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Abstract

Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease where the heart muscle is 

partially thickened and blood flow is (potentially fatally) obstructed. A test based on 

electrocardiograms (ECG) that record the heart electrical activity can help in early detection of 

HCM patients. This paper presents a cardiovascular-patient classifier we developed to identify 

HCM patients using standard 10-seconds, 12-lead ECG signals. Patients are classified as having 

HCM if the majority of their recorded heartbeats are recognized as characteristic of HCM. Thus, 

the classifier’s underlying task is to recognize individual heartbeats segmented from 12-lead ECG 

signals as HCM beats, where heartbeats from non-HCM cardiovascular patients are used as 

controls. We extracted 504 morphological and temporal features - both commonly used and 

newly-developed ones - from ECG signals for heartbeat classification. To assess classification 

performance, we trained and tested a random forest classifier and a support vector machine 

classifier using 5-fold cross validation. We also compared the performance of these two classifiers 

to that obtained by a logistic regression classifier, and the first two methods performed better than 

logistic regression. The patient-classification precision of random forests and of support vector 

machine classifiers is close to 0.85. Recall (sensitivity) and specificity are approximately 0.90. We 

also conducted feature selection experiments by gradually removing the least informative features; 

the results show that a relatively small subset of 264 highly informative features can achieve 

performance measures comparable to those achieved by using the complete set of features.
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I. Introduction

Hypertrophic cardiomyopathy (HCM) is a genetic cardiovascular disease that may cause 

sudden cardiac death in young people [1]. The most consistent characteristic of HCM is the 

thickening (hypertrophy) of the muscle (myocardium) at the lower left chamber of the heart 

(left ventricle). Fig. 1 provides the illustration of two hearts, where the left one is normal 

while the one on the right shows the thickened muscle typical of hypertrophic 

cardiomyopathy. An imaging method, two-dimensional echocardiography, is often used to 

identify left ventricular hypertrophy (LVH). However, this method cannot reliably identify 

HCM patients when the thickening of the left ventricular muscle is not clearly detectable. 

Moreover, early prediction of the disease in patients not yet showing muscle thickening is 

not possible through echocardiography [2]. Therefore, the analysis of electro-cardiogram 

(ECG) signals in patients with a family history of HCM and no clear muscle thickening has 

high diagnostic value for early detection and prediction. In a recent study we have also 

shown that the standard procedure of conducting ECG tests should be considered in mass 

pre-participation screening of young athletes [3].

Classifiers that automatically identify cardiovascular disease in patients may help reduce 

both cost and time of the pre-screening process. Historically, the main focus of ECG-

classification research has been on identifying arrhythmia in cardiovascular patients. 

Arrhythmia is a condition where the heart beats too quickly, too slowly or in an irregular 

pattern. Early research has been concerned with using heartbeat classification to detect life 

threatening types of arrhythmia such as ventricular tachycardia (fast heart rhythm that 

originates in one of the ventricles of the heart) and ventricular fibrillation (uncontrolled 

quivering of the ventricular muscle) [4]–[6]. More recent research has expanded this idea to 

categorizing heartbeats along all categories of arrhythmia [7]–[9]. Traditional machine 

learning methods such as artificial neural networks [9], support vector machines [8], random 

forests [10], and linear discriminants [11] have been used to detect arrhythmia. Random 

forests and support vector machines have been shown to perform well with accuracy greater 

than 95%.

As mentioned earlier, left ventricular hypertrophy is the most common indicator of the 

presence of HCM in cardiovascular patients. Several criteria, derived from, amplitude values 

of ECG waveforms have been proposed to detect cardiovascular patients with left 

ventricular hypertrophy (LVH) based on ECG signals. Many studies have been conducted to 

validate these LVH-detection criteria, which have generally achieved high specificity 

(approximately 100%) [12]–[14]. However sensitivity has been reported to be low 

(approximately 50%) across different studies [15]. Multiple linear regression and rule-based 

methods have also been used to detect cardiovascular patients with LVH [16], [17]. Corrado 

and McKenna have proposed a set of amplitude-thresholds for specifically detecting HCM 

patients [18]. Potter et al. have tested these thresholds on a small group of 56 HCM patients 

Rahman et al. Page 2

IEEE Trans Nanobioscience. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and 56 healthy control subjects [19]. The reported sensitivity and specificity from this study 

was approximately 90%. However, we are not aware of any previous work that employs 

machine learning methods for identifying HCM patients from ECG signals. Moreover, the 

number of HCM patients used in our classification experiment is 221, which is much higher 

than other previous work on HCM detection.

