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Abstract
The search for biomarkers that characterize specific 
aspects of inflammatory bowel disease (IBD), has 
received substantial interest in the past years and 
is moving forward rapidly with the help of modern 
technologies. Nevertheless, there is a direct demand 
to identify adequate biomarkers for predicting 
and evaluating therapeutic response to different 
therapies. In this subset, pharmacogenetics deserves 
more attention as part of the endeavor to provide 
personalized medicine. The ultimate goal in this area 
is the adjustment of medication for a patient’s specific 
genetic background and thereby to improve drug 
efficacy and safety rates. The aim of the following 
review is to utilize the latest knowledge on immuno
pathogenesis of IBD and update the findings on the 
field of Immunology and Genetics, to evaluate the 
response to the different therapies. In the present 
article, more than 400 publications were reviewed but 
finally 287 included based on design, reproducibility (or 
expectancy to be reproducible and translationable into 
humans) or already measured in humans. A few tests 



have shown clinical applicability. Other, i.e. , genetic 
associations for the different therapies in IBD have not 
yet shown consistent or robust results. In the close 
future it is anticipated that this, cellular and genetic 
material, as well as the determination of biomarkers will 
be implemented in an integrated molecular diagnostic 
and prognostic approach to manage IBD patients.
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Core tip: The following article is an update on the latest 
findings on the pathogenesis of inflammatory bowel 
disease (IBD) and its correlation with genetic and 
non-genetic predictors of the efficacy of the different 
strategies of treatment. Although many therapies 
have been used for decades, this is a completely new 
approach that has become even more complicated 
with new therapies like biologics. While most of these 
strategies are still in a very early stage, and have not 
been validated in clinical practice, they have begun 
suggesting the direction in which physicians should 
start looking to establish the most adequate therapeutic 
strategy for each individual patient.
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INTRODUCTION
The search for biomarkers that characterize specific 
aspects of inflammatory bowel disease (IBD), has 
received substantial interest in the past years and 
is moving forward rapidly with the help of modern 
technologies. Currently, biomarkers are more pro­
gressively used in routine clinical care of patients with 
IBD. Most biomarkers used are not disease specific, 
but in general reflect inflammation. The last decade 
has brought significant gains in insight to IBD genetics 
and pathogenesis. These insights have the potential 
to improve the utility of biomarkers currently in use 
in clinical practice or are under investigation in clinical 
trials[1].

Although some reviews have been recently published 
on biomarkers[1], the most lacking topic is possibly 
is to identify adequate biomarkers for predicting and 
evaluating therapeutic response to different therapies 
which is less developed. With the progress in genetics 
research in IBD, genetic markers are increasingly 
being proposed to improve stratification of patients. 

Nevertheless, none of the genetic variants associated 
with particular outcomes have shown sufficient 
sensitivity or specificity to be implemented in daily 
management, maybe with the exception on those 
related to thiopurine metabolism.

Along a same line of thinking, pharmacogenetics, 
the study of association between variability in drug 
response and genetic variation, has also received more 
attention as part of the endeavor for personalized 
medicine. The ultimate goal in this area of medicine 
is the adaptation of medication for a patient’s specific 
genetic background and therefore to improve drug 
efficacy and safety.

The aim of the following review is to utilize the 
latest knowledge on immunopathogenesis of IBD and 
update the findings in the field of Immunology and 
Genetics, to evaluate the response to the different 
therapies with the intent to predict the outcome within 
the diverse therapeutic strategies.

IMMUNOPATHOGENESIS OF IBD
The exact cause of IBD is still unknown, but is thought 
to be due to a combination of a patient’s microbiome, 
immune response, and the environment that result in 
an excessive and abnormal immune response against 
commensal flora in genetically susceptible individuals 
(Figure 1).

Epithelial cells are able to identify bacterial 
components via extracellular receptors like toll-like 
receptors (TLRs) on the cell surface or intracellular 
NOD-like receptors in the cytoplasm - NOD2 (nucleotide-
binding oligomerization domain containing 2)/CARD15 
(caspase-activating recruitment domain 15 receptor). 
NOD2 receptor, recognizes the muramyl dipeptide 
(MDP), the minimal bioactive peptidoglycan motif 
common to all bacteria[2]. MDP stimulation induces 
autophagy which controls bacterial replication and 
antigen presentation, and modulates both innate 
and adaptive immune responses[3-5]. Autophagy is 
involved in intracellular homeostasis, contributing to 
the degradation and recycling of cytosolic contents and 
organelles, as well as to the resistance against infection 
and removal of intracellular microbes[6-8]. In the innate 
immune arm, the association of IBD [specifically, 
Crohn’s disease (CD)] with NOD2 mutations and 
the two-autophagy-related genes ATG16L1 and 
IRGM suggests that alterations in the recognition 
and intracellular processing of bacterial components 
may have a role in the immunopathogenesis of the 
disease[9-11]. The unfolded protein response has been 
identified as a critical pathway in the maintenance of 
cellular homeostasis[12].

Barriers of protection
Upon penetration of luminal contents into underlying 
tissues due to leakage in the mucosal barrier, impaired 
clearance of foreign material from the lumen leads 
to a compensatory acquired immune response that 

Quetglas EG et al . Update on IBS

12520 November 28, 2015|Volume 21|Issue 44|WJG|www.wjgnet.com



can result in a chronic inflammatory state. Recently, 
a immunoregulatory dysfunction of hyperglycosylated 
mucin (MUC2) has been related to aggravation of IBD. 
Mucus does not seem to merely form a nonspecific 
physical barrier, but also constrains the immunogenicity 
of gut antigens by delivering tolerogenic signals[13]. 

Dendritic cells, as a part of the innate immune 
response, present antigens to naïve CD4+ helper T-cells 
and ensure tolerance to commensal flora by promoting 
their differentiation into regulatory T-cells. In response 
to over-activation of dendritic cells, there is a production 
of pro-inflammatory cytokines and a promotion of the 
differentiation of effector T-cells Th1, Th2 and Th17 
(CD4+); moreover, over-activation induces a strong 
differentiation of CD8+ lymphocytes and other effector 
cells such as natural killer (NK) and NK T-cells while 
abolishing the production of regulatory cells[14].

Innate and adaptive immunity
Th1 cells, whose differentiation is induced by IL-12, 

produce a high amount of IFN-γ, TNF-α and IL-12, 
whereas Th2 cells release IL-4, IL-5 and IL-13[15]. 
An abnormal Th1 immune response is thought to 
predominate the intestinal inflammation in CD[16]. 
It has also been observed that in Ulcerative Colitis 
(UC), atypical NKT cells release higher amounts of 
the Th2 cytokine IL-13 than T cells from controls or 
CD patients[17,18]. However, recent data suggest that 
the CD-Th1 and UC-Th2 paradigms are not so straight 
forward[19,20].

The differentiation into Th17 cells, a subset of 
helper T-cells, is induced by IL-6 and TGF-β, acting in 
concert, and their expansion is promoted by IL-23. 
There is a delicate balance between Th17 and Treg. 
The absence of IL-6 drives Treg differentiation[21]. 
Mature Th17 cells are characterized by the secretion 
of copious amounts of IL-17A, IL-17F, IL-21, and 
IL-22[22-24]. The involvement of Th17 cells and, in 
particular, their signature cytokine IL-17A in intestinal 
inflammation has been extensively studied[25,26]. Only 
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MP[44-48], calcineurin inhibitors [cyclosporine (CsA), 
tacrolimus (Tac)], effective in the management of 
steroid refractory UC[49-51]; and, finally, the biologic 
therapies (adalimumab, certolizumab pegol, infliximab, 
golimumab, ustekinumab and vedolizumab) that 
interfere with the body's inflammatory response in IBD 
by targeting specific molecular players in the process 
such as cytokines and adhesion molecules[52-54].

