

Tables 2 to 6 show that clusters of statistically significant voxels identified with permutation 

testing inference are approximately twice the size of the corresponding clusters identified 

with parametric inference. The regional locations of statistically significant voxel clusters 

are broadly similar for both types of inference, but permutation testing reveals additional 

structures with significant effect size reductions in grey matter proportion with age, most 

notably in the right putamen. Other regions identified by permutation testing (but not 

parametric inference) are proximate to regions identified with parametric inference.

3.5 Effect of number of permutations on permutation testing inference

Figure 4 and Tables 3 to 6 show that the clusters of statistically significant voxels identified 

with 1000 permutation tests are generally 20% larger than the corresponding clusters 

identified with ≥5000 permutations. The statistically significant effect sizes found in the left 

thalamus with 1000 permutations disappear when the number of permutations is increased to 

≥5000. Furthermore, permutation testing with 1000 permutations does not detect the small 

but statistically significant regions in the left frontal (~ 80 voxels) and right parietal 

operculum (~ 50 voxels) cortices identified with ≥5000 permutations. A small region (66 

voxels) of statistically significant effect sizes identified in the left frontal pole with 5000 

permutations also disappears with 10000 and 20000 permutations, while 5000 permutations 

fails to identify significant voxels found in the right inferior frontal lobe with 10000 and 

20000 permutations (Figure 4). The separate regions of statistically significant effect sizes 

seen in the right angular gyrus and precuneous cortex with 5000 and 20000 permutations 

become a single continuous region with 10000 permutations. However, aside from these 

small differences, clusters of statistically significant effect sizes are in approximately the 

same location and of the same volume with 10000 and 20000 permutations.

4. Discussion

Non-parametric permutation testing inference in brain MRI studies has been proposed as a 

more robust alternative to traditional parametric inference [7–9,25–27]. We found in a 

sample of working age healthy adults, typical of samples commonly used in brain imaging 

studies [10,28–34], that permutation testing inference revealed approximately twice as many 

voxels with statistically significant reductions in grey matter proportion with age than 
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parametric inference, albeit in approximately the same brain regions. These data therefore 

suggest that permutation testing inference may be useful in identifying subtle changes in 

brain structure which have been difficult to identify consistently with parametric inference 

[14,15]. The larger skews from Normal distributions in brain imaging data acquired from 

ageing and neurodegenerative disease cohorts further supports the use of permutation testing 

inference in these groups [15].

The results from permutation testing with 10000 and 20000 permutations were generally 

consistent. The clusters of statistically significant voxels identified with 1000 permutations 

were approximately 20% larger than the corresponding clusters identified with ≥10000 

permutations. Although approximately the same number of statistically significant voxels 

were identified with 5000 permutations compared with ≥10000, there were differences in the 

locations of statistically significant voxels in 5000 permutations relative to ≥ 10000 

permutations. For example, 5000 permutations may have produced false positive findings in 

the left frontal pole and false negative findings in the right inferior frontal lobe. Based on 

these findings, we recommend that at least 10000 permutations are used in future univariate 

VBM permutation testing studies investigating age related changes in grey matter to avoid 

potential false findings. However, it should be noted that the number of permutations 

required also depends on the quality of data, parameters to be examined, number of 

observations and sampling bias. Specifically, our results and recommendations are provided 

for studies investigating age related changes in grey matter and do not generalise to 

multivariate studies.

We performed a maximum of 20000 permutation tests for effect sizes in each voxel. This 

number of permutations is far less than the maximum number of permutations available in 

our data (80 factorial). However, 80 factorial permutations are not feasible with current 

computing power and not all permutations are required to produce valid results [35,36]. 

Twenty thousand permutations is twenty times more than that used in previous “extensive 

simulations” [9], and future work will determine whether using more than 20000 leads to 

marked improvement in the results obtained. The stability of results we show from 10000 to 

20000 permutations suggests any improvement may be limited, i.e. although the number of 

permutations was doubled from 10000 to 20000, the resulting difference was only 

approximately 1%. Our sample size of 80 subjects is small relative to large image databank 

projects currently ongoing [15], but is typical of similar studies assessing changes in grey 

matter proportion with age [10,28–34]. Other nonparametric methods, for example 

bootstrapping [37], are available for providing confidence intervals for test statistics and 

these require evaluation in future work. Finally, the effect size measure we used was 

univariate and this limits the generalisability of our results. Future work is required to 

investigate the role of permutation methods in multivariate statistics, for example repeated 

measures regression for longitudinal studies. Additional studies into permutation testing are 

also required to address the impact of model complexity, number of observations, sampling 

bias and data quality in the plethora of potential VBM analyses.

Notwithstanding these limitations, these results provide one of the first formal investigations 

of permutation testing inference for effect sizes in VBM studies of grey matter proportion 

differences across working age adulthood. Further work is required to determine if 
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permutation testing is truly a more robust alternative to traditional parametric inference. 

Large quantities of structural brain MRI data are required to determine whether this is, 

indeed, the case. We are collecting such data and encourage others to join our initiative 

(http://www.brainsimagebank.ac.uk). This work, and other large databanks currently being 

prepared worldwide (see, for example [38]), will determine whether the apparent increased 

sensitivity of permutation testing inference shown here can be used to identify subtle brain 

structural changes associated with normal ageing and neurodegenerative disease.
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Figure 1. 
Permutation testing for effect sizes. The statistical significance (P) of an observed effect size 

is calculated by counting how many times an effect size larger than the observed effect size 

is found in random permutations of the data. In this case the observed effect size of −0.37 

was calculated from the Pearson product-moment coefficient formula. When randomly 

permuting the data, effect sizes of −0.37 or larger were found 0.04% of the time, i.e. 

P=0.0004. This indicates that the observed effect size of −0.37 was highly statistically 

significant and unlikely to be due to chance.
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Figure 2. 
Observed effect size for reductions in grey matter proportion with age (25–64 years) across 

the cohort provided by the Pearson product-moment coefficient. R=right; L=left.
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Figure 3. 
P-values for effect sizes with parametric inference showing reductions in grey matter 

proportion with age (25–64 years) across the cohort. The red volume shows uncorrected P-

values of < 0.05, while the blue volume shows false discovery rate corrected P-values of < 

0.05.
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Figure 4. 
P -values for effect sizes with permutation testing inference showing reductions in grey 

matter proportion with age (25–64 years) across the cohort. The red volumes show 

uncorrected P-values of < 0.05, while the blue volumes are false discovery rate (FDR) 

corrected P-values of < 0.05. No P-values at 100 and 500 permutations survived FDR 

correction. Patterns of grey matter loss were approximately stable from ≥ 10000 

permutations.
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Table 1

Demographics of the cohort.

Age group (years) Number

25–34 21

35–44 23

45–54 24

55–64 12

25–64 80
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