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Abstract

The change-point model has drawn much attention over the past few decades. It can accommodate 

the jump process, which allows for changes of the effects before and after the change point. 

Intellectual disability is a long-term disability that impacts performance in cognitive aspects of life 

and usually has its onset prior to birth. Among many potential causes, soil chemical exposures are 

associated with the risk of intellectual disability in children. Motivated by a study for soil metal 

effects on intellectual disability, we propose a Bayesian hierarchical spatial model with change 

points for spatial ordinal data to detect the unknown threshold effects. The spatial continuous 

latent variable underlying the spatial ordinal outcome is modeled by the multivariate Gaussian 

process, which captures spatial variation and is centered at the nonlinear mean. The mean function 

is modeled by using the penalized smoothing splines for some covariates with unknown change 

points and the linear regression for the others. Some identifiability constraints are used to define 

the latent variable. A simulation example is presented to evaluate the performance of the proposed 

approach with the competing models. A retrospective cohort study for intellectual disability in 

South Carolina is used as an illustration.
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1 Introduction

Intellectual disability (ID) is a long-term disability that impacts performance in cognitive 

aspects of life and usually has its onset prior to birth. Many factors may cause ID, including 

genetic and chromosomal abnormalities, infections, chemical exposures, intentional and 

unintentional injuries. Chemical exposures such as arsenic (As), lead (Pb) and mercury (Hg) 

are developmental toxicants that have been associated with neurobehavioral dysfunctions 
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and have been found to have adverse effects on intelligence in children, even at low levels of 

exposure.1–3 Substantial evidence shows that the chemical metals cross the placenta and 

accumulate in fetal tissues.4 The exposure route for the pregnant woman has been identified 

as oral and dermatologic.5–7 Previous studies demonstrate elevated soil metal concentrations 

in urban areas from industrial and transportation sources and elevated rural soil 

concentrations of metals from natural geologic sources, pesticides, and industrial 

facilities.8–10 A significant association is verified between soil and blood concentrations of 

Pb and As in children through hand to mouth contamination.1,3,11

Our research is motivated by a retrospective cohort study of pregnant women who were 

insured by South Carolina Medicaid from 1996 through 2002 and resided in one of ten 

residential study areas during pregnancy. In this study, we want to identify the soil chemicals 

as risk factors for unknown cause ID. ID is categorized in order based on intellectual 

quotient (IQ), containing three ordered levels: normal, mild and moderate/severe. Although 

some association between soil chemicals and ID has been unveiled,12,13 it is of substantial 

interest to assess the elevated risk of ordinal ID associated with the detectable concentrations 

of soil chemicals with geographical information.

To model ordinal outcomes, cumulative logit models can be utilized.14 Particularly the 

proportional odds model is often adopted, which assumes an identical effect of the predictors 

for each cumulative probability.15 Most of the existing methods are primarily based on 

linking categorical data to latent continuous variables, which have an underlying normal 

regression structure.16 Among the methods from the Bayesian perspective, Albert and 

Chib17 proposed Bayesian methods for analysis of binary and polychotomous response data 

through the data augmentation with Gibbs sampling. The probit regression model for binary 

outcomes is seen to have an underlying normal regression structure on latent continuous 

variables. Values of the latent variables can be simulated from suitable truncated normal 

distributions. If the underlying continuous measurements are known, then the posterior 

distribution of the parameters can be computed using standard results for normal linear 

models. To accelerate Markov chain Monte Carlo (MCMC) convergence for the ordered 

probit model, one may use a multivariate Hastings-within-Gibbs update step to generate 

latent data and bin boundary parameters jointly, instead of individually from their respective 

full conditional posterior distributions.18 However, these approaches cannot be extended 

straightforwardly to deal with spatially correlated ordinal data.

