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Abstract

Automated processing of digital histopathology slides has the potential to streamline patient care 

and provide new tools for cancer classification and grading. Before automatic analysis is possible, 

quality control procedures are applied to ensure that each image can be read consistently. One 

important quality control step is color normalization of the slide image, which adjusts for color 

variances (batch-effects) caused by differences in stain preparation and image acquisition 

equipment. Color batch-effects affect color-based features and reduce the performance of 

supervised color segmentation algorithms on images acquired separately. To identify an optimal 

normalization technique for histopathological color segmentation applications, five color 

normalization algorithms were compared in this study using 204 images from four image batches. 

Among the normalization methods, two global color normalization methods normalized colors 

from all stain simultaneously and three stain color normalization methods normalized colors from 

individual stains extracted using color deconvolution. Stain color normalization methods 

performed significantly better than global color normalization methods in 11 of 12 cross-batch 

experiments (p<0.05). Specifically, the stain color normalization method using k-means clustering 

was found to be the best choice because of high stain segmentation accuracy and low 

computational complexity.

Introduction

Histopathology is an integral part of the detection, monitoring, and research of cancer. 

Digital histopathology slides, also known as whole-slide images (WSIs), are a modern, high-

resolution tool to store the information from a tissue sample fixed on a glass slide for later 

analysis. WSIs have uses in training, healthcare record management, and telemedicine [1]. 

The availability of large, public banks of WSIs such as the Cancer Genome Atlas (TCGA) 

has created a growing area of research devoted to the automated analysis of these images 

[2]. Reliable, accurate, and automatic processing of WSIs has the potential to cut costs, 

improve patient outcomes, and take modern pathology into environments not previously 

possible [3].

Before useful automated processing, digital histopathology slides must undergo a number of 

quality control steps. These quality control steps ensure that no artifacts or technical 

variations, created during image acquisition, affect the biological data and the performance 

of image analysis and machine learning algorithms. Due to the great variability that exists 

between slides processed using different equipment or reagents, color normalization, which 

will normalize colors across batches, is a vital quality control step in the slide analysis 

process [4].
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Tissue samples are stained to highlight different cellular structures. For instance, in the most 

common slide staining for histopathology—H&E or hematoxylin and eosin—hematoxylin 

stains nuclear structures purple or blue, and eosin stains cytoplasmic structures pink. 

Analysis of WSIs often requires that the contributions from these two stains be extracted and 

considered separately. For example, nuclear segmentation algorithms may begin by 

identifying high concentrations of hematoxylin. The shape and texture features of the 

isolated stain channels have been shown to have diagnostic value in classification problems. 

Accurate normalization is thus a necessary first step for extracting any features based on 

color, texture, or stain segmentation. In this paper, the role of color normalization methods 

in a supervised stain segmentation pipeline is studied.

Researchers have previously studied color normalization methods for histopathological 

images [4–6]. Among the published research, there are two categories of methods: global 

color normalization that normalizes colors of all pixels irrespective of their stain and stain 

color normalization that separates stains and then normalizes each stain individually. The 

latter category would be ideal if the stains could be separated accurately. However, 

unsupervised stain segmentation of histopathological images is often not straightforward. 

Kothari et al. proposed two global color normalization methods that normalize images using 

quantile normalization of all pixels in the RGB color space and the quantile normalization of 

the unique color map [4]. Magee et al. proposed a stain color normalization method that 

roughly separates stains using color deconvolution and clustering and then normalizes each 

stain individually using Reinhard’s method [6, 7]. In their study, Magee et al. used a 

variational Bayesian Gaussian mixture model to cluster the areas where each stain is present 

in deconvolved images and compared original and normalized colors after normalization 

rather than comparing segmentation performance. However, variational Bayesian methods 

are computationally complex. Thus, in this study, two additional stain normalization 

procedures are developed that use the less complex k-means clustering and expectation-

maximization methods to identify stain classes, rather than variational Bayesian methods.

In summary, a quantitative comparison of the impact of five normalization algorithms, two 

global normalization and three stain color normalization methods, on color segmentation 

performance is presented in this paper.

Methods

Data

Manually curated portions of digital histopathology slides from four separately acquired 

image batches are used in this study. Two image batches/datasets, ovarian serious 

adenocarcinoma (OV) and glioblastoma multiforme (GBM), are from The Cancer Genome 

Atlas (TCGA). Images in these datasets are cropped sections of 1024×1024 pixels. The other 

two datasets, renal cell carcinoma (RCC1 & RCC2), were acquired at Emory University. 

Images in renal datasets are cropped sections of 1600×1200 pixels. In total, 204 images are 

considered, out of which 50 were derived from OV samples, 52 from GBM, 55 from RCC1, 

and 47 from RCC2.
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Ground truth segmentation for all images is obtained using an interactive system, where an 

experienced user selected sample pixels belonging to one of the four classes: hematoxylin, 

eosin, erythrocyte, and stain-free regions. Thereafter, a All the image pixels were grouped 

into one of the four classes based on their Euclidian distance to selected pixels. These 

ground truth labels are used for training segmentation classifiers and evaluating 

segmentation performance.