Mesalazine
Mechanism of action: Mesalazine [5-aminosalicylic 
acid (5-ASA)], also in the form of the pro-drug 
sulfasalazine, has been used for the treatment of 
UC for decades. It appears to act locally on colonic 
mucosa and reduces inflammation through a variety 
of anti-inflammatory processes (Figure 2). The current 
hypothesis is that 5-ASA activates a synthetic class 
of nuclear receptor. The anti-inflammatory actions 
of 5-ASA produce effects similar to activation of the 
γ-form peroxisome proliferator-activated receptors 
(PPAR-γ). PPAR-γ is a key receptor that mediates the 
effect of 5-ASA therapy in IBD by trans-repressing 
several key target genes such as nuclear factor B, 
signal transducers and activators of transcription: 
modulation of inflammatory cytokine production, 
modulation of RelA/p65 dephosphorylation, leading 
to decreased transcriptional activity of nuclear factor 
(NF)-κB, and reduced synthesis of prostaglandins and 
leukotrienes[55]. Activation of PPAR-γ also has anti-
tumorigenic effects. PPAR-γ has a role in the regulation 
of intestinal inflammation and is highly expressed in 
the colon, where epithelial cells and macrophages are 
the main cellular sources of this nuclear receptor[56]. 
However, additional levels of activity at which the 
mechanism of action of mesalazine becomes apparent 
have been described. These include the inhibition of 
mediators of lipoxygenase and cyclooxygenase, IL-1, 
IL-2 and TNF-α. 5-ASA has also been recognized as a 
potent antioxidant and free-radical scavenger[55,57-61].

Measuring response to aminosalicylates in IBD: 
Heat shock proteins (Hsps) are a family of molecules 
that are typically involved in folding, refolding, 
translocation and degradation of intracellular proteins 
under normal and stress conditions[55,62]. Hsps can 
stimulate innate and adaptive immune responses and 
can also, by virtue of the sequence similarity between 
bacterial and human orthologs, become primary 
targets of autoimmunity due to a phenomenon known 
as molecular mimicry[63]. Thus, Hsps have been 
implicated in the pathogenesis of a number of chronic 
inflammatory and autoimmune diseases. Hsp60 
and Hsp10 (Hsp60 co-chaperonin) are increased in 
the affected intestinal mucosa from patients with 
CD or UC[64]. Hsp60 and Hsp10 are increased in the 
cytoplasm of epithelial cells in CD and UC and also co-
localised to epithelial cells of mucosal glands but not 
always in connective tissue cells of lamina propria, 
where only Hsp60 or, less often, Hsp10 is found[65]. 

when the Th17 cells are exposed to IL-23 they cease 
IL-10 production and attain their full pathogenic 
function[27]. 

TGF-β is produced by Treg cells and suppresses 
T-cell-mediated colitis in animal models[28]. TGF-β 
effects in IBD T cells are inhibited by the protein 
Smad7 and Smad7 is markedly overexpressed in IBD 
patients[29]. Inhibition of Smad7 via antisense DNA 
restored TGF-β sensitivity in IBD T cells has shown 
to be effective in murine models of experimental 
colitis[30,31]. Active IBD is dependent on the recruitment 
of mononuclear cells and leukocyte populations from 
the blood stream into the bowel wall. Recruitment is 
dependent on a series of steps known as rolling, tight 
binding/adhesion to endothelial cells, diapedesis, and 
migration of immune cells. This process is coordinated 
by selective adhesion molecules on the surface of 
immune cells and mucosal addressins on endothelial 
cells[32]. Selective adhesion molecules include cell-
surface integrins that form heterodimers by various 
combinations of α- and β subunits. For gut homing of 
leukocytes, the interaction between α4/β7-integrins 
on T cells and the mucosal vascular addressing cell 
adhesion molecule 1 (MAdCAM-1) addressing on 
endothelial cells appears to be of crucial relevance.

Recent developments have classified NK cells as a 
subset of a new family of hematopoietic effector cells 
called innate lymphoid cells (ILCs). ILCs derive from an 
Id2 (inhibitors of DNA binding) expressing progenitor 
and the key cytokines secreted by ILCs tend to mirror 
those secreted by the T-helper cells of the adaptive 
immune system. Recent data has implicated ILCs, in 
particular group 3 ILCs in the development of IBD (ILCs 
IL-23 dependent with retinoid-related orphan receptor 
were found to be increased in the lamina propria of CD 
patients[33]. 

Based on this very recent knowledge, several of 
these molecules have been investigated as possible 
biomarkers/indicators of the immune response to 
therapies, however the results in sensitivity and 
specificity were moderate and validation was difficult. 
Here starts a review on the most promising ones[34].

PHARMACOTHERAPEUTIC OPTIONS
Besides nutritional and hygienic measures (smoking 
cessation), and the use of antibiotics to control 
symptoms there are several categories of medications 
used in the treatment of IBD: aminosalicylates 
(mesalazine), which are effective in treating mild-
to-moderate episodes of UC and CD, as well as 
preventing relapses and maintaining remission[35-37], 
corticosteroids, recommended only for short-term 
use in order to achieve remission[38-40], thiopurines 
[azathioprine (AZA), mercaptopurine (MP)], effective 
at maintaining of clinical remission in steroid 
dependent IBD[41-43], methotrexate (MTX), positioned 
as an alternative immunosuppressive agent in 
patients with CD resistant or intolerant to AZA or 
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Tomasello et al[66], demonstrated that mucosal Hsp60 
levels in UC patients decrease after therapy with either 
mesalazine alone or mesalazine plus probiotics, with 
the decrease in the latter being more pronounced. 
This same group has demonstrated that Hsp90 levels 
are high in UC mucosa, both in epithelium and lamina 
propria. Treatment with 5-ASA plus probiotics reduces 
Hsp90 levels in the lamina propria, while 5-ASA alone 
does not have any effect. However, Hsp90 levels 
within the epithelium were not affected by any of the 
treatment regimens. In fact, authors have found a 
linear correlation between Hsp90 and CD4 levels in 
lamina propria in both UC patients at diagnosis and 6 
mo after 5-ASA alone therapy[67].

According to these and previously published results, 
it has been proposed that a synthetic Hsp90 inhibitor, 
able to block LPS-induced TLR4 signaling of CD4+ 
cells, could be applicable to treatment of autoimmune 
diseases involving inflammation and activation of 
the adaptive immune response[68]. The latest results 
show that Hsp10 levels in UC mucosa decrease after 
therapy. This decline is similar to what is previously 
described for Hsp60; however, in contrast to Hsp60, 
Hsp10 has been described as an anti-inflammatory 
agent. In conclusion, these results altogether indicate 
that determination of Hsp levels in intestinal mucosa 
as done in this study has a promising potential for 
monitoring response to treatment in UC.

Corticosteroids
Glucocorticoids (GC) are potent inhibitors of T cell 
activation and pro-inflammatory cytokines. However, 
failure to respond to glucocorticoid therapy is a 
risk factor for a progressive course of IBD[69,70]. In 
these patients reduced peripheral T lymphocyte GR 

binding affinity and abnormalities of glucocorticoid 
receptor activator protein (GR-AP)-1 interaction and 
increased expression of GRβ (a truncated splice variant 
of the normal isoform GRα that does not bind to 
glucocorticoid ligands) are observed[71]. 

Mechanism of action: Glucocorticoids mediate 
their anti-inflammatory responses by binding 
the intracellular glucocorticoid receptor (GR), a 
phosphorylated 92-kDa protein, which is a member 
of the nuclear receptor superfamily[72] (Figure 3). The 
unliganded receptor is sequestered in the cytoplasm, 
bound to heatshock proteins Hsp90 and Hsp70 and 
immunophilin FKBP59, a 59-kDa protein. Upon GC 
binding and dissociation from heterocomplex proteins, 
GR translocates into the nucleus; translocation is 
mediated by specific nuclear transport factors that 
belong to the importin β family of nuclear transporters, 
and in particular by importin 13[73]. The activated 
receptor then binds as homodimer to palindromic 
DNA-binding sites, the so-called glucocorticoid 
responsive elements (GREs), localized in the promoter 
region of target genes[74-76]. Although some GC anti-
inflammatory effects are achieved through induction 
of anti-inflammatory genes, such as interleukin 
(IL)-10, annexin 1 and the inhibitor of NF-κB[77,78], 
transactivation enhances mainly the expression of 
genes involved in metabolic processes[79,80], and is 
therefore, responsible for the majority of unwanted 
side effects[81,82]. Indeed, the presence of GR on GRE 
might competitively prevent the binding of activator 
protein (AP)-1 and NF-κB on the same promoter 
regions or might trans-activate their inhibitor proteins. 
Furthermore, GRE-independent mechanisms of trans-
repression also exist: the GR physically interacts with 
AP-1[83], NF-κB[84] and signal transducers and activators 
of transcription[85]. Trans-repression is believed to be 
responsible for the majority of the beneficial, anti-
inflammatory effects of GCs[79,86-88].