Compared to the models for spatially correlated continuous response data, approaches for 

spatially correlated ordinal data are less developed. The existing methods mainly focus on 

binary outcomes. Diggle et al.19 modeled binary and count data by using generalized linear 

spatial models or generalized geostatistical models, where a spatial random effect term is 

included in the overall mean structure of a continuous latent variable relative to the 

categorical variable. To avoid nonidentifiability when estimating parameters of the 

underlying spatial correlation function, a unified Bayesian method20 can be adopted for 

inference and prediction for binary spatial data. Higgs and Hoeting21 proposed a parametric 

model for a point-referenced spatially correlated ordered categorical response. This 

approach relies on the approach by Albert and Chib17 with incorporation of spatial 
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correlation. However, the approach is parametric which has less flexibility. In addition, the 

method has potential convergence problems18 and does not consider the change-point issues.

The methods for change-point problems have drawn much attention over the past few 

decades. Most of the methods focused on time series related data where the change points 

are taken from discrete time points. Few change-point models were developed for spatial 

data. The most related work to our problem is the method by Majumdar et al.22 who 

proposed a spatio-temporal change-point model for spatio-temporal continuous outcomes, 

allowing one time change point to reflect the overall mean change in both temporal and 

spatial associations. Since we focus on the association between the elevated risk of ordinal 

ID and potential multiple change points in concentrations of all soil contaminants, the 

approach by Majumdar et al.22 cannot be directly applied.

To detect the unknown threshold concentrations of metals associated with the elevated risk 

of ordinal ID with spatial information, we propose a Bayesian semiparametric spatial 

approach with change points. The spatial continuous latent variable underlying the spatial 

ordinal outcome is modeled by the Gaussian process, which captures spatial variation and is 

centered at the nonlinear mean. The mean function is modeled by using the penalized 

smoothing splines for the soil metals with unknown change points and the linear regression 

for the demographic covariates. Some identifiability constraints are used to define the latent 

variable. The proposed approach provides a solution to the issues raised by the data.

The remainder of the article is organized as follows. Section 2 describes the latent variable 

model with change points. Prior specification, reparameterization, posterior implementation, 

and model comparison are also described. Section 3 evaluates the performance of the 

approach based on simulated examples. Section 4 illustrates the approach via an application 

to a retrospective cohort study of ID in South Carolina. Finally, Section 5 concludes with a 

summary and discussion.

2 The model

2.1 Latent variable model with change points

Let yi (i = 1, …, n) be an ordinal outcome with L categories, yi ∈ {1, …, L}, and xi be the 

ith geographical location with xi ∈ R2 (i.e. latitude and longitude). We can model the ordinal 

outcome as:

where πi = (πi1, …, πiL) denotes the vector of model probabilities that subject i is at level l, 

for l = 1, …, L, and . Since the categories of the outcome are ranked, the 

cumulative probability , for l = 1, …, L. The cumulative 

probability pil can then be modeled as
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(1)

where  denotes a vector of the covariates with linear or nonlinear effects at 

location xi,  is a linear or nonlinear function of  at level l, and bi = b(xi) is the spatial 

random effect. However, modeling the ordinal outcome using logistic models could be 

complicated, especially when the linear predictor, ηil, is complex. Also, incorporating a 

realization from a spatial Gaussian process for each category is not straightforward. To allow 

for more convenient and efficient modeling on the spatial ordinal outcome, following Albert 

and Chib,17 we use a latent continuous variable  distributed as N(ηi, 1) with 

and the variance being one for identifiability. The link between yi and  is set as yi = 1 if 

 with cut-points ν0 < ν1 < ··· < νL, where ν0 = −∞ and νL = +∞, and ν1 = 0 

for ensuring identifiability.

