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Abstract

AIM: Using bacterial, yeast, or mammalian cell expressing
a human drug metabolism enzyme would seem good way
to study drug metabolism-related problems. Human
cytochrome P-450 2C9(CYP2C9) is a polymorphic enzyme
responsible for the metabolism of a large number of
clinically important drugs. It ranks among the most
important drug metabolizing enzymes in humans. In
order to provide a sufficient amount of the enzyme
for drug metabolic research, the CYP2C9 cDNA was
cloned and expressed stably in CHL cells.

METHODS: After extraction of total RNA from human
liver tissue, the human CYP2C9 cDNA was amplified
with reverse transcription-polymerase chain reaction
(RT-PCR), and cloned into cloning vector pGEM-T. The
cDNA fragment was identified by DNA sequencing and
subcloned into a mammalian expression vector pREP9.
A transgenic cell line was established by transfecting
the recombinant vector of pREP9-CYP2C9 into CHL cells.
The enzyme activity of CYP2C9 catalyzing oxidation of
tolbutamide to hydroxy tolbutamide in S9 fraction of
the cell was determined by high performance liquid
chromatography(HPLC).

RESULTS: The amino acid sequence predicted from the
cDNA segment was identical to that of CYP2C9*1, the
wild type CYP2C9. However, there were two base
differences, i.e. 21T>C, 1146C>T, but the encoding
amino acid sequence was the same, L7, P382. The S9
fraction of the established cell line metabolizes
tolbutamide to hydroxy tolbutamide; tolbutamide
hydroxylase activity was found to be 0.465±0.109
µµµµµmol·min-1·g-1 S9 protein or 8.62±2.02mol·min-1·mol-1

CYP, but was undetectable in parental CHL cell.

CONCLUSION: The cDNA of human CYP2C9 was successfully
cloned and a cell line of CHL-CYP2C9, efficiently expressing
the protein of CYP2C9, was established.
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INTRODUCTION
Cytochrome P-450 (CYP) is a heme-containing enzyme widely
distributed from bacteria to mammals, which catalyzes oxidative or
reductive metabolism of a wide variety of substances including
endogenous as well as exogenous compounds. Mammalian CYP
present in liver microsomes is one of the key enzymatic mechanisms
for the matabolism of drugs, pesticides, environmental pollutants,
and carcinogens[1]. Mammals possess at least 17 distinct CYP gene
families that together code for an estimated 50-60 individual CYP
genes in any given species[2]. The human CYP2C subfamily comprises
four members, CYP2C8, CYP2C9, CYP2C18 and CYP2C19[3],
accounting for 20% of the total CYP in human liver. CYP2C9 is a
polymorphic enzyme responsible for the metabolism of a large
number of clinically important drugs such as S-warfarin, phenytoin,
tolbutamide, torsemide, losartan, fluoxetine, dapsone[4],
cyclooxygenase-2 inhibitor: celecoxib[5,6], nonpeptide angiotensin II
receptor antagonist: irbesartan[7] and numerous nonsteroidal anti-
inflammatory drugs. It ranks among the most important drug
metabolizing enzymes in humans[8].
       The combination of gene technology and cell culture technology
has provided new opportunities for studying proteins because any
gene from any species encoding an protein may be cloned and
expressed in bacterial, yeast, or mammalian cells in a defined way[9-18].
This approach to drug metabolism is of particular importance because
some of the enzymes are difficult to purify and prepare in sufficient
quantities, or expression levels are low, expression is organ-
specificity, or the enzyme-product organs are very scarce. These
restrictions apply especially for human enzymes. The heterologous
expression of the cDNA allows to bypass these restrictions[19].
Human CYP2C9 previously has been expressed in E. coli[20],
Salmonella typhimurium[21], yeast[22] COS-1[3], human liver epithelial
cell THLE[23], and human hepatic cell line HepG2[24]. Several cell
lines stably expressing human CYP1A1[25], CYP2B6[25], CYP2A6[26],
CYP3A4[27], CYP2C18(in press) and a phase II metabolism enzyme
UDP-glucuronosyltransferase, UGT1A9[28] have been established in
our laboratory. In this study human CYP2C9 cDNA was amplified
with reverse transcription-polymerase chain reaction (RT-PCR), and
a transgenic cell line stably expressing CYP2C9 was established.