Measuring response to corticosteroids in IBD: 
Research in impaired sensitivity to glucocorticoid 
inhibition in IBD has highlighted three potential 
molecular mechanisms: (1) decreased cytoplasmic 
glucocorticoid concentration secondary to increased 
P-glycoprotein-mediated efflux of glucocorticoid 
from target cells due to overexpression of the 
multidrug resistance gene (MDR1)[89-91]; (2) impaired 
glucocorticoid signaling because of dysfunction at 
the level of the glucocorticoid receptor[92,93]; and (3) 
constitutive epithelial activation of pro-inflammatory 
mediators, including NFκB, resulting in inhibition of 
glucocorticoid receptor transcriptional activity[94,95].

The multi-drug resistant (MDR1) gene codes for a 
drug efflux pump P-glycoprotein-170 (permeability-
glycoprotein or Pgp), which is expressed on the 
apical surface of lymphocytes and intestinal epithelial 
cells and actively transports toxins and drugs out of 
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target cells, thereby removing toxic metabolites and 
xenobiotics from cells into urine, bile, and the intestinal 
lumen. This efflux pump also regulates the distribution 
and bioavailability of drugs, and in conclusion reduces 
their efficacy. To date, 15 MDR1 polymorphisms 
have been identified and a polymorphism in exon 
26 (C3435T) of the MDR1 gene has been shown to 
be significantly correlated with levels of expression 
and function of P-gp-170 in healthy individuals. 
Healthy individuals are classified as: homozygous 
(C/C or“resistant” genotype and T/T or “responsive” 
genotype) or heterozygous (C/T). The C/C genotype 
is highly prevalent in West Africans (83%) and African 
Americans (61%) compared with 26% and 34% in 
caucasians and Japanese populations, respectively[90,91].

Pgp and MDR expression have been shown to be 
significantly higher in CD and UC patients requiring 
surgery due to failure of medical therapy[92]. In MDR1 
knockout mice associations between C3435T and 
UC and G2677C/T and IBD have been described. 
Several other associations with SNPs in the TNF 
(tumor necrosis factor) gene and the macrophage MIF 
(migration inhibitory factor) gene and GC dependency 
or sensitivity have also been reported. According to 
these results a protective role for the MDR1 3435 C/C 
versus MDR1 3435 T/T genotype and C versus T allele 
for the progression of IBD is suggested[93-112].

Matrixmetalloproteinases (MMPs) make up a 
family of 24 human zinc-dependent endopeptidases 
and degrade practically all extracellular matrix 
components[102,103]. They are fundamental for tissue 
damage[103] and expressions correlate with the degree 

of inflammation in the gut[104,105]. MMP activity is 
inhibited by tissue inhibitors of MMPs (TIMPs), as well 
as nonspecific inhibitors such as α2-macroglobulin 
(α2M)[106]. TIMPs modulate the activity of soluble, 
matrix-bound, and cell-associated MMPs[106] and 
are upregulated in IBD[107,108]. α2M is a serum anti-
proteinase, capable of almost universally inhibiting 
endoproteinases, and is thought to be the major 
plasma inhibitor of MMPs[106]. Pro-inflammatory 
cytokines, such as TNF-α, increase MMP production[109], 
and production of TNF-α correlates with both MMP 
and TIMP production in IBD[110]. Serum levels of 
MMP-7, -8, and -9, TIMP-1, and α2M, are elevated 
in active IBD. Both, GC and anti-TNF-α therapies 
reduce MMP-7 levels, but only in GC treated patients, 
the levels decline corresponding to levels of control 
patients. Interestingly, no significant changes in 
α2M are associated to GC treated group. MMP-7 
and TIMP-1 seem promising in monitoring the effect 
of GC treatment. GCs inhibit MMP synthesis by 
controlling gene expression as well as by inducing the 
transcription of TIMPs[83]. While MMP-7/TIMP-2 ratio is 
associated with greater severity of UC[86], the decrease 
in MMP-7/TIMP-2 ratio in GC-treated patients is more 
likely a result of decrease in MMP-7 itself as TIMP-2 is 
not affected.

Several investigations have also identified GR 
abnormalities as potential mechanisms influencing 
response to glucocorticoid treatment in several 
inflammatory conditions as: (1) reduced peripheral 
T-lymphocyte GR binding affinity[91]; (2) abnormalities 
of GR-AP-1 binding in glucocorticoid resistant asthma, 

12524 November 28, 2015|Volume 21|Issue 44|WJG|www.wjgnet.com

 

GC

GRa

Hsp complex

CYTOPLASM

NUCLEUS

GR homodimer

IkBa  gene

Transcription

AP-1  gene

Active NFkB
IkBa

IkBa

AP-1

Proinflammatory 
Proteins e.g ., 

TNFa

Figure 3  Glucocorticoids mode of action. AP: Activator protein; GC: Glucocorticoids; GR: Glucocorticoid receptor; TNF: Tumor necrosis factor; NF: Nuclear factor.

Quetglas EG et al . Update on IBS



suggesting a post-receptor mechanism[79]; and (3) 
increased expression of glucocorticoid receptor β (GRβ), 
a truncated splice variant of the normal isoform GRα 
that does not bind glucocorticoid ligands. GRβ is unable 
to transactivate glucocorticoid-responsive genes, and 
has therefore been suggested to act as a dominant-
negative inhibitor of glucocorticoid action[92].

Honda et al[111] reported GRβ mRNA expression 
in 83% of the patients with steroid-resistant UC 
compared to only 9% in steroid-responsive patients, 
and 10% in healthy controls and chronic active CD 
patients. These results were confirmed in a recent 
study from Japan, where the authors looked at 
the frequency of GRα and β positive cells in colonic 
biopsies of GC-sensitive (n = 6) and GC-resistant (n 
= 8) UC patients[112]. They also found that there were 
significantly more GRβ-positive cells in the GC-resistant 
group than in the GC-sensitive and the control groups. 

miRNAs are small (18-24 nucleotides) non-coding 
RNAs, which bind the 3’UTRs (mRNA that immediately 
follows the translation termination codon) and the 
coding exons of their target genes and inhibit gene 
expression. By affecting gene regulation, miRNAs 
are likely to be implicated in the control of diverse 
biological processes Moreover, miRNAs have important 
regulatory roles in the innate and adaptive immune 
system, and characteristic miRNA expression profiles 
have been demonstrated even in IBD[113]. A number 
of studies have shown that GCs can modify the 
expression profile of different miRNAs but to date it 
is not possible to recognize a specific miRNA pattern 
regulated by GCs. It has been demonstrated that 
activation of GR by GCs might induce or repress 
specific miRNAs in various target genes. The majority 
of studies have evaluated the effect of GCs on miRNA 
expression levels in tumor leukemic cells, during 
GC induced apoptosis[114]. Of interest, miRNA could 
target mRNAs encoded by genes involved in the 
importin pathway, or appear like potential regulators 
of components of the inflammasome pathway 
(key signalling platforms that detect pathogenic 
microorganisms and sterile stressors, and that activate 
the highly pro-inflammatory cytokines IL-1β and 
IL-18). Both importins and the inflammasome are 
involved in molecular mechanism of GC signaling: 
importin is a nuclear transport protein responsible 
for the translocation of the complex GR-GC into 
the nucleus[115], and variants of the inflammasome 
gene have been correlated with steroid resistance in 
pediatric IBD patients[116].

Conversely, NF-κB and GRα can mutually repress 
each other’s transcriptional activity. Consequently, 
the debate as to whether inflammation drives 
glucocorticoid resistance or vice versa has refocused 
investigators’ efforts into the critical role played by NF-
κB[93]. Further investigations have shown that while 
the activation of AP-1 and the upstream kinases p38 
and c-Jun N-terminal kinase (JNK) in steroid-sensitive 
patients with CD was mainly found in lamina propria 

macrophages, steroid-resistant patients revealed 
activation of all these mediators mostly in epithelial 
cells[94].