B. Color Normalization Algorithms—Color normalization methods affect the value of 

color features and performance of color segmentation algorithms. In this paper, performance 

of color segmentation using five candidate normalization algorithms (as outlined in Fig. 1) is 

studied. Previous work published color segmentation results using two global color 

normalization methods: all pixel and color map normalization, and as such, it is used here as 

a control [4]. The three other methods are derived from the color normalization methods 

published in [6, 7]. These methods use stain deconvolution as a first step, splitting the 

sample image into separate channels for hematoxylin and eosin staining. Three different 

clustering algorithms are then applied to segment those channels into stain is present / is not 

present regions. After normalizing different stains in a sample image to stains in a reference 

image, sample image stains are convolved to produce a normalized sample image.

Global Color Normalization: All-pixel quantile normalization performs simple quantile 

normalization of the red (R), green (G), and blue (B) color channel intensity distributions 

from the sample image to a reference image [4]. In quantile normalization, the largest value 

from the sample is replaced by the largest value from the reference, the second largest 

sample value by the second largest reference value, etc. The color distributions of the 

quantile normalized sample image will then share important statistical properties such as the 

mean and variance with the color distributions of the reference image.

In color map normalization, a color map is first constructed for the reference image by 

creating a list of every unique RGB triplet that occurs within the image [4]. This process is 

repeated with the target image to create its color map. Quantile normalization is then used to 

normalize individual color channel distributions for the sample color map to the color 

channel distributions of the reference color map.

Stain Color Normalization: Stain color normalization normalizes each stain separately 

using the following steps: (1) stain separation, (2) clustering, (3) multimodal color 

deconvolution (CVD-MM) [5] normalization [5], and (4) stain combination.

Stain Separation

First, the RGB image I produced over the background I0 is broken down into channels 

representing the contribution from each stain A. This is accomplished using a fixed optical 

density matrix Q based on the nominal color of each stain: hematoxylin and eosin [5, 8].
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Clustering

Color deconvolution returns grayscale images corresponding to each stain, where intensity 

at each pixel represents stain intensity. Pixels may have some intensity in each stain channel 

for one or all stains. Various clustering methods are employed to separate the foreground 

(strong staining) and background (weak staining) classes for each stain. The three clustering 

algorithms are employed and compared in this study are k-means, expectation-maximization 

for a Gaussian mixture, and variational Bayesian inference for a Gaussian mixture. All three 

clustering techniques were run with the number of classes constrained at k=2.

The k-means algorithm randomly chooses two cluster centers, adds each of the observations 

to the nearest of those clusters, then updates the cluster center and iterates until it converges 

to a final solution when the cluster assignments no longer change between iterations [9]. In 

this implementation, Euclidian distances to cluster centers are used.

The expectation-maximization algorithm used in this study works by estimating the mean 

and variance parameters of a mixture of two Gaussian distributions that fit the data. The 

expectation-maximization process consists of two steps. First, the probability that each 

observation falls into each distribution is determined and, then each observation is assigned 

a preliminary class based on its the highest probability. The next step assumes that the 

classes labels assigned in the first are all true, and generates new parameters to best fit those 

classes. The expectation-maximization EM algorithm used in this study is specifically fitting 

a Gaussian mixture model, rather than optimizing Euclidian distances to cluster centers as in 

k-means.

Rather than finding an approximation of the posterior distribution as in expectation-

maximization algorithms, the variational Bayesian method attempts to estimate the posterior 

distribution for all unknown variables [10]. The main difference between variational 

Bayesian and expectation-maximization is that variational Bayesian calculates the probable 

distributions of the variables, rather than estimatinges the parameter values (such as 

Gaussian mixture means) directly. Like expectation-maximization, the variational Bayesian 

was used with a two Gaussian model.

Fig. 2 shows the color deconvolution and clustering processes for a sample image from 

RCC1, where the image is first broken down into hematoxylin and eosin “channels” and 

then foreground and background is clustered before foreground and background clustering.

CVD-MM normalization

A similar deconvolution and clustering takes place for both sample and reference images. 

Once this is done, the clusters of the sample image are normalized to match the mean and 

variance of those clusters found in the reference image by the CVD-MM method described 
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by Magee et al. [5], which is conceptually similar to Reinhard’s method [7] implemented in 

a stain-specific color space.

Reference Gaussian distributions are generated using the means and standard deviations 

from the clustering step. Background and foreground weights are calculated at each pixel by 

linear interpolation of the reference Gaussian distributions. A separate saturated-pixel 

weight is defined such that near-white pixels will not be significantly changed. These 

weights and reference distributions are combined to yield a normalized stain component 

pixel [5].

Stain Combination

The normalized stain-domain image is then converted back to the RBG color space using 

color convolution, in an inverse operation of the deconvolution performed in step (a).