MATERIALS AND METHODS
Materials
Restriction endonucleases, Moloney murine leukemia virus (M-
MuLV) reverse transcriptase were purchased from MBI Fermentas
AB, Lithuania. Taq plus I DNA polymerase, dNTPs, PCR primers,
DNA sequence primers and random hexamer primer were supplied
or synthesized by Shanghai Sangon Biotechnology Corp. DNA
sequencing kit was supplied by Perkin-Elmer Corp. The TRIzol
reagent, G418, minimum essential media(MEM) and newborn
bovine calf sera from Gibco. NADPH from Roche Molecular
Biochemicals. Diethyl pyrocarbonate (DEPC), tolbutamide and
hydroxytolbutamide were obtaineded from Sigma Chemical Company.
T4 DNA ligase and pGEM-T vector system were supplied by
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Promega. Other chemical reagents used were all of analytical purity
from commercial sources.

Methods
Cloning of human CYP2C9 cDNA from a Chinese human liver
The total RNA was extracted from a surgical specimen of human liver
with TRIzol reagent according to the manufacture’s instructions, and
then the first strand of cDNA was reverse transcripted from mRNA.
Procedure: 5µg of the total RNA and 2µg of random hexamer primer
in deionized DEPC-treated water were denatured at 65  for 15min,
then 4µL 5×reverse transcription buffer, 3µL 10mmol·L-1 dNTP,
1µL M-MuLV reverse transcriptase (200u) and essential deionized
DEPC treated water was added to a total volume of 20µL. The
reaction was performed at 25  for 10min, then at 42  for 1h, and
finally at 70  for 10min to inactivate reverse transcriptase. The
reactant then was stored at 4 . To amplify the human CYP2C9
cDNA by PCR, 2µL of the reactant were mixed with 2µL of 10mmol·L-

1 each of dNTPs, 20pmol of PCR primers and 4u of Taq plus I DNA
polymerase in 1×PCR buffer containing 1.5mmol·L-1 MgCl2. A total
volume of 100µL was reached by adding deionized water. Two
specific 32 mer and 28 mer oligonucleotide PCR primers were
designed according to the cDNA sequence of CYP2C9 clone 25
reported by Romkes et al[3] (GenBank accession no. M61855,
J05326). The sense primer corresponding to base position 1 to 32
was 5’-GAGAAGGTACCAATGGATTCTCTTGTGGTCCT- 3’,
with a restriction site of Kpn  I ,  and the anti-sense one,
corresponding to the base position from 1513 to 1540, was 5’-
AGAGGAAAGAGAGCTCGAGGGACTGCAC-3’ with a
restriction site of Xho I. The PCR was performed at 94  2min, then
35 cycles of 94  60s, 60  60s, 72  2min, and lastly 72  10min.
The product was stored at 4 . An aliquot of 10µL from the PCR
was subjected to electrophoresis in a 10g·L-1 agarose gel stained with
ethidium bromide.

Construction of recombinant pGEM-CYP2C9 and sequencing
of CYP2C9 cDNA[29]

The PCR product of about 1.5 kb in length, recovered and purified by
electroelution into dialysis bag was ligated with a clone vector, pGEM-
T (Promega), by T4 DNA ligase. E.coli DH5α was transformed with
the resulted recombinant pGEM-CYP2C9 and the replicated plasmid
was harvested from the bacteria screened by ampicillin resistant and
blue-white selection with X-gal and IPTG. The cDNA of YP2C9
cloned in pGEM-T was sequenced on both strands by dideoxy chain-
termination method marked with BigDye with primers of T7 and SP6
promoters and two specific primers of 5’-TGCCTTGTGGAGTTG-
AGA-3’(463-483),and 5’-ACAGAGACGACAAGCACAAC -3’
(907-926). The termination products were resolved and detected using
an automated DNA sequencer (Perkin-Elmer-ABI Prism 310).

Construction of the pREP9 based expression plasmid for
CYP2C9
The Kpn I/ Xho I fragment of the human CYP2C9 cDNA cleaved from
the recombinant pGEM-CYP2C9 recovered and purificated by
electroelution into dialysis bag was cloned directly into a unique site
Kpn I/ Xho I within the multiple cloning sites of the mammalian
expression vector pREP9 (Invitrogen) with T4 DNA ligase. The
recombinant was transformed to E. coli Top 10, and screened by
ampicillin resistant. The recombinant was identified by restriction
mapping.

Transfection and selection[29]

Chinese hamster lung(CHL) cells were transfected with the resultant

recombinant, pREP9-CYP2C9, using a modified calcium phosphate
method. After 24h incubation in MEM containing 10% newborn bovine
calf sera at 37 , the culture was rinsed and re-fed with fresh growth
medium. After 72h post-transfection, the culture were split and then
selected in the culture medium containing the neomycin analogue G418
(400mg·L-1). The selective medium was changed every 3-4d to remove
dead cells and to allow the growth of resistant colonies. After 1mo,
surviving colonies (termed CHL-CYP2C9) were harvested as a pool
and propagated in medium containing G418.