Gene expression profiling can be successfully 
used to stratify patients and identify transcriptional 
signatures associated with clinical parameters. Several 
predictor gene panels containing genes involved in 
immune mechanisms (PTN, OLFM4, LILRA2, CD36), 
autophagy or GC response (STS, MDM2) have 
been identified. This represents, the first biomarker 
discovery [predictor gene panels that contain genes 
involved in immune mechanisms (PTN, OLFM4, 
LILRA2, CD36), autophagy or GC response (STS, 
MDM2)] based on specifically designed analytical 
algorithms with potential value to predict GC response 
and need of surgery as well as with diagnostic value 
for IBD patients[117].

Thiopurines
Mechanism of action: In vitro studies have shown 
that AZA and 6MP exert their effect by controlling T 
cell apoptosis through modulation of Rac1 activation 
upon CD28 co-stimulation(118). Apoptosis induction 
required co-stimulation with CD28 and was mediated 
by specific blockade of Rac1 activation through binding 
of 6-thioguanine nucleotide (6-TGN) to Rac1 instead 
of guanine triphosphate (GTP). Activation of the Rac1 
gene in turn leads to activation of mitogen-activated 
protein kinase (MAP kinase), NF-κB, bcl-x(L)(B cell 
lymphoma) and finally to a mitochondrial pathway of 
apoptosis. Thus AZA and 6MP convert a co-stimulatory 
signal into an apoptotic signal by modulating Rac1 
activity. In Figure 4 the thiopurines biotransformation 
pathway is represented.

Measuring thiopurines derivatives: TPMT enzyme 
activity (measured by radioimmunoassay) is genetically 
determined and has been extensively reviewed[118]. 
In summary, TPMT enzyme activity can identify 
patients with high TPMT activity that metabolize 
6-MP to 6-methyl-MP and therefore may be resistant 
to treatment with thiopurine drugs. It is estimated 
that TPMT deficiency is responsible for up to 30% of 
all adverse drug reactions (ADRs) experienced on 
AZA, but whilst TPMT deficiency strongly predicts the 
development of myelotoxicity, the most serious ADR of 
AZA therapy, it fails to account for over 70% of cases 
of myelotoxicity[119,120]. Another candidate enzyme 
for further study is xanthine oxidase ⁄dehydrogenase 
(XDH)[121,122]. Blocking XDH activity using allopurinol 
(which, as recently described, also inhibits TPMT due to 
skewed drug metabolism)[123] is known to cause severe 
toxicity with conventional doses of AZA and safe co-
prescription of allopurinol requires an AZA dose-
reduction of approximately 80%[124]. A molybdenum 
cofactor[125] is essential for the action of three oxidases, 
XDH, aldehyde oxidase (AO) and sulphite oxidase. 
This molybdenum cofactor requires the action of 
molybdenum cofactor sulfurase (MOCOS). MOCOS 
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deficiency (which results in the deficiencies of both 
XDH and AO, but not sulphite oxidase) is, in contrast, 
relatively benign, causing only a predisposition to 
renal stones (Type Ⅱ Xanthinuria)[126]. AO has been 
considered of minimal clinical significance and so it has 
not been carefully examined until recently.

Monitoring of 6-MP metabolites is a helpful, but 
not an indispensable tool in thiopurine non-responders 
to discriminate poor adherence and under-dosing 
from pharmacogenetic thiopurine resistance and 
thiopurine refractory disease. Several studies have 
reported that patients with IBD treated with AZA or 
6-MP who respond to therapy have higher median 
concentrations of 6-TGN than patients who fail to 
respond to therapy[127-129]. One study in 93 patients 
with IBD reported that the median concentration of 
6-TGN in responding patients was 312 pmol/8 × 108 
RBCs compared with a median concentration of 199 
in patients who failed to respond[129]. There was no 
difference in the median concentrations of 6-MMP 
between the 2 patient groups. The breakpoint between 
the lower two quartiles and the higher two quartiles 
of 6-TGN concentrations was 235 pmol/8 × 108 RBCs. 
Sixty-five percent of responding patients had an 
erythrocyte 6-TGN concentration > 235 as compared 
with only 27% of patients failing therapy. Thus, the 
authors suggested that clinicians should adjust AZA 
or 6MP doses to achieve 6-TGN concentrations > 
235pmol/8 × 108 RBCs. The authors also reported 

that hepatotoxicity (defined as liver enzymes more 
than twice normal) occurred in 16 patients, and that 
the median 6-MMP concentrations were 5463 pmol/8 
× 108 RBC’s in patients with hepatotoxicity compared 
with only 2213 pmol/8 × 108 RBCs in patients without 
hepatotoxicity.

Unfortunately, dose escalation of thiopurines does 
not necessarily result in higher efficacy. Instead of 
increasing 6-TGN concentration, following increasing 
the thiopurine dose, some patients shift their meta­
bolism towards the production of 6-MMP resulting in 
hepatotoxicity[130]. Another approach to bypass the 
influence of TPMT has been by direct administration 
of 6-TGN[131-133]. High concentrations of 6-TGN were 
achieved but the drug had to be stopped because of 
nodular regenerative hyperplasia in the liver[134].

Smith et al[135] have recently published the impact 
of introducing nucleotide monitoring into clinic. They 
obtained 608 TGN results from 189 patients with IBD. 
In non-responders, TGNs directed treatment change 
in 39/53 patients. When treatment was changed as 
directed by TGN, 18/20 (90%) improved vs 7/21 (33%) 
where the treatment decision was not TGN-directed 
(P < 0.001). Where treatment change was directed 
at optimization of thiopurine therapy, 14/20 achieved 
steroid-free remission at 6 mo vs 3/10 where the TGN 
was ignored (P = 0.037). Six per cent of patients were 
non-adherent, 25% under-dosed and 29% over-dosed 
by TGN. Twelve per cent of patients demonstrated 
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preferential thiopurine methylation; this group had 
low TGN levels and high risk of hepatotoxicity. In 
responders, adherence and dosing issues were 
identified and TGN-guided dose-reduction was possible 
without precipitating relapse. Mean cell volume (MCV), 
white blood cell count (WBC) and lymphocyte counts 
were not adequate surrogate markers. MCV/WBC ratio 
correlated with clinical response, but was less useful 
than TGN for guiding clinical decisions.

In a previous study, the same group identified the 
presence of the coding region SNP AOX1 3404G as a 
predictor of non-responsiveness to AZA therapy[136]. The 
authors suggested that those with a poor chance of 
responding to AZA (high TPMT activity and AOX13404G 
variant) should be offered an alternative treatment 
as first-line therapy, which might include reduced 
dose azathioprine in combination with allopurinol, a 
combination which has been shown to circumvent the 
problem of hyper-methylation in some patients[137]. 
In patients with CD, the next immunomodulator 
considered for treatment would usually be MTX. It is 
possible that the same polymorphism AOX1 c.3404A > 
G could also affect an individual’s chance of response 
to MTX, as AO is known to metabolize MTX producing 
a 7-hydroxymetabolite, which is considered inactive. 

Genotype variants, which have a functional impact, 
most commonly decrease the activity of the affected 
enzyme. If this is true for the AOX1 3404G variant, 
then the association with lack of clinical response 
would suggest that AO metabolites of AZA have 
immunosuppressive activity: 8-hydroxy-6MP did not 
slow the growth of rat sarcoma[138]; however, AO 
produces several other AZA metabolites on which 
no functional work has been carried out. Another 
possibility is that AO activity is increased in the 
presence of the AOX1 3404G variant. In this case, it 
is possible that overactive AO removes and inactivates 
a higher proportion of the ingested drug, resulting in 
decreased efficacy; but in this case, one would expect 
carriers of the AOX1 sequence variant to have lower 
TGN levels.

Purinergic signaling and associated ectonucleo­
tidases, such as CD39 and CD73, have been implicated 
in the pathogenesis of IBD. Adenosine generated by 
CD73 and CD39 components might play an important 
role in the resolution of inflammation and in the 
promotion of healing. The anti-inflammatory effects 
of AZA, have been ascribed to induce apoptosis of 
predominantly CD45RO+ memory T cells (within 
CD73+CD4+ T cells)[139].