In this study, we aim to develop a classifier that can distinguish between ECG signals from 

HCM patients and those from non-HCM controls. Such a classifier will facilitate automated 

detection of HCM from ECG signals. However, we note that the classifier is not expected to 

replace extensive cardiovascular diagnosis. Rather, it is intended as an initial screening 

method that will hopefully detect patients that may have HCM. The automatically detected 

patients will be referred for further cardiovascular tests and be examined by expert 

cardiologists.

In order to develop a classifier for automated detection of patients with HCM, we have 

segmented ECG signals into individual heartbeats, extracted features from each heartbeat 

and then classified these heartbeats by applying machine learning methods. We assigned a 

patient to the HCM class if the number of heartbeats classified as HCM is equal to or greater 

than the number of heartbeats classified as control. For our classification experiments, we 

have extracted features that have been previously used, as well as some new morphological 

features (amplitude values of ECG waves) from ECG signals. We have applied random 

forests and support vector machines classifiers to distinguish between heartbeats from HCM 

and those from non-HCM patients. Using 5-fold and 10-fold cross validation for training 

and testing, we achieve high performance levels as measured in terms of precision, recall 

(sensitivity), specificity and F-measure. For comparison, we also applied logistic regression 

as a baseline classifier. We use feature selection to reduce the number of features required to 

achieve the same performance level as that obtained by using the complete set of features.

The rest of the paper is organized as follows: Section II describes the ECG dataset obtained 

from HCM patients and from control subjects, which is used in our classification 

experiments. In Section III, we discuss feature extraction, feature selection, and 

classification methods, as well as related tools. All classification results are presented in 

Section IV. We discuss and analyze the results and present directions for future work in 

Section V.

II. Data

The ECG dataset used in this study comprises standard 10-second, 12-lead ECG signals 

from two groups of cardiovascular patients. The first group consists of 221 hypertrophic 

cardiomyopathy (HCM) patients. Each HCM patient has one or more ECG recordings in the 

dataset. The total number of ECG signals in the HCM patients’ dataset is 754. In the second 

group there are 541 subjects, all of which were diagnosed with ischemic or non-ischemic 

cardiomyopathy, and had implantable cardioverter defibrillator (ICD) installed for primary 

prevention of sudden cardiac death. As none of the ICD patients was diagnosed with HCM, 

their ECG data is used as the control in the experiments described here. While there may be 

cases in which a set of healthy controls would be preferable (e.g., pre-screening for HCM 

Rahman et al. Page 3

IEEE Trans Nanobioscience. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



among young athletes), we have chosen the ICD patients’ ECG dataset as the control 

because most of the patients referred for ECG tests in a hospital do not usually have a 

normal cardiac diagnosis; accordingly distinguishing HCM patients from other 

cardiovascular patients is a realistic, essential task. That said, we expect the methods used in 

this study to be applicable in other scenarios of distinguishing HCM patients from another 

group. Each patient in our control dataset has exactly one ECG recording, resulting in a total 

of 541 ECG signals the control set.

We segmented each ECG signal into individual heartbeats using the freely available 

ECGPUWAVE tool [20]. A heartbeat is a single cycle in which the heart’s chambers relax 

and contract to pump blood, where each heartbeat comprises multiple waveforms. The ECG 

waves are created by the electrical signal that passes through the heart chambers (atria and 

ventricles). Fig. 2 shows a typical heartbeat and its waves: P, Q, R, S, T and U. It also shows 

inter-wave segments and intervals. While identifying each heartbeat, ECGPUWAVE detects 

the onset and offset points of the P-wave and the QRS-complex. It also identifies the offset 

point of the T-wave and the peak of the QRS-complex.

The segmentation of ECG signals was conducted on signals from each of the 12 leads. We 

then identified the heartbeats that are simultaneously detected on all 12-leads. Each of these 

heartbeats was classified using machine learning methods as described in Section III-B. The 

summary of the dataset is presented in Table I.

III. Methods and Tools

After segmenting the 12-lead ECG signals into individual heartbeats, we extracted features 

from each heartbeat and represented it as a feature vector for classification. We also applied 

feature selection to identify highly informative features, and repeated the classification 

experiments using the selected features. We compared the results obtained from the different 

classification experiments and assessed the statistical significance of the observed 

differences. Finally, we identified HCM patients, by classifying each subject based on 

his/her respective number of heartbeats classified as HCM. The methods and tools used are 

discussed next.