If function  is a linear function, the model becomes a typical linear model. In general, 

the outcome can be linearly associated with some covariates while nonlinearly associated 

with the others. Thus, we further define , where ui = (ui1, …, uiq)′ 

denotes the vector of covariates with linear effects, α denotes the vector of coefficients for 

covariates ui, zi = z(xi) = (zi1, …, zip)′ denotes a vector of the covariates with potential 

nonlinear effects, and f(zi) denotes a nonlinear function of zi. Among different nonlinear 

formulations, we consider a penalized smoothing spline function for f(zi) due to its 

flexibility and efficiency. Then function f(zi) can be written as

where  with H being the order of splines, βj and γj denote the 

vectors of regression coefficients, a+ = max(0, a) and , and κj = (κj1, …, κjK)′ 

denotes the vector of fixed knots. As mentioned in the last section, it is potentially the case 

that some spatial covariates (e.g. soil metals) may have extraordinary positive or negative 

effects on the outcome beyond a certain value. To allow for such change points, we model ηi 

as

(2)

where I(z > d) is an indicator which is 1 if z > d and 0 otherwise, dj is a change point for 

covariate j, and  and  denote the vectors of regression coefficients. Equation (2) 

provides a general model to assess the effects of spatial covariates on ordinal outcomes with 

inclusion of potential change points. When I(z > d) = 0, there is no change point for a 

covariate in terms of its effect on the outcome. The model then reduces to the nonlinear 

regression model. When H = 1, the model reduces to the typical linear spline model with 
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change points. In this article, the nonlinear function is chosen as the penalized quadratic 

splines (i.e. H = 2).

Due to the spatial correlation, the realization of the spatial Gaussian process, b = (b1, …, bn)

′, is assumed to be distributed as a multivariate Gaussian distribution, b ~ Nn(0, Σ(x, θ)) 

where Σ(x, θ) is the n × n spatial matrix with θ being certain spatial parameters of a 

geostatistical model that may control smoothness (σ2) and correlation decay (ρ) of the 

process. The spatial covariance matrix Σ(x, θ) is taken to be C(||xi − xj||) with ||a|| = (a′a)1/2 

and C(r) being a member of the Matérn family of covariance functions. Generally, the 

Matérn covariance matrix function can be written as 

with ν being a modified Bessel function of order ν (e.g. Stein,23 p.31). For a special case 

of ν = 3/2, the Matérn covariance function becomes C(r) = σ2(1 + |r|ρ)exp(−|r|ρ). We use this 

covariance function in our analysis because this expression is the simplest sub-family of the 

Matérn covariance functions that results in differentiable estimates.24 Since the information 

contained in the categorical data pertains to the probability of being in a particular category, 

we cannot estimate both the variance of the (potentially hypothetical) latent continuous 

distribution and the thresholds for the categories.20 Following Higgs and Hoeting,21 the 

smoothing parameter σ2 is set to be one. With the latent continuous variable y*, the 

complete-data likelihood can be expressed as

(3)

where , η = (η1, …, ηn)′ and 1(x ∈ A) denotes an indicator function. This 

model is much simpler and easier to be implemented. One of the advantages of the latent 

variable model is that for three ordinal categories (i.e. L = 3) in the outcome of our data, 

there is only one unknown cut-point (i.e. ν2).

2.2 Prior specification and reparameterization

To complete the Bayesian specification of our model, we need to choose prior distributions 

for the parameters. We assume a priori independence for these different parameter vectors. 

Following the conventional choice of priors for the regression coefficients, we let α ~ N(0, 

Rα), βj ~ N(0, Rβ), γj ~ N(0, Rγ), , and . Since the potential 

change points can be any value within the range of the corresponding covariate, we assume 

that potential change point follow a uniform prior with its range, dj ~ Uniform(min(zj), 

max(zj)). The prior for the decay parameter ρ is chosen as (a, b) to ensure that it is positive. 

According to French and Wand,24 one may also fix ρ at . A (a, b) random 

variable is parameterized to have expected value a/b and variance a/b2.