Methotrexate
Mechanism of action: MTX, like folic acid, is 
a substrate for the enzyme folylpolyglutamate 
synthetase, which adds glutamic acid residues to 
these compounds. Parent MTX, polyglutamated MTX 
metabolites (MTXPG), and another major metabolite, 
7-hydroxymethotrexate (7OH-MTX), are all folic acid 
analogues with inhibitory activity against many of the 

enzymes in the metabolic pathway of folic acid[140]. 
The principal cellular action of MTX, is competitive 
inhibition of the enzyme dihydrofolatereductase 
(DHFR)[141]. The metabolites of MTX have considerable 
importance as inhibitors of the folate-dependent 
enzymes distal to DHFR. MTXPG are preferentially 
retained intracellularly in a non-effluxable form in 
proportion to the length of the polyglutamate chain, 
and they account for more than 50% of intracellular 
drug 24 h after exposure[142]. 7-0H-MTX, which is the 
major circulating variant of MTX 24 h after a dose 
of the drug, undergoes polyglutamation 2.7-fold 
faster than does MTX, and it is also a 4.5-fold more 
potent inhibitor of 5-aminoimidazole-4-carboxamide 
ribotide (AICAR) transformylase, and possibly other 
distal folate-dependent enzymes, than is MTX[143,144]. 
MTX is effective in the treatment of inflammatory 
diseases such as CD in low doses. The question is 
whether inhibition of T cell proliferation is a major 
mechanism of action in low-dose MTX treatment 
and if it is related to inhibition of DHFR or not. Some 
studies suggest that low-dose MTX is indeed able 
to inhibit lymphocyte proliferation through DNA 
synthesis inhibition[145]. However, anti-inflammatory 
properties of MTX were not always found to depend on 
lymphocyte proliferation inhibition. On the other hand, 
overt inhibition of cellular proliferation produced by 
inhibition of DHFR is not a requirement for efficacy but 
rather is a sign of toxicity of low-dose MTX therapy. 
The coadministration of folinic acid or leucovorin (fully 
reduced tetrahydrofolate), which bypasses blockage 
of DHFR, ameliorates many of the side effects of MTX. 
However, if given in excess quantities, it also retards 
the efficacy of the drug[146-148] (Figure 5).

Proliferation of T cells can also be inhibited by 
MTX through its inhibition of cytokines, such as IL-2, 
that promote proliferation. MTX generally inhibits Th1 
cytokines and up-regulates or does not affect Th2 
cytokines[149-151]. TNF-α, in particular, was found to 
be suppressed in both ex vivo stimulated T cells of 
patients with rheumatoid arthritis (RA) treated with 
MTX and in vivo and in vitro experiments in T cells 
and macrophages[152,153]. Also, the number of CD4+ T 
cells that secrete TNF-α was significantly lower in MTX-
treated patients with RA than in untreated patients[154]. 
The inhibitory effect of MTX on TNF-α can be attributed 
to several mechanisms: high levels of adenosine[155]; 
inhibition by MTX of TNF-α promoter activity in 
lymphocytes[154]; inhibition of NF-κB activation, 
indirectly inhibiting subsequent TNF-α transcription[156]. 
IFN-γ, has also been shown to be inhibited by MTX. 

In vivo, MTX enhances IL-10 production. Patients 
with RA treated with MTX showed increased numbers 
of IL-10-producing T cells, and ex vivo stimulated 
monocytes of patients with RA treated with MTX 
showed increased IL-10 production[154]. Interestingly, 
upregulation of IL-10-producing monocytes was 
observed only in patients who responded to therapy. 
In summary, pro-inflammatory cytokines and 
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cytokines that promote proliferation are inhibited by 
MTX, whereas the anti-inflammatory cytokine IL-10 
is upregulated. This may suggest that induction of 
IL-10 by MTX is one of its important anti-inflammatory 
mechanisms[157].

Genetic polymorphisms and treatment response: 
The uptake of MTX into cells is mainly controlled by 
the reduced folate carrier (RFC). A non-conservative 
polymorphism G80A (R27H) has been associated with 
higher plasma concentrations of MTX and a worse 
prognosis (event-free survival estimates) in children 
with acute lymphoblastic leukaemia treated with this 
drug[158].

The folypolyglutamase hydrolase, also known as 
c-glutamyl hydrolase (GGH), converts long-chain 
MTXPG into short-chain MTXPG and ultimately back 
to MTX resulting in higher efflux of the drug. Also, 
in acute lymphoblastic leukaemia patients, several 
polymorphisms in this gene have been identified 
including a putatively functional non-conservative 
SNP C452T (T127I) associated with low enzyme 
activity and higher accumulation of long-chain MTX-PG 
experiencing a better event-free survival[159,160].

Therapy with MTX results in a reduction of the reduced 
folate pool by inhibiting dehydrofolate reductase. Another 
enzyme, the methylenetetrahydrofolate reductase 
(MTHFR) is crucial for folate homeostasis by converting 
5,10-methylene-tetrahydrofolate, the methyl-donor 
in dTMP synthesis, into 5-methyltetrahydrofolate, the 
carbon-donor required for methionine synthesis. Two 
common, non-synonymous polymorphisms in this 
gene have been found to influence MTX toxicity and 
efficacy. The SNP C677T results in a more thermolabile 
variant of the protein and has been associated with 

increased drug toxicity[161]. Interestingly, this SNP 
has also been associated with overall susceptibility 
to IBD in an Irish cohort of patients[162]. The second 
SNP, A1298C, also leads to a reduced activity of the 
MTHFR[163,164] and has been associated with increased 
efficacy in patients with RA[165].

There is also evidence from in vitro experiments 
that impaired folylpolyglutamasesynthase (VMcN1) 
activity may play a crucial role in MTX resistance[166,167].

A small clinical trial in 18 CD patients has de 
monstrated that individual RBC MTXGlu1-5 concen­
trations can be measured accurately and have low 
intra-patient variation at steady state. Unexpectedly, 
the study suggested that RBC MTXGlu4 and 5 
concentrations correlated inversely with efficacy in 
patients with CD. In addition, high RBC MTXGlu4&5 
concentrations were associated with an increased 
incidence of adverse effects. Although the findings 
were statistically significant, the number of subjects 
in this pilot study was small and, therefore, as stated 
by the authors, there is a high possibility of a type I 
statistical error[168].

Calcineurin inhibitors
Mechanism of action: Calcineurin inhibitors exert 
their cellular effects through binding to proteins called 
immunophilins[169]. Cyclophilins (CP) bind CsA and FK-
binding proteins (FKBPs) bind Tac. Cyclophilin A is the 
most abundant cyclophilin in T lymphocytes, and the 
predominant Tac-binding immunophilin is the FKBP12. 
The CPs and FKBPs are structurally unrelated but both 
families have a cis-trans prolyl-peptidyl isomerase 
activity. The binding of CsA or Tac to its respective 
immunophilin enhances the immunophilin's affinity 
to calcineurin. Formation of such a complex results 
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in its binding to and inhibition of calcineurin[170]. In 
the process of T-cell activation calcineurin, which is a 
calmodulin-activated serine phosphatase, associates 
with and dephosphorylates inactive nuclear factor 
of activated T cells (NFAT). This leads to NFAT 
translocation to the nucleus and, in association with 
other transcription factors such as AP-1, initiation of 
downstream events involved in T-cell activation[171-173]. 
Within the members of the NFAT family, NFAT1, 
NFAT2, and NFAT4 participate in T lymphocytes 
cytokines transcriptional activation such as IL-2, IL-4, 
and CD40L[174]. So, in T cells NFAT proteins not only 
regulate activation but also are involved in the control 
of thymocyte development, T-cell differentiation 
and self-tolerance. The functional versatility of NFAT 
proteins is explained by their complex mechanism 
of regulation and their ability to integrate calcium 
signalling with other signalling pathways. The drug-
immunophilin complex forms an inhibitory association 
with calcium-calmodulin-activated calcineurin, pre­
venting its binding and activation of NFAT. CsA also 
inhibits mRNA transcription of IFN-γ by inhibiting NFAT 
translocation into the nucleus (Figure 6). 

CsA and Tac, induce apoptosis of CD4+ T-lympho­
cytes[175]. CsA reduces the number of the anti-apoptotic 
Bcl-2-positive T cells[175]. The apoptotic activity of CsA is 
possibly mediated by the inhibition of cytokine release 
and the subsequent activation of ICE-like proteins (ICE 
is an acronym for IL-1β converting enzyme of caspase 
1), known to play a chief role triggering the apoptotic 
cascade[176].