A. Feature Extraction

As described in Section II, we utilized the ECGPUWAVE tool to detect individual 

waveforms from heartbeats of HCM and ICD patients. We utilized the onset and offset 

points of various waveforms detected by the tool for extracting temporal and morphological 

features from each heartbeat. The peak of the QRS-complex was used to measure the length 

of intervals between the R-waves of consecutive heartbeats. The temporal features and the 

morphological features extracted from the QRS complex and the T-wave have been used in 

the literature for heartbeat classification in a different context, namely, automatic detection 

of arrhythmia in cardiovascular patients [11], [21]. In the current study, we add 

morphological features of the P-wave that have not been used before. The complete list of 

features is shown in Table II. To represent each heartbeat, we extract all 42 features from 

each of the 12 leads, resulting in a total of 504 features.
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B. Heartbeat Classification and HCM Patient Detection

As a first step to automatically detect HCM patients from 12-lead ECG signals, we 

developed a classifier whose task was to assign each instance (heartbeat) into one of two 

possible classes: HCM or control. As noted before, in this study heartbeats from ICD 

patients serve as controls. We applied two standard classification methods: random forests 

[22] and support vector machine (SVM) [23]. We have chosen these two methods because 

they have been previously used and were reported to perform well when classifying 

heartbeats for arrhythmia detection [8], [10]. For comparison, we also conducted experiment 

using a logistic regression classifier [24], which is often employed in biomedicine for 

classification tasks [25]–[27].

Random forests form an ensemble classifier based on a collection of decision trees, learned 

from multiple random samples taken from the training set. Decision tree classifiers are 

constructed using the information content of each attribute; thus the decision-tree learning 

algorithms first select the most informative attributes for classification. Random samples 

from the training dataset are selected uniformly, with replacement, such that the total size of 

each random sample is the same as the size of the whole training set. To classify a new 

instance, each decision tree is applied to the instance, and the final classification decision is 

made by taking a majority vote over all the decision trees. We applied the standard random 

forests classification package in WEKA [28], using 500 trees in the random forests 

implementation. The number of features selected at random at each tree-node was set to 

, where n is the total number of features. We chose this number because in our 

classification experiments we found it to perform well compared to several alternatives 

proposed in the literature (e.g. log2 n,  [22], [29], [30]).

The second classification method, support vector machines (SVM), is primarily a binary 

linear classifier. A hyperplane is learnt from the training dataset in the feature-space to 

separate the training instances for classification. The hyperplane is constructed such that the 

margin, i.e., the distance between the hyperplane and the data points nearest to it is 

maximized. If the training instances are not linearly separable, these can be mapped into 

high dimensional space to find a suitable separating hyperplane. In our experiments, we used 

the WEKA libsvm [31], employing the Gaussian radial basis function kernel.

Another classification method we used for comparison is logistic regression. Given a 

training dataset D consisting of instances X⃗1, X⃗2, …, X⃗m where each is represented as a 

feature vector , a linear combination of the input features for X⃗j is 

defined as: . The conditional probabilities of the binary class variable, C 

over the values {H C M, Control} given the instance X⃗j are calculated as:
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where  is known as the logistic function. The training dataset D is used to 

estimate the values of the parameter vector W⃗ =< w0, w1, …, wn > such that the conditional 

data likelihood is maximized. The conditional data likelihood is the conditional probability 

of the observed heartbeat-classes in the training dataset given their corresponding feature 

vector. Thus, W⃗ is estimated such that the following condition is satisfied:

An instance, X⃗j is assigned the class label C = Control if , and C = H C M 

otherwise.

We used the logistic package in WEKA for implementing the logistic regression classifier 

that estimates the parameter vector, W⃗ following the estimation method proposed by Cessie 

and Houwelingen [24].

In our classification experiment, we represented each heartbeat as a 504-dimensional vector 

of features where 42 features were extracted from each of 12-leads as described in Section 

III.A. We used the stratified 5-fold cross-validation procedure for training and testing.