The use of standard Gibbs sampler in the model with ordered categorical response variables 

suffers from the slow convergence problem. Nandram and Chen25 developed an improved 

algorithm by using Dirichlet proposal for re-scaled cut-point parameters. Weadopt their 

reparameterization approach for our model with ordered categorical responses. Let , 
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we define ν̃
l = ϕνl, for l = 0, …, L. ϕ is a re-scaling parameter which transfers the cut-points, 

0 = ν1 < ··· < νL−1, to the values between 0 and 1. This re-scaling step reduces the 

correlations between the cut-points and the latent variables and thus accelerates the 

convergence of the algorithm. We then define the following transformations as

With this reparameterization, the realization b̃ ~ Nn(0, Σ̃(x, θ)) where Σ̃(x, θ) = C̃(||xi − xj||) 

= ϕ2(1 + |r|ρ) exp(−|r|ρ). By integrating out b̃, the likelihood becomes

(4)

where η̃
−b̃ is η̃ without b̃. For simplicity, we suppress the subscript −b̃ for the remainder of 

the article. The prior for ϕ2 is chosen as ℐ (c, d). It is clear that when L = 3, it becomes ν̃
0 = 

−∞ < ν̃
1 = 0 < ν̃

2 = 1 < ν̃
3 = ∞ and there is no unknown threshold scale needed to be 

updated.

2.3 Posterior computation

The full conditional posterior distributions for all the parameters can be derived based on the 

likelihood, the priors and the reparameterization specified in Section 2.2. Our posterior 

computation relies on the Gibbs sampler and Metropolis–Hastings algorithms. After 

specifying initial values for the parameters and latent variables, the proposed MCMC 

algorithm proceeds by updating the unknown parameters sequentially as shown in the 

Appendix.

Samples from the joint posterior distribution of the parameters and the latent variables are 

generated by repeating the steps for a large number of iterations after apparent convergence. 

It is noticed that the full conditional posterior distributions for all the parameters except ρ are 

conjugate, which provides an efficient sampling scheme. For ρ, we adopt the Metropolis–

Hastings algorithm. In this article, multiple chains with different initial settings are carried 

out, which are used for the final summary. The implementation is carried out by using R.26 

The code is available from the first author upon request.

2.4 Model comparison

We consider the deviance information criterion (DIC),27 a widely used criterion for model 

selection in hierarchical Bayesian models. Similar to the Bayesian information criterion 

(BIC) and Akaike’s information criterion (AIC), the DIC combines a measure of fit and 

complexity. The measure of fit is given by the posterior mean of the deviance and the 

measure of complexity by the difference between the posterior mean of the deviance and the 

deviance based on the posterior means of the parameters. The Bayesian deviance, D(Θ), is 

defined as
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where Θ denotes the set of all parameters in the model of interest, L(Θ|y) denotes the 

likelihood for the observed data y, and Q(y) denotes some specified standardizing term that 

is a function of the data alone and hence does not affect model comparison. The DIC is 

defined as , where  denotes the posterior expectation of the 

deviance, and pD denotes the effective number of parameters which is defined by difference 

between the expected deviance and the deviance evaluated at the posterior expectation, 

. The DIC can be easily calculated by taking the difference of the sample mean 

of the simulated values of D and the deviance based on the sample means of the simulated 

values of Θ obtained via MCMC.

3 A simulated example

We evaluated the performance of the proposed approach based on a simulation with 100 

replications. Without loss generality, we generated 500 observations with categorical 

outcomes and four covariates with nonlinear effects. The response variable yi was 

categorized into three categories described in Section 2.2 with , where 

zi1 ~ Uniform(0, 1), zi2 ~ Uniform(0, 4), zi3 ~ Uniform(0, 10), zi4 ~ Uniform(0, 7), and the 

associations between the covariates and the linear predictor follow different functions with 

change points,

The spatial locations, x, were randomly generated from Uniform(0, 5). The realization of the 

spatial Gaussian process b was generated from a multivariate Gaussian distribution, Nn(0, 

Σ(x, θ)), where Matérn covariance function in Σ(x, θ) is described in Section 2.1 with ρ = 1. 