Apart from the above-mentioned effects on T 
lymphocytes, CsA inhibits antigen presenting cells 
activity and production of the B-lymphocyte activating 
factors[177]; attenuates adhesion interaction and trans-
endothelial migration and infiltration of neutrophils 
by decreasing endothelial expression of cell adhesion 
molecules (E-selectin, intercellular adhesion molecule 
1, and vascular cell adhesion molecule 1) and inhibits 
the anti-apoptotic NF-κB, a central transcription factor 
mediating inflammatory injury[178].

Influence of genetics on pharmacological behavior
Pharmacokinetics: CsA and Tac are among the most 
commonly used immunosuppressants in patients 
with organ transplantation or autoimmune diseases. 
However, both have a narrow therapeutic window and 
large inter-individual variability, resulting in therapeutic 
drug monitoring (TDM), necessary for adjusting the 
dose in order to reduce the toxicity and improve the 
efficacy.

To date, most transplant centers utilize whole-
blood measurements of CsA trough levels as a 
means of TDM. However, it was demonstrated 
that the correlation of “therapeutic” trough levels 
with the actual drug exposure[179,180] or with clinical 
outcomes[181] was relatively poor. The determination 
of total AUC is the most accurate measure of drug 
exposure, and its values possibly correlate to some 

degree with the rate of successful outcomes. However, 
due to the cost and inconvenience of multiple blood 
measurements required for AUC determination, this 
method is impractical. A decade ago, prospective 
studies were underway examining the utility of a single 
measurement of 2-h (C2) CsA level, which showed 
to be associated with renal allograft rejection (blood 
concentrations of CsA during the early post dose 
period had been shown to correlate well with inhibition 
of calcineurin and IL-2 but still was, logistically difficult 
and plagued by a high intra-individual variability)[182,183].

Unlike the case of CsA, the trough levels of Tac 
correlate reasonably well with AUC and are the most 
common measure of Tac treatment monitoring[184]. 
Although TDM is widely recommended in clinical 
practice and has been conducted for approximately 
30 years, this strategy for calcineurin inhibitors 
therapy is controversial according to recent reports[185]. 
In the past decade, the understanding of the phar­
macogenomics of calcineurin inhibitors in trans­
plantation has improved. Polymorphisms of genes 
coding for enzymes and transport proteins involved 
in the metabolism of these compounds have been 
thoroughly studied. CYP3A4 oxidizes CsA at multiple 
positions and is known to convert CsA into three major 
primary metabolites (AM1, AM9 and AM4N). CYP3A5 
preferentially attacks at amino acid 9 and metabolizes 
CsA to only one primary metabolite (AM9). For Tac, 
the intrinsic clearance for CYP3A5 is approximately 
2-fold higher than for CYP3A4. CYP3A5 catalyses the 
formation of four primary metabolites (M1, M2, M3 and 
M6). It is well established that the CYP3A5 A6986G 
(*3) SNP influences the pharmacokinetics of Tac in 
renal recipients[186]. Almost all studies have reported 
that recipients with the CYP3A5*3/*3 genotype (non-
expressers) exhibit higher dose-adjusted Tac exposure 
(C0/dose, C2/dose or AUC/dose), and a lower dose 
requirement compared with the CYP3A5*1/*1 or*1/*3 
carriers (expressers). With respect to CsA and the 
CYP3A5*3SNP, the results from clinical studies have 
not been able to reach a conclusion. ABCB1 (MDR1), 
encoding the transport protein P-glycoprotein, 
which pumps calcineurin inhibitors out of intestinal 
enterocytes, has had several of its SNPs investigated 
in renal transplant patients. The influence of these 
SNPs on the pharmacokinetics of CsA and Tac 
remains uncertain, as CYP3A4 also demonstrates 
inter-individual variation in a metabolic capacity and 
functional SNPs are few in the CYP3A4 gene and most 
studies found no association with pharmacokinetics of 
CsA, and controversial associations with Tac[186,187].

Pharmacodynamics: Enzymatic and immunological 
strategies are the two types of methods which 
can be used to assess the pharmacodynamics of 
these compounds. The former directly determines 
calcineurin activity, while the latter measures immune 
responsiveness at several levels[187,188]. Although 
these strategies are still in a very early stage, and 
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have not been validated in clinical practice, several 
clinical studies have reported associations of NFAT-
regulated genes with biopsy-proven acute rejection 
and recurrent infections in renal recipients, making 
the expression of such genes a promising biomarker 
of pharmacodynamics[189,190]. In fact, functional poly­
morphisms in PPIA (coding for cyclophilin), FKBP1A 
(coding for FKBP12), PPP3CA/PPP3CB/PPP3R1 (coding 
for calcineurin), NFATC1/NFATC2/NFAT5 (coding for 
NFAT) and IL-2 (coding for IL-2) have been explored in 
other diseases[191-195].

Many important metabolic enzymes and transporters 
could also be modulated by orphan nuclear receptors, 
a large family of transcription factors regulating tissue 
gene expression, such as the pregnane X receptor (PXR), 
constitutive androstane receptor, the glucocorticoid 
receptor and more.

In recent years, epigenetics have been incorporated 
to the field of pharmacology referring to drug res­
ponses accounted for by epigenetic changes (DNA 
methylation, modification of histones in chromatin 
and RNA-mediated regulation of gene expression, as, 
miRNAs) instead of alterations in the DNA sequence. 
In contrast to SNPs, epigenetic characteristics can be 
altered by age, influenced by drugs and can interact 
with environments. Current evidence has revealed 

that the expression of CYP3A4 and CYP3A5 could 
be affected by a DNA methyltransferase inhibitor 
and miRNA-27b[196,197]. Besides the direct action on 
enzymes, miRNAs also regulate the expression of 
nuclear receptors, such as PXR[198].

Biologics
Mechanism of action - Anti TNF-α: TNF plays 
a central role as a pro-inflammatory cytokine that 
initiates the defense response to local injury. When 
present at low concentrations, it is believed to have 
beneficial effects, such as the augmentation of host 
defense mechanisms against infections. At high 
concentrations, TNF can lead to excess inflammation 
and organ injury. Both immune (macrophages, T cells, 
granulocytes, etc.) and non-immune cells (fibroblasts, 
neurons, smooth muscle cells) can produce TNF. It is 
initially produced as a cell surface-bound precursor 
(tmTNF), which can be enzymatically cleaved by 
TNF-α converting enzyme to form a soluble cytokine 
(sTNF). Both sTNF and tmTNF are biologically active 
and interact with either of 2 distinct receptors to 
exert their action: the p55 TNF receptor 1 (TNFR1) 
and the p75 TNFR2 that are present on a wide 
range of cell types. sTNF preferably binds to TNFR1 
and generates the pro-inflammatory properties of 
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TNF: Activation of nuclear factor kappa-B1 (NF-
κB1), which will result in the transcription of several 
inflammatory genes and the expression of other pro-
inflammatory cytokines including IL-1 and IL-6 and 
enhancement of leukocyte migration by inducing 
expression of adhesion molecules by endothelial cells 
and leukocytes; caspase-8- and caspase-3-dependent 
apoptosis. tmTNF preferably binds to TNFR2 and 
initiates the immune-regulatory properties of TNF. 
This effect is attributed to the possibility of tmTNF 
serving as a receptor instead of a ligand for TNFR2 and 
inducing reverse signaling through this membrane-
anchored ligand and triggering cell activation, cytokine 
suppression or apoptosis of the tmTNF bearing cell[199].