Although we are classifying here individual heartbeats, recall that the goal of this study is to 

classify patients into two groups: HCM vs. control. Hence, we partitioned both HCM 

patients and control patients into 5 equal sized groups. Heartbeats from one group of HCM 

patients and from one group of control patients were included in the test set and the other 

four groups were used for training. We repeated the process 5 times such that each heartbeat 

from a HCM patient or from a control subject is tested exactly once. We also applied 10-fold 

cross validation in the same manner to verify the stability of the classification performance.

After classifying all heartbeats from a subject, we classified that subject as a HCM patient 

based on the number of heartbeats classified as HCM. If the number of heartbeats classified 

as HCM is equal to or higher than that of heartbeats that have been classified as control, the 

subject is classified as a HCM patient.

To evaluate the performance of both the heartbeat and the patient classification, we have 

used several standard measures, namely, precision, recall (sensitivity), and specificity. These 

measures are defined below, where true positives (TP) and true negatives (TN) are correctly 

classified HCM and control heartbeats (or patients), respectively; False positives (FP) 

denote control heartbeats (or patients) that are misclassified as HCM; HCM heartbeats (or 

patients) incorrectly classified as control are false negatives (FN);
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In addition to these three measures, we also calculate the F-measure, which is the harmonic 

mean of precision and recall, defined as:

We compared the performance measures obtained by random forests, SVM and logistic 

regression, where the paired t-test was used to assess the statistical significance of the 

differences along each performance measure [32].

C. Feature Selection

We initially used all 504 features to classify heartbeats as HCM or control beats. Building 

classifiers from a large feature set can possibly lead to overfitting; moreover, including 

features that carry only negligible information about the heartbeat-class may incur 

unnecessary extra training time. To address these issues, we performed feature selection to 

reduce the number of features.

To select features that have high predictive value, we utilized the well-known Information 

Gain criterion [33]. For each feature, the information gain measures how much information 

is gained about the heartbeat-class when the value of the feature is obtained. It is calculated 

as the difference between the unconditional entropy associated with the heartbeat-class and 

the conditional entropy of the heartbeat-class given the value of a feature. These measures 

are formally defined as follows: Let C = {H C M, Control} be the set of heartbeat-classes 

and VF be the value of the feature F. The maximum likelihood estimate for the probability of 

a heartbeat to be recorded from a HCM patient, Pr (C = H C M), is calculated as:

while the same estimate for a Control heartbeat is calculated as:

Similarly, we define the conditional probability of the heartbeat-class to be HCM (or 

Control), given the value of feature F, as: Pr(C = U|VF = xi, 1 ≤ i ≤ k) where U is either 

HCM or Control and xi is one of k possible values of F. The conditional probabilities are 

estimated from the observed proportions; e.g., the probability of the heartbeat-class to be 

HCM given that the value of feature F is xi, Pr(C = H C M|VF = xi), is estimated as:

For a heartbeat-class variable, C, the entropy H(C) is defined as:
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The conditional entropy associated with C given that the value of the feature F is xi is 

defined as:

Based on this definition, the conditional entropy associated with C given a feature F is 

calculated as:

The information gain associated with a feature F, I G (C, VF), is thus formally defined as:

The above formal definition of information gain is based on the assumption that the features 

are discrete. As all features in our study are continuous, they first must be discretized. We 

calculated the information gain using the feature selection package in WEKA, which first 

discretizes continuous features following Fayyad and Irani’s algorithm [34].

After calculating the information gain for each feature, we removed the 20 least-informative 

features and repeated the 5-fold cross validation experiment. We continued conducting this 

procedure by gradually removing 20 features at a time until we observed decline in 

performance. Notably, only the training dataset is used for information gain calculation and 

feature selection. Once the reduced feature set has been determined, the test set is 

represented based on the selected features.

IV. Results and Discussion

As explained in Section III.B, the first step in our experiment toward identifying HCM 

patients was to classify individual heartbeats such that each heartbeat is assigned to one of 

the two classes: HCM or control. We applied random forests and support vector machine 

using the complete set of 504 features for heartbeat classification. As noted earlier, we also 

used logistic regression for comparison. Table III shows the results from the 5-fold cross 

validation experiments using all three classifiers. Both random forests and SVM performed 

better than logistic regression. Differences in precision and specificity between logistic 

regression and the other two classifiers are statistically significant (p<0.05). Therefore we do 

not use logistic regression further in the rest of our experiments, namely, patient 

classification and feature selection. For both random forests and SVM classifiers, precision 

(0.94) and F-measure (0.91) are the same. The small differences in recall and specificity for 

these two classifiers are not statistically significant (p>0.35). We also conducted 10-fold 

cross validation experiments using the complete feature set and the results are shown in 
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Table IV. All four performance measures are exactly the same for both 5-fold and 10-fold 

cross-validation. Hence we apply 5-fold cross validation for training and testing random 

forests and SVM classifiers using the reduced set of features as described below.