Preparation of S9 of CHL-CYP2C9
CHL-CYP2C9 cells grown in the culture medium containing G418
(400mg·L-1) were rinsed with phosphate balanced solution (PBS),
scraped and collected from the bottle with 11.5g·L-1 KCl aqua solution
and then sonicated in 200W, 5 s for 10 times with 10s of interval
break. The resulted homogenate was centrifuged at 9000g at 4  for
20min and the postmitochondrial supernatant (S9) was transferred
carefully to a clean tube for assay or storage under -70 . The protein
in S9 was determined by the method described by Lowry et al, with
bovine serum albumin as standard. CYP was measured spectrally
using the method of Johannesen et al[30].

Tolbutamide hydroxylase assay[22,31]

The CYP2C9 tolbutamide hydroxylase activity of S9 fraction was
determined by high performance liquid chromatography (HPLC). The
assay was performed in a total volume of 500µL containing final
concentrations of 5mmol·L-1 HEPES (pH 7.4), 1.5mmol·L-1 MgCl2,
0.1mmol·L-1 EDTA, 0.25mg S9 and 1mmol·L-1 sodium tolbutamide.
The reaction was initiated with 0.5mmol·L-1 NADPH and terminated
after 60min at 37  by the addition of 50µL of 4mmol·L-1 HCl.
Reaction product was extracted by vortex-mixing of 3mL of water-
saturated ethyl acetate with the mixture for 2min. The organic layer
was collected after centrifugation in a table top centrifuge at 1000g for
5min. After most of the ethyl acetate extract had air-dried, the rest
was removed in a heating block at 75 . The residue was resolubilized
in 200µL of methanol, and reaction product, hydroxytolbutamide was
then assayed using HPLC by injecting 20µL of the solubilized extract
on to a reversed phase column (Shim-pack CLC-ODS 15cm×0.6cm id,
10µm particle size), using 0.5g·L-1 phosphoric acid, pH 2.6, acetonitrile
(6:4/V:V) as the mobile phase with a flow rate of 1mL·min-1. The column
elution was monitored at 230nm, and rates of product formation were
determined from standard curves prepared by adding varying amounts of
hydroxytolbutamide to incubations conducted without NADPH.

RESULTS
Construction of recombinants
The recombinant of pGEM-CYP2C9 (Figure 1) was constructed with
the human CYP2C9 cDNA inserted into the cloning site of vector
pGEM-T between the promoters of T7 and SP6. Selection and
identification of the recombinant was carried out by Kpn I/Xho I
endonuclease digestion and agarose gel electorphoresis (Figure1). The
cloned cDNA segment was sequenced. In comparison with the CYP2C9
clone 65 cDNA sequence reported by Romkes et al[3] (GenBank
accession no. M61857, J05326), our preparation showed two base
differences, i.e. 21T>C, 1146C>T, but the encoding amino acid sequence
was the same, i.e. L7, P382 respectively.
      The Kpn I/Xho I fragment (1.5 kb) containing the complete
CYP2C9  cDNA was subcloned into the Kpn I/Xho I site of
mammalian expression vector pREP9 (Figure 2). Selection and
identification of the recombinants were carried out by Kpn I/Xho I
endonuclease digestion and agarose gel electrophoresis (Figure 2).
The resulting plasmid was designated as pREP9-CYP2C9 and
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contained the entire coding region, along with 2 bp of the 5’end and
41 bp of the 3’end untranslated region of the CYP2C9 cDNA,
respectively.

Figure 1  Scheme and electrophoresis identification of recombinant pGEM-
CYP2C9. A: Scheme of recombinat of pGEM-CYP2C9; B: Electrophoresis
identification of recombinant pGEM-CYP2C9; 1: Marker (λ/EcoRI and Hind
III); 2: PCR product of CYP2C9(1.54 kb); 3: Recombinant of pGEM-CYP2C9
digested by Kpn I and Xho I; 4: pGEM-T vector

Figure 2  Scheme and electrophoresis identification of recombinant pREP9-
CYP2C9. A: Scheme of pREP9-CYP2C9; B: Electrophoresis identification of
recombinant pREP9-CYP2C9; 1: Marker (λ/EcoR I and Hind III); 2: PCR
product of CYP2C9(1.54 kb); 3: Recombinant of pREP9-CYP2C9 digested
by Kpn I and Xho I; 4: pREP9 vector