The four TNF antagonists available in the treatment 
of IBD can be divided into two categories based on 
their structure: the full-length monoclonal antibodies 
(mAbs) and those with only an antibody fragment. 
Infliximab, adalimumab and golimumab are the full-
length IgG1 antibodies and their Fc region is capable of 
complement fixation and Fc-receptor mediated biologic 
activities. Certolizumab pegol lacks this Fc region and is 
therefore not able to perform these effector functions. 
All of these agents have TNF as target and are capable 
of binding sTNF and tmTNF with high affinity. However, 
differences in structure between antagonists cause 
different kinetic-binding parameters that can result 
in variable clinical efficacy. For example, etanercept, 
an anti-TNF approved for rheumatological diseases, 
is able to bind both forms of TNF but is not effective 
in CD, so other mechanisms must be responsible 
for the action of these agents[200]. These compounds 
exert a down-regulation of inflammatory cells in the 
inflamed bowel mucosa that is believed to be induced 
by apoptosis in tmTNF carrying cells. There is also in 
vitro evidence that infliximab induces cell lysis through 
complement-dependent cytotoxicity and antibody-
dependent cellular cytotoxicity, both Fc-dependent[201]. 
One other possible mechanism of action that has been 
shuffled is the induction of regulatory macrophages, 
also an Fc-dependent mechanism. These macrophages 
have immunosuppressive capacities, play a crucial 
role in wound healing and have been shown to be 
up-regulated in patients responding to infliximab 
therapy[202] (Figure 7).

Anti IL12/23: IL-12 is the key inducer of Th1 cells 
while recent studies conducted on human cells suggest 
that a cocktail of cytokines, such as IL-23 and IL-1β, 
are critical for Th17 differentiation. Human Th17 cells 
are thought to produce several pro-inflammatory 
cytokines, including IL-17A and F, TNFα, IL-22, IL-26 
and IFNγ[203]. Similar to IL-12, IL-23 can contribute to 
functional responses of several effector cell subtypes 
other than CD4+ T cells, including CD8+ T cells, 
NK, NKT, γδ T cells, and innate lymphoid cells[204-207]. 
There is increasing evidence of plasticity amongst 
certain Th subtypes, depending upon the cytokine 
microenviroment[208,209].

Ustekinumab is a human IgG1 kappa (κ) mAb that 
binds to the IL-12p40 subunit. This subunit of IL-12 
was also found to associate with a p19 subunit to 
form IL-23[210]. Ustekinumab prevents human IL-12 
and IL-23 from binding to the IL-12Rβ1 receptor 
chain of IL-12 (IL-12Rβ1/β2) and IL-23 (IL-12Rβ1/
IL-23R) receptor complexes on the surface of NK 
and T cells but cannot bind to endogenous IL-12 or 
IL-23 that is already bound to receptor complexes. 
Thus, ustekinumab is unlikely to mediate Fc effector 
functions.

Mechanism of action - Anti-adhesion molecules: 
L-selectins are expressed on leukocytes, and P- and 
E-selectins are found on the endothelium. Although 
strong, these selectin bonds are short-lived and, 
consequently, the T cells roll over the endothelium 
from one selectin bond to the next[211]. This results in 
slowing of the lymphocytes and allows for transient 
interactions which enable the cell to encounter 
the cytokine-rich microenvironment that triggers 
subsequent firm adhesion and consequent migration 
through the blood vessel wall[212,213]. Secondary 
adhesion molecules, all members of the integrin 
family, function to stop the rolling lymphocytes and 
allow migration. Integrins are leucocyte cell-surface 
adhesion molecules that mediate both cell-cell and 
cell-extracellular matrix interactions[214] (Figure 8). The 
expression of integrins is activated by chemokines, 
which are released by T cells[215]. Integrins involved 
in the T-cell migration are as follows: leucocyte 
function-associated antigen 1 (LFA-1 or α2β2) and 
the two α4-integrins (α4β1 and α4β7). For the 
migration of leucocytes, these integrins bind to 
specific ligands at the endothelium called addressins 
or adhesion molecules. The α2β2 integrin, expressed 
on neutrophils, interacts with intercellular adhesion 
molecule-1 (ICAM-1) that is expressed on leucocytes, 
dendritic cells, fibroblasts, epithelial cells and 
endothelial cells[216,217]. The α4β1 integrin is expressed 
on most leucocytes, but not on neutrophils and 
binds to vascular cell adhesion molecule-1 (VCAM-1) 
and to components of the extracellular matrix such 
as fibronectin and thrombospondin[218]. The third 
family is the α4β7 integrin, which is expressed on the 
lymphocytes that colonise the gut and gut-associated 
lymphoid tissues and interacts with the MAdCAM-1 
and this interaction activates the migration of 
lymphocytes to Peyer’s patches[219,220]. Last, the αEβ7 
integrin is another member of the β7 integrin family 
that it is expressed only in mucosal intraepithelial T 
lymphocytes and that binds selectively to E-cadherin 
on epithelial cells[221]. The expression of aEβ7 is 
elevated in UC and CD in the active phase of the 
disease[222,223], and the interaction of aEβ7/E-cadherin 
has been proposed to participate in the retention of 
T cells in the mucosal tissue[224]. Pro-inflammatory 
cytokines such as IL-1 and TNF[225-227] up-regulate 
the expression of ICAM-1 and MAdCAM-1. Treatment 
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with IFX decreases the expression of ICAM-1[228]. 
Increased ICAM-1 expression in CD is present not 
only in the mucosa but also in the submucosa and 
muscular layers[229], which could be implied in the 
transmural nature of CD. Most anti-adhesion molecule 
therapies target the integrin family. The first drug 
developed was natalizumab, a mAb against α4 that 
is not gut-specific. However, its use in patients with 
CD has been limited by the development in some 
patients of progressive multifocal leukoencephalopathy 
(PML), an opportunistic brain infection that is caused 
by reactivation of latent JC polyomavirus. Newer 
monoclonal antibodies targeting the α4β7 integrin 
(vedolizumab, a humanized immunoglobulin G1 
monoclonal antibody to α4β7 integrin, selectively 
blocks gut lymphocyte trafficking without interfering 
with trafficking to the central nervous system)[230,231] 
and β7 subunit of the heterodimeric integrins α4β7 
and αEβ7 (etrolizumab)[232] are now in late clinical 
development.

Evaluation of clinical response: Lack of long 
experience managing these compounds, variability in 
response and the high economic cost which limits its 
use, makes it difficult to find studies which describe 
predictors of response within this therapeutic group. 
Generally, response can be classified in non-genetic 
and genetic predictors.

Anti-TNF-α
Histological changes: The effects of anti-TNF agents 
are mediated by multiple mechanisms including 

direct neutralization of soluble TNF and interaction 
with membrane-bound TNF. Anti-TNF agents act 
by reduction of pro-inflammatory cytokine levels, 
elimination or clearance of active inflammatory 
cells from inflamed tissue which can conceptually 
be achieved by a number of mechanisms including 
apoptosis induction, antibody and complement 
mediated cytotoxicity and inhibition of cell migration 
into the intestinal tissue. Effects of anti-TNF agents 
may vary according to their physical contact with TNF, 
which may also be influenced by structural differences 
in the non-TNF binding domain affecting the ability of 
each drug to interact with the immune system.

The binding avidity of infliximab, adalimumab 
and etanercept to sTNF and mTNF appears to be 
similar[233]. But the bond between the anti-TNF agent 
and TNF may be reversible and as such, the anti-
TNF molecule may actually serve as a TNF reservoir. 
In support of this possibility, the concentrations 
of immunoreactive TNF were shown to rise in the 
circulation following infliximab[234] and adalimumab[235] 

administration in rheumatoid arthritis, probably due 
to drug-TNF complexes. In vitro studies demonstrated 
that the rate of dissociation of etanercept from TNF 
is higher than that of infliximab and that the released 
TNF was bioavailable[236].

Infliximab has been shown to inhibit the production 
of GM-CSF and IFNγ[237] in vitro[238]. Infliximab, 
adalimumab and certolizumab inhibit the production 
of IL-1β from LPS-activated macrophages in CD. Down 
regulation of mucosal chemokine molecules following 
treatment with Infliximab was also shown in vivo for 
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Figure 7  Mode of action of anti- tumor necrosis factor α and anti-IL-12/23. TNF: Tumor necrosis factor; tmTNF: Transmembrane TNF; sTNF: Soluble TNF; 
TRAF/TRADD: TLRs adaptors; JAK: Janus kinase; STAT: Signal transducer and activator of transcription.
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macrophage inflammatory protein (MIP)-1α, RANTES 
[Chemokine (C-C motif) ligand 5 (also CCL5)] and 
monocyte chemotactic protein (MCP)-1[239]. Another 
effect, less explored in CD and whose implications 
deserve further studies, is the change in tissue cellular 
populations following anti-TNF treatment. In one study, 
the population of FoxP3 positive cells was found to be 
reduced in the mucosa of active CD pediatric patients 
and infliximab treatment resulted in an increase on the 
mucosal number of these cells[240].