To investigate how the four performance measures change when the number of features is 

reduced, we first calculated information gain for each feature. The highest information gain 

was 0.67 and the lowest was 0.001. Fig. 3 shows a histogram of the information gain 

distribution across features, where the x-axis shows the information gain values and the y-

axis shows the number of features associated with each information gain. As values on the 

x-axis are rounded to 2 decimal points, an information gain of less than 0.01 is shown as 

zero (the leftmost column on the graph). We observe that more than 300 features (four 

columns from the left) are associated with a negligible information gain (less than 0.04). We 

expect that removing some of these features will not lead to significant reduction in the 

classification performance. Therefore, as described in Section III.C, we gradually removed 

the least-informative features, 20 at a time, and repeated the heartbeat classification 

experiment using both random forests and SVM. The change in performance in terms of all 

four measures using random forests for classification is shown in Fig. 4. All four 

performance measures fluctuate slightly as we continue removing features until the number 

of features reaches 264. After that, the performance steadily declines as additional features 

are removed. All four measures, obtained when using 264 features in our representation, are 

exactly the same as those obtained when using the complete set of 504 features. We have 

also plotted the performance measures for SVM while removing 20 features at a time, as 

shown in Fig. 5. The performance remains almost the same when gradually reducing the 

number of features from 504 to 404. Beyond that, the performance declines steadily as we 

remove additional features.

The next step in identifying HCM patients was to classify each subject as belonging to one 

of two classes: HCM or non-HCM. If the percentage of heartbeats classified as HCM was 

50% or more, the subject was classified as an HCM patient. Table V shows results of patient 

classification, where the heartbeats used in the classification were represented based on all 

504 features. Random forests and SVM perform almost the same and the marginal 

difference in performance measures is not statistically significant (p>0.85)

As 264 features for the random forests classifier and 404 features for the SVM classifier 

performed the same as the complete feature set when classifying individual heartbeats, we 

used the respective reduced feature sets to identify HCM patients based on the number of 

heartbeats categorized as HCM. Patient classification results are presented in Table VI, 

where heartbeats were represented using 264 features for random forests and 404 features 

for SVM. The paired t-tests show no statistically-significant performance-difference 

between SVM and random forests for classifying patients, when the reduced feature-sets are 

used for heartbeat classification (p>0.58).

The classification results described above show that we were able to achieve high 

performance level while identifying HCM patients from 12-lead ECG data by classifying 

individual heartbeats using a set of 504 features. We also demonstrate that reduced feature-

sets, obtained by gradually removing the least informative features, performs equally well. 
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The statistical tests applied show that the difference in performance obtained by random 

forests and by support vector machines is not statistically significant.

V. Conclusion

We have classified individual heartbeats from standard 10-second, 12-lead ECG signals to 

identify hypertrophic cardiomyopathy (HCM) patients. We have used ECG signals from 

HCM patients and from non-HCM controls to train and test heartbeat classifiers by applying 

random forests and support vector machines. A comprehensive set of 504 features extracted 

from ECG signals was used for heartbeat representation and classification. A subject was 

identified as a HCM patient if the majority of heartbeats for the patient were classified as 

HCM. The four performance measures from the patient classification experiment using 

random forests are: precision 0.84, recall 0.89, specificity 0.93 and F-measure 0.86; similar 

performance measures were obtained by using SVM, as confirmed by the paired t-test. For 

comparison, we have also applied the logistic regression method to classify heartbeats, 

which showed a diminished level of performance compared to both random forests and 

SVM. We have used the information-gain criterion for selecting highly informative features 

to represent the heartbeats in the training and in the test set. For random forests, performance 

measures using 264 selected features were similar to the measures obtained using the 

complete set of 504 features. For SVM, this was true for a set of 404 informative features.