With generated b, we generated samples for the continuous variable y* ~ Nn(ζ, In). The 

samples for the ordinal categorical response variable were then generated as yi = 1 if , 

yi = 2 if  and yi = 3 if . Figure 1 depicts the plots of covariates vs. the 

response variable in a simulated data set.

We fitted the proposed model with change points to the simulated data. We chose a flat 

normal prior N(0, 100) for the coefficients. The gamma prior (2, 1) was chosen for ρ. Since 

the response variable has three ordered categories, ϕ is fixed as one. For each replication, we 

ran the Gibbs sampling algorithm described in Section 2.3 for 20,000 iterations after a burn-

in of 5000 iterations. The diagnostic tests28,29 were carried out which showed good 

convergence and efficient mixing.
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For comparison, we also fitted the generalized additive model (GAM) and the proposed 

model without change points to the simulated data. The GAM model used here was 

proposed by Wood,30 which relies on approximations to the thin plate splines. The 

smoothers provide optimal low rank approximations to generalized smoothing spline models 

that are both computationally efficient and stable. The GAM approach is available in the R 

package mgcv, available from www.cran.r-project.org. In the package, the smooth class ‘tp’ 

was used, indicating optimal low rank approximation to thin plate spline.

Figure 2 shows the averaged fitted nonlinear curves for the four covariates based on the 

proposed method with change points, the method without change points and the GAM 

model. The shaded band indicates the 95% pointwise credible intervals from the simulated 

data sets. Since the estimate of the nonlinear curves based on the proposed model without 

change points and the GAM could not fully reflect the true curves, the results may 

potentially be misleading. In contrast, the proposed semiparametric model with change 

points provides the best fit for the designed covariates functions. In addition, the estimate of 

ρ from the proposed model is 0.92 with 95% credible interval (0.58, 1.34). The estimates 

and 95% credible intervals of the change points for the four covariates are 0.37(0.31,0.43), 

1.94 (1.46,2.40), 4.86 (4.20, 5.44) and 4.07 (3.65, 4.82), respectively. The estimated change 

points for the covariates are close to the true values.

To compare the goodness of fit of the proposed model with change points to that of the 

model without change points, we also calculated the deviance information criterion (DIC)27 

(there is no DIC available for the frequentist GAM model). The DICs for the model with 

change points and the model without change points are 130.7 and 144.6, respectively, 

implying that the proposed model with change points is better than the other model. For 

each replication of the simulation, we also assessed the sensitivity of the results to the prior 

specification by repeating the analysis with the different hyperparameters. We noticed that 

the estimates of the parameters varied slightly with different specifications of 

hyperparameters.

4 Application

We applied the proposed method to the ID data introduced in Section 1. The women in this 

study were followed through pregnancy and delivery. Then they were longitudinally 

followed to see if their child received a diagnosis of ID. The study areas were dispersed 

throughout South Carolina, in rural and urban areas and each area contained a low and high 

prevalence area for the outcome of ID. In order to maintain the confidentiality agreement, 

the soil samples were collected according to grids throughout the residential study areas. 

Nine chemicals were measured in soil samples collected, arsenic (As), barium (Ba), 

beryllium (Be), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni) 

and lead (Pb). Other available mother and baby covariates include mother’s age, mother’s 

ethnicity (white, black and other), mother’s alcohol consumption during pregnancy (yes/no), 

the number of prior births (parity)(0, 1, 2 and 3 or more), birth weight, child sex and weeks 

of gestation. Clusters of ID for each gestational month of pregnancy were identified based 

on maternal addresses. Ten distant geographic areas of land that included a gradient of risk 
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of ID were then selected. Based on a unified grid system, soil samples were collected and 

analyzed for nine metals and a general toxicity indicator within the areas.