E. Stain Segmentation—Images are segmented using a four-step, supervised color 

segmentation system [4]. First, a test image is normalized to a standard reference image 

using one of the five color normalization methods, discussed in the previous section. 

Second, every pixel in the test image based on its RGB color values is classified as one the 

of four tissue classes using a supervised classifier. The system uses a 4-class linear 

discriminant (LDA) classifier, which is trained using ground truth labels and RGB colors 

values of the reference image. The four tissue classes refer to the hematoxylin, eosin, 

erythrocyte, and stain-free regions of the image. The first and second steps are repeated with 

ten different references resulting in ten slightly different segmentations. Ten top references 

are selected from the same batch using internal cross-validation. More details on cross-

validation and validation are described in the next section. Third, the segmentation labels are 

combined for each pixel using max-voting. Because images have been are segmented in the 

normalized color space, decision planes for each segmented tissue class are non-uniform 

may be irregular when transformed into in the original color space. Therefore, in the fourth 

step Therefore, to refine the segmentation in the original color space, image segmentation is 

refined by a classifier is trained using the image’s segmentation labels in from the third step 

and the image’s original RGB color values [4].

F. Validation—The normalization methods are compared using the performance of the 

color segmentation system, when images are normalized with any method in the first step. 

The performance is assessed for each binary combination of four batches, where one batch is 

the train set while another is the test set. In total, 12 cross-batch combinations are assessed 

during the validation process.

The performance of normalization methods and classifier model depends on the selection of 

reference images. Therefore, multiple images are selected to avoid bias due to the selection 

of any single reference image. Cross-validation within a batch is used to select the top ten 

references for a batch. First, each image within the data set is used as a reference to 

normalize and segment all of the other images, after which the mean stain segmentation 

accuracy is recorded. This is repeated for all members of a data set, after which the 10 

highest scoring images are saved as the reference set for that batch.

Hoffman et al. Page 5

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2015 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results and Discussion

Table 1 lists the mean and standard deviation of the segmentation accuracy using two global 

color normalization methods—all pixel (AP) and color map (CM)— and four stain color 

normalization methods—k-means (KM), expectation-maximization (EM), and variational 

Bayesian inference (VB)—for all cross-batch experiments. As reported in previous work as 

well, among global color normalization methods, CM performs better than AP [4]. 

However, in most cases stain color normalization methods outperform global color 

normalization methods. This was expected because stain color normalization normalized 

each stain separately and prevents color intermixing between stains. To more statistically 

compare these methods, Student’s t-test was performed between the performances using 

different normalization methods within each test case, i.e., a train and test batch 

combination. The following can be concluded based on t-test p-values: (1) There is no 

statistical difference between stain color normalization methods (KM, EM, and VB) using 

different clustering methods, (2) In all but one case (RCC2 train set and RCC1 test set), CM 

performs statistically better than or equivalent to AP, and (2) In all but one case (OV train 

set and RCC2 test set), KM performs statistically better than or equivalent to CM. Statistical 

significance was established using p<0.05. Fig. 3 illustrates qualitative differences in the 

segmentation masks generated by the KM, EM, and VB algorithms.

Although there was no significant difference in the performance using either of the stain 

color normalization methods, there was a significant difference in computational complexity 

between the KM, EM, and VB clustering methods. To quantify the differences in 

performance between these three algorithms, a single standardized sample from the RCC1 

data set was normalized against 10 randomly selected reference images, and the total time 

elapsed was recorded. The results are reported in Table 3. KM was the fastest, with 10 

normalizations taking only 29.28 seconds. It was found to be approximately 6.5x faster than 

the EM procedure and over 17x faster than VB. Thus, based on our experiments, KM is 

clearly the ideal choice because it performs better or equivalent to global normalization 

methods and it is fastest among stain color normalization methods.

Conclusion

Color normalization is an important quality control step for histopathological images to 

insure accurate downstream processing of these images. In this work, based on the 

performance of color segmentation system, five color normalization methods were 

compared. Among these methods, three methods were previously published but two were 

novel extensions of an existing method. One of our novel extensions using k-means 

clustering was found to be the optimal normalization algorithm based on high segmentation 

accuracy and low computational time. This preliminary study used only four batches of 

manually curated images. In future work, this work would be extended by evaluating several 

other normalization methods on more image batches and complete whole-slide images.
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Figure 1. 
Normalization algorithm candidates. All five candidate algorithms are compared.
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Figure 2. 
Clustering comparison. A sample image from the RCC1 data set is segmented into 

hematoxylin and eosin channels. These channels are then separated into foreground (strong 

staining) background (weak staining) clusters by each of three clustering algorithms.
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Figure 3. 
Segmentation accuracy results for a single sample. A single OV sample (left column) is 

segmented after normalization using three different algorithms (rows) against three different 

references (columns). Color segmentation accuracy is shown in the top-right of each 

segmented color map.
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