This work is the first study of its kind, setting out to automatically identify HCM patients 

from 12-lead ECG signals by classifying heartbeats using machine-learning methods. We 

have shown that it is possible to attain high performance using random forests or SVMs. We 

also showed that the information-gain criterion can be effectively used to choose a reduced 

set of temporal and morphological features that retain a similar level of performance. While 

in this study we have classified patients simply based on the percentage of individual 

heartbeats classified as HCM, in future research we shall focus on analyzing and modeling 

the sequence of heartbeats using advanced machine learning methods.
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Fig. 1. 
Illustrations of a normal heart (left) and a heart with hypertrophic cardiomyopathy (HCM). 

The heart walls (muscle) are much thicker (hypertrophied) in the HCM heart [35].
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Fig. 2. 
A typical heartbeat comprising P, Q, R, S, T, U waveforms and inter-wave segments and 

intervals [36].
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Fig. 3. 
Histogram of the information gain distribution across 504 features.
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Fig. 4. 
Performance measures from heartbeat classification using random forests while gradually 

removing 20 features at a time.
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Fig. 5. 
Performance measures from heartbeat classification using SVM while gradually removing 

20 features at a time.
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TABLE I

Summary of the ECG Dataset Used in This Study. Each HCM Patient Has One or More ECG Signals, 

Whereas Each of the Controls Has Only One Signal in the Dataset.

Type of patient Number of patients Total number of ECG recordings Total number of Heartbeats

HCM 221 754 6488

ICD (Control) 541 541 4442
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TABLE II

Complete List of the 42 Features Extracted From Each of the 12-Lead ECG Signals for Classifying 

Heartbeats. (The Total Number of Features is 42×12=504)

Group Feature Definition Number of features

Temporal (based on length of 
intervals)

Pre-RR interval The interval between the current heartbeat and the 
previous heartbeat

6

Post-RR interval The interval between the current heartbeat and the 
following heartbeat

Average RR-interval The mean of the RR intervals of a recording and the 
it is used as the same for all the heartbeats in a 
recording

P-wave duration The interval between the P-wave onset and offset

QRS interval The interval between the QRS onset and offset

T-wave duration The interval between QRS-offset and T-wave offset

Morphological (based on 
amplitude values)

QRS morphology 10 uniformly sampled amplitude values between 
the QRS onset and the QRS offset.

36

Maximum and minimum of original sampled 
amplitude values in the QRS complex.

P and T wave morphology 10 uniformly sampled amplitude values between 
the wave onset and the wave offset.

The maximum and the minimum of the original 
sampled amplitude values in the P and T wave.
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TABLE III

Heartbeat Classification Results Using All 504 Features (5-Fold Cross Validation). Standard Deviation Is 

Shown in Parentheses.

Classifier Precision Recall (Sensitivity) Specificity F-measure

RF (all features) 0.94 (0.02) 0.87 (0.03) 0.92 (0.02) 0.91 (0.03)

SVM (all features) 0.94 (0.03) 0.88 (0.03) 0.91 (0.03) 0.91 (0.02)

Logistic Regression (all features) 0.90 (0.02) 0.85 (0.02) 0.86 (0.02) 0.87 (0.02)
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TABLE IV

Heartbeat Classification Results Using All 504 Features (10-Fold Cross Validation). Standard Deviation Is 

Shown in Parentheses.

Classifier Precision Recall (Sensitivity) Specificity F-measure

RF (all features) 0.94 (0.02) 0.87 (0.02) 0.92 (0.03) 0.91 (0.02)

SVM (all features) 0.94 (0.03) 0.88 (0.02) 0.91 (0.03) 0.91 (0.02)
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TABLE V

Results From the Patient Classification Experiment, Where Heartbeats Were Classified Using the Complete 

Set of 504 Features. Standard Deviation Is Shown in Parentheses

Classifier Precision Recall (Sensitivity) Specificity F-measure

RF (all features) 0.84 (0.05) 0.89 (0.04) 0.93 (0.02) 0.86 (0.04)

SVM (all features) 0.83 (0.05) 0.90 (0.03) 0.92 (0.03) 0.87 (0.03)
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TABLE VI

Results From the Patient Classification Experiment Where Heartbeats Were Classified Using Reduced Sets of 

264 (RF) and 404 (SVM) Features. Standard Deviation Is Shown in Parentheses.

Classifier Precisian Recall (Sensitivity) Specificity F-measure

RF (264 features) 0.84 (0.05) 0.89 (0.04) 0.93 (0.03) 0.86 (0.04)

SVM (404 features) 0.82 (0.05) 0.89 (0.03) 0.92