In our analysis, we included 9440 individual samples with 7 demographic covariates related 

to mothers and children’s information. In each area, grided soil samples were collected with 

8 chemical concentrations being measured. Figure 3 shows the ID outcome locations in Area 

5. In the application, the mother’s age range is from 12 to 44. Previous studies show that 

mothers over 35 would have higher risks of having ID babies than younger mothers. 

However, the percentage of mothers’ age over 35 in our data is only 2.83%. When we 

categorized the age into three categories, [12, 20), [20, 24) and [24, 44], the proportions of 

having ID for these three categories are 30%, 35% and 35% respectively, indicating that they 

are in slightly increasing trend. It is known that there is a dramatically increasing risk of the 

ID when mothers’ age is over 35 (e.g. Newberger31). However, the percentage of mothers’ 

age over 35 in our data is only 2.83%. Thus, it seems plausible to assume the linear effect of 

mother’s age. Preliminary analysis based on the logistic regression shows that there is no 

significant interactions between the demographic covariates.

We chose flat priors for the coefficients similar to those in the simulation. The prior for ρ 

was chosen as a gamma distribution (3, 1) to allow for a reasonable range. We ran the 

Gibbs sampling algorithm detailed in the appendix for 40,000 iterations after a burn-in of 

10,000 iterations. Convergence was deemed adequate based on the diagnostic tests used in 

the simulation study.

Table 1 shows the summary of regression coefficients for the demographic covariates based 

on the three models. The results from the three models in Table 1 show that the older 

mother, the black mother, male baby and lower gestational age would significantly increase 

the risk of children having ID. Although the three models have similar results of effects of 

demographic covariates, it is shown that the proposed model with change points provides 

narrower credible intervals.

Table 2 shows the posterior means and 95% credible intervals of the change points for the 

soil metals. It is observed that the 95% credible intervals for Ba, Cr, Cu, Mn, Ni and Pb are 

quite wide which cover most of their ranges. This implies that there is no obvious evidence 

of change points for the dramatic changes of ID for the six metals based on the data. We 

actually produced the histograms of the change-point samples for the six metals, which show 

fairly flat shapes. In contrast, As and Hg seem to have change points for elevated risk of ID 

due to much narrower 95% credible intervals compared to the other soil chemicals. Besides 

showing the significant impact of the two metals on children’s ID, which is consistent with 

that in the previous studies,12,13 the proposed approach allows for detecting a sudden change 

in the effects of the metals on the risk of ID.

Figure 4 depicts the estimated curves and 95% pointwise intervals for As and Hg based on 

the proposed model with change points. The lower panel shows the fitted curves and 95% 

credible intervals for As and Hg across the entire observed ranges, where it is unclear if 

there exist the change points that accelerate the risk of ID. However, in the upper panel 

where the zoomed estimated curves are displayed, it is obvious that the change points exist 
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which have accelerated risk effects on ID occurrence in short ranges. This implies that when 

the two soil metals reach over their thresholds, there would be a sudden increase of risk of 

ID. This is an interesting finding as the detected thresholds of As and Hg in the soil suggest 

that some interventions might be needed to reduce the accelerated risk of ID in those areas. 

Since no previous studies focused on the change point detection for association between ID 

and the soil chemicals, more investigations are needed to unveil the scenario in the future 

work.

Similarly, we calculated the DICs for the model with change points and the model without 

change points, which are 4072.21 and 4098.58, respectively. This indicates that the model 

with change points has a better fit than the model without change points.

5 Discussion

In this article, we propose a Bayesian semiparametric approach with change points for 

spatial ordinal data, which allows to detect the unknown threshold points. By using the latent 

variable underlying the spatial ordinal outcome and the penalized smoothing splines for the 

covariates, we are able to efficiently model the ordinal outcome nonlinearly associated with 

the predictors. The simulation study and the application have shown the improvement of 

modeling and estimation from the proposed approach compared to the other two models 

without change points.