Ten Hove et al[241] observed apoptosis induction in 
mucosal CD3 positive T cells of CD patients treated 
with infliximab 24 h after drug administration. 
An additional study assessed mucosal biopsies 
from CD patients four weeks after treatment with 
standard infliximab induction doses and detected 
a significant increase in TUNEL-positive mucosal T 
cells[242]. Recently, another study used SPECT applied 
to infliximab-treated CD patients and detected 
positive up take in responders[243]. A similar profile 
of apoptosis induction was demonstrated in vitro for 
adalimumab[244]. However, no apoptosis induction was 
observed in vitro with certolizumab. 

Another mechanism which is relevant for clearance 
of inflammatory cells is cytotoxicity. There is no 
study which definitively defines the relevance of 
these mechanisms in vivo. However, using Jurkat 
cells stably expressing uncleavable mTNF, Mitoma et 
al[246] demonstrated that infliximab and adalimumab 
exerted complement-dependent toxicity (CDC) equally, 
etanercept exerted CDC to a lesser extent and all three 
agents were capable of inducing antibody-dependent 
cell-mediated cytotoxicity (ADCC)[245]. Activation of 
p38 MAPK was demonstrated both in vitro and in vivo 

following exposure to infliximab. Differences between 
anti-TNF agents exist with respect to functional 
implications of reverse signaling. Kirchner et al[247] 
demonstrated that infliximab, but not etanercept 
inhibited LPS-induced cytokine secretion but both 
inhibited endothelial cell apoptotic factor. Similarly, 
infliximab and adalimumab inhibited secretion of IL-10 
and IL-12 induced by LPS from monocytes, whereas 
etanercept did not[241]. In a different study, incubation 
of intestinal T cells derived from CD patients with 
infliximab and etanercept resulted in activation of the 
p38 MAPK pathway by infliximab only, although both 
reduced STAT3 activation[248].

Serological changes: Linked to the GCs chapter, 
anti-TNF-α therapies reduce MMP-7 levels but not to 
the levels of control patients as in GC therapy. α2M 
increase following treatment with infliximab. Anti-
TNF-α therapy seems to induce α2M in serum, possibly 
to control disease activity. Anti-TNF-α therapy does not 
significantly alter serum TNF-α concentrations[249], and 
TNF-α can itself up-regulate MMP-7 expression[250]. 
This may explain why levels of MMP-7 remained 
elevated after anti-TNF-α treatment, compared with 
controls. Although TIMP-1 induction has been linked 
to the response to infliximab in CD in adults[251], 
unexpectedly weak TIMP-1 expression has been 
observed in pediatric IBD[252]. 

CD4+ T cells changes: infliximab appears to block 
up-regulation of CD73 on CD4+ T cells in response to 
TNF, but does not induce apoptosis in cells expressing 
high levels of CD73 ab initio. Doherty et al[243] 
speculated that the resolution of the inflammatory 

12533 November 28, 2015|Volume 21|Issue 44|WJG|www.wjgnet.com

Figure 8  Mechanism of action of anti-adhesion drugs.
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response induced by infliximab in the lamina propria 
results in downstream reduction of the inflammatory 
mediators of CD73 expression.

Imaging changes: Recent progress concerning 
molecular imaging studies in animals and human 
patients implicates that this approach can be used 
to improve detection of mucosal lesions in wide-field 
imaging and for in vivo characterization of the mucosa 
with the ultimate goal of assessing the likelihood of 
response to targeted therapy with biological agents. 
In a recently published study, using confocal laser 
endomicroscopy with a fluorescent antibody in vivo 
demonstrated its potential to predict therapeutic 
response to subsequent biological treatment in human 
patients. As anti-TNF Abs suppress immune responses 
in CD by binding to membrane-bound TNF (mTNF) 
expressing mucosal cells, in vivo detection of such 
cells via fluorescent anti-TNF Abs was used to predict 
therapeutic efficacy in CD patients via molecular 
imaging[253,254].

Genetics and genomics: Genetic non-response to 
Infliximab appears to be stable in time implicating a 
genetic influence [patients homozygous for a TNF-α 
polymorphism (LTA NcoI-TNFc-aa13L-aa26 1-1-1-1 
haplotype)][255]. Previous data have confirmed the 
association of the TNFα-1031C allele with CD and 
polymorphisms at the TNFα locus have been suggested 
as a tool to predict response to Infliximab[256]. 
Halavaty et al[257] reported that polymorphisms 
in FasL/Fas system and caspase-9 influenced the 
response to infliximab in luminal and fistulizing Crohn’
s disease. In this study, Fas ligand-843 TT genotype 
was presented exhibiting the strongest association 
with the lack of response, while concomitant 6-MP/
AZA therapy, however, was able to overcome the 
effect of unfavourable genotypes in luminal disease. 
Another study identified a 100% accurate predictive 
gene signature for (non)response to IFX in CD colitis 
(TNFAIP6, S100A8, IL11, G0S2, and S100A9), 
whereas no such a predictive gene set could be 
identified for CD ileitis[258]. In another interesting study, 
several parameters were investigated to determine 
early response to infliximab in patients with UC[255]. 
Homozygous carriers of IBD risk-increasing IL23R 
variants were more likely to respond to infliximab 
than were homozygous carriers of IBD risk decreasing 
IL23R variants. Similar conclusions were reached by 
Rismo et al[259] who found that high levels of Th17-
defining cytokine IL-17A and Th1-defining cytokine 
IFN-γ can potentially predict a favorable outcome 
of infliximab therapy in patients with UC, whereas 
Th2 and T-reg related cytokines do not seem to be 
useful as predictive markers in relation to therapeutic 
outcome.

Anti IL-12/23 and anti-adhesion therapies
Although recently, IL-20, IL-21 and p40 have been 

proposed as potential biomarkers of treatment 
response to ustekinumab in psoriasis, no data have 
been published related to IBD until now[260].

CONCLUSION
In summary, great advances have been made in 
the last years for a better comprehension of the 
pathogenesis of IBD that undoubtedly will lead us 
to develop more accurate therapies and therapeutic 
strategies. Alterations in recognition and intracellular 
processing of bacterial components with involvement 
of ER stress and apoptotic cell death may have a 
meaningful role in the immunopathogenesis of the 
disease. The weakening of the mucosal defenses 
promoting excessive interactions between commensal 
microbiota and the mucosal immune system leads to 
a loss of tolerance and over-activation of dendritic cells 
starting the production of pro-inflammatory cytokines 
and a promotion of differentiation of effector T cells 
and CD8* lymphocytes. Also active IBD is dependent 
on the recruitment of mononuclear cells and leukocyte 
populations from the blood stream into the bowel wall. 
This recruitment is dependent on a series of steps 
coordinated by selective adhesion molecules on the 
surface of immune cells and mucosal addressins on 
endothelial cells.

SRecent years knowledge in the areas of Immuno­
logy and Genetics has allowed to start using some 
biomarkers to measure the responsiveness of CD 
and UC diseases to certain therapies: mucosal HSP60 
and Hsp10 levels in UC treated with 5-ASA; serum 
MMP-7 in response to GC therapy; role of 6-TGN and 
6-MMP in AZA’s treated patients; inverse correlation 
between red blood cells MTXGlu1-5 and MTX efficacy 
in CD; through levels of Tac and 2-h CsA blood 
concentrations and lately, the likehood of response 
to targeted therapies with biological agents using 
immune cells imaging.

The goal of physicians treating patients with IBD, 
is to have to their disposal a molecular (serum, DNA, 
tissue-based) profile of patients which would allow 
them to choose the most appropriate management 
of the disease: prognosis of the disease outcome, 
most adequate therapy for an individual patient to 
reach success, most adequate therapy from a safety 
perspective, prediction on the intensity of follow-up, 
etc. At the moment, only TPMT testing prior to start of 
thiopurine analogues has shown clinical applicability, 
although it does not replace blood monitoring during 
treatment and some authors even defend the idea 
that the latest can substitute the former. Other genetic 
associations for the different therapeutic classes in 
IBD have not yet shown consistent or robust results 
but in the close future it is anticipated that this 
genetic marker’s determination will be implemented 
in an integrated molecular diagnostic and prognostic 
approach to manage IBD patients.
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