Establishment of transgenic cell lines with CYP2C9 enzyme
activity
CHL cells were transfected with pREP9-CYP2C9, and selected with
G418 (400mg·L-1). The surviving colonies were propagated and a
cell line termed CHL-CYP2C9 was established. The tolbutamide

hydroxylase activity of CYP2C9 in S9 fraction of CHL-CYP2C9 cells
was assayed by HPLC.A typical elution profile of hydroxytolbutamide
in extracts is shown (Figure 3). CYP2C9 enzyme activity with
tolbutamide was found to be 0.465±0.109µmol·min-1·g-1 S9 protein or
8.62±2.02mol·min-1·mol-1 CYP (n=3), but none was detectable in
parental CHL cells. The CYP content was 57.7nmol·g-1 S9 protein
from CHL-CYP2C9 but no detectable CYP was present in CHL cell.

Figure 3  Representative chromatogram of extractsA Shim-pack CLC-ODS
column (15cm×0.6cm i.d.) was used. The mobile phase was constituted
with phosphoric acid (pH 2.6), acetonitrile (6:4/V:V) with the flow rate at
1mL·min -1 .  Hydroxytolbutamide was monitored at  230nm. A:
hydroxytolbutamide; B: tolbutamide

DISCUSSION
Direct cloning of human CYP cDNAs from cDNA libraries generally
has been successful using anti-rodent or anti-human CYP antibodies
and rodent CYPcDNA probes. But these cloning procedures are
applicable only for the most abundantly expressed CYP mRNAs.
Using the RT-PCR to clone low abundance CYPcDNA is a simple
and direct method. CYP2C9 mRNA was present in human liver[32],
HepG2 cells[33], kidney, testes, adrenal gland, prostate, ovary,
duodenum[34], and brain tumors[35]. The pGEM-T vector system
possesing single 3’-T overhangs at the insertion site greatly improves
the efficiency of ligation of a PCR product into the plasmid by
preventing recircularization of the vector and providing a compatible
overhang for PCR products generateed by Taq Plus I DNA
polymerases.

       The human CYP2C9 gene is located on chromosome 10q24. Up to
date, 12 CYP2C9 alleles have been identified (see: Table 1 and CYP2C9
alleles nomenclature http://www.imm.ki.se/CYPalleles/cyp2c9.htm).
CYP2C9*1 is the wild type of human CYP2C9. CYP2C9*2 exhibit a
base substitute 430C>T, resulting in a R144C substitution which has
been suggested to affect the interaction between the CYP enzyme
molecule and the cytochrome P450 reductase[36]; this may explain the
slower metabolism of some CYP2C9 substrates such as S-warfarin
and tolbutamide[8, 37]. CYP2C9*3 has a base substitute 1075A>C,
which leads to an I359L substitute. Takanashi et al[38] expressed the
CYP2C9*1 and CYP2C9*3 cDNA in yeast and examined the kinetics
of seven individual metabolic reactions by wild-type CYP2C9*1
and its CYP2C9*3 variant. Their results indicated that the I359L
exchange significantly reduces the catalytic activity with all CYP2C9-
mediated substrates studied, although the extent of the reduction in
activity and kinetic parameters varied between different substrates.
Interestingly Kidd et al[39] reported a male Caucasian, homozygous
for CYP2C9*3, who poorly metabolized phenytoin and glipizide/
tolbutamide. This study establishes that the I359L mutation is responsible
for the poor metabolizer phenotype. The CYP2C9*2 and CYP2C9*3 are
responsible for the poor metabolizing celecoxib[5], losartan[40],
torsemide[41]. CYP2C9*4[42] has a base substitute of 1076T>C,
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leading to a I359T substitution. Ieiri et al[43] evaluated the catalytic
activity of three variants (I, L, and T) at codon 359 of CYP2C9
enzymes expressed in a yeast cDNA expression system. The specific
catalytic activities were assessed by diclofenac-4’-hydroxylation. The
in vitro study revealed that recombinant I359, L359, and T359 (2
batches) exhibited a mean Km of 2.0, 16.5 and (3.8 and 2.9) µmol and
Vmax of 12.4, 17.9 and (4.4 and 5.1) nmol·min-1·nmol-1CYP,
respectively. The CYP2C9*5 variant is derived from a 1080C>G
transversion in exon 7 of CYP2C9 that leads to a D360E substitution
in the encoded protein[44]. The CYP2C9*5 variant was found to be
expressed in African-Americans with a frequency of approximately
3% in this population group. This variant was expressed in, and
purified from, insect cells infected with a recombinant baculovirus.
The in vitro data suggest that carriers of the CYP2C9*5 allele would
eliminate CYP2C9 substrates at slower rates compared to individuals
expressing the wild-type protein[44]. Kidd et al[45] reported a new
CYP2C9 allele (CYP2C9*6) with the deletion of an adenine at base
pair 818 of the cDNA. The clearance of phenytoin in this individual is
estimated to be approximately 17% of that observed in normal patients.
The frequency of this allele was 0.6% in 79 African-Americans and 0%
in 172 Caucasians. Shintani et al[46] reported that mutations in the 5’-
flanking region of the human CYP2C9 gene appear to contribute to the
large interindividual variability in drug metabolism activity. Compared
with CYP2C9*1 cDNA, there are two base differences in the CYP2C9
cDNA cloned by us, but the encoded amino acid sequence remains
unchanged. This obviously is the molecular basis for full enzymatic activity.

Table 1  Nomenclature and characteristics of CYP2C9 alleles

Allele       Protein     Nucleotide        Effect   Enzyme activity           References
       changes

In Vivo   In vitro

CYP2C9*1     CYP2C9.1       None Normal   Normal  3

CYP2C9*2     CYP2C9.2       430C>T           R144C   Decr 36

CYP2C9*3     CYP2C9.3       1075A>C         I359L Decr   Decr           37,38,39,43

CYP2C9*4     CYP2C9.4       1076T>C         I359T                 42,43

CYP2C9*5     CYP2C9.5       1080C>G         D360E Decr 44

CYP2C9*6           818delA      frame shift Decr 45

CYP2C9*7-*12               In press

To express the functional activity of a CYP, a cell evidently must have
adequate heme supply, either by intracellular biosynthesis or
extracellular provision[47]. CYPs also require other enzymatic
components for full activity, including the flavoprotein NADPH-
P450 oxidoreductase (OR) and, in some cases, cytochrome b5. The
OR must interact directly with the CYP to transfer the required two
electrons from NADPH. Cytochrome b5 is necessary for increasing
electron transfer for certain CYP forms and specific substrates. The
CHL is the cell line originally derived from the lung of a newborn
female Chinese hamster and has no or very limited activities of CYP
enzymes, but has adequate OR and cytochrome b5 levels to support
CYP activities.
       To achieve high expression levels of CYP2C9, the CYP2C9 cDNA
was cloned into the eukaryotic expression vector pREP9, which had
previously been used in this laboratory for the expression of human
CYP1A1, CYP2B6, CYP2A6, CYP3A4 and UGT1A9 in CHL cells[25-28].
The salient feature of this vector has an Epstein Barr Virus origin of
replication and nuclear antigen (EBNA-1) to allow high-copy episomal
replication in mammal cell lines. The Rous sarcoma virus long terminal
repeat (RSV LTR) early promoter controls the expression of the
CYP2C9 cDNA.
     Tolbutamide (1-butyl-3-p-tolylsulfonylurea) is an oral
hypoglycemic agent which is being used in the treatment of diabetes.
In humans it undergoes CYP-catalyzed hydroxylation of the tolyl
methyl group which is the initial and rate-limiting reaction followed by

further oxidation by cytosolic dehydrogenases yielding
carboxytolbutamide. Overall this pathway accounts for up to 85% of
tolbutamide clearance in humans. Evidence that CYP2C9 is solely
responsible for tolbutamide hydroxylation is convincing and
tolbutamide is widely accepted as a prototypic substrate for the
assessment of hepatic CYP2C9 activity, both in vitro and in vivo[8].
       We used tolbutamide as a substrate for evaluating the expressing
of human CYP2C9 activity in CHL-CYP2C9 cell. The tolbutamide
hydroxylase activity was 0.465±0.109µmol·min-1·g-1 S9 protein or
8.62±2.02mol·min-1·mol-1 CYP. These value, were somewhat higher
than these obtained with recombinant CYP2C9 purified from E. coli:
4.67-4.96nmol·min-1·nmol-1 CYP[48] or human liver microsomes:
0.189±0.0083nmol·min-1·mg-1 microsome[49] and 2.29-4.33nmol·min-1

·nmol-1 CYP[48]. This clearly stated that CHL-CYP2C9 expressed the
CYP2C9 efficiently and this may be a useful tool for further studies of
its enzymatic function and mechanism.
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