Although the location of the change point can be potentially found by using diagnostic 

methods, they often fail to provide statistical inferences about structural change. This is 

because searching for change points with diagnostics risks mistaking random variation for 

structural change. In contrast, the proposed Bayesian analysis provides statistical inferences 

for both regression coefficients and the location of the change point. The Bayesian change 

point model is shown to be feasibly estimated by stochastically sampling from the 

conditional posteriors for the regression coefficients. The simulation study shows that when 

a sudden change occurs, the proposed approach outperforms the methods without change 

points. However, when there is no dramatic change (e.g. for several soil chemicals in the 

application), the proposed method provides an estimate for the change point with a wide 

credible interval, implying that no important threshold effects can be effectively detected by 

the proposed method under this scenario.

The proposed approach can be implemented in WinBUGS32 with exponential covariance 

function. Conceptually WinBUGS can carry out the proposed approach with Matérn 

covariance matrix. However, we experienced slowness in computation time even for the 

model with very few latent covariates. It is noticed that there might be a potential estimation 

bias due to the measurement error. The occurrence of the measure error may lead to 

potential misleading conclusion. On-going work involves incorporating Berkson 

measurement error model for the latent spatial covariates33 to reduce potential biases. In 

addition, although a relatively small sample size (300) was used in the simulation study 

which shows reasonably good performance of the proposed approach, a systematic study is 

needed to examine the sample size for detecting important threshold effects.
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Appendix

The full conditional distributions in Section 2.3 are:

Step 1: Update  from its full conditional distribution,

where , Σ̃
−i is the submatrix of Σ̃(x, θ) 

excluding the ith row and column, σi,−i is the vector of covariances between  and , 

and .

Step 2: Update α̃ from its full conditional distribution,

where α̂ = ϕ−2 R̂
α̃U′(Σ(x, θ) + In)−1(ỹ* − η̃

−α̃′U) and 

 with U=(u1,…, un)′.

Step 3: Update dj from its full conditional distribution. To update dj, we first calculate 

the probability, , where 
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denote the ordered {zij} and L(·) denotes the likelihood. Then we draw dj from the 

Categorical (pj), where pj=(p1j,…, pn−1, j).

Step 4: Update β̃
j from its full conditional distribution,

where  and 

 with .

Step 5: Update γ̃
j from its full conditional distribution,

where  and 

 with Vj=(V1j,…,Vnj)′ and 

.

Step 6: Update  from its full conditional distribution,

where  and 

.

Step 7: Update  from its full conditional distribution,

where  and 

.

Step 8: Update ϕ2 from its full conditional distribution,
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Step 9: Update ρ from its full conditional distribution,
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Figure 1. 
Plots of covariates vs. the response variable in a simulated data set.
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Figure 2. 
True and fitted curves from the different methods for simulated data. The vertical line 

indicates the true value of the change point. The shaded band indicates the 95% pointwise 

credible intervals from the simulated data sets.
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Figure 3. 
The ID locations in Area 5. ‘○’ denotes the non-ID case, ‘×’ denotes the mild ID case and 

‘+’ denotes the moderate/severe ID case.

ID: intellectual disability.
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Figure 4. 
The estimated curves and 95% pointwise intervals for As and Hg based on the proposed 

model with change points. The lower panel shows the estimated curves for the entire range 

of As and Hg. The upper panel shows the estimated curves for the dense range of As and 

Hg. The rug plots on the horizontal axis represent the data points for As and Hg.
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Table 2

Posterior means and 95% credible intervals of change points of the soil metals

Soil metal (mg/kg) Posterior mean 95% Credible interval

As 2.11 (1.47, 2.78)

Ba 50.25 (2.53, 155.40)

Cr 18.56 (0.81, 67.86)

Cu 32.06 (2.40, 68.47)

Hg 0.42 (0.02, 0.96)

Mn 104.0 (5.95, 286.45)

Ni 7.73 (0.03, 20.52)

Pb 105.86 (5.40, 325.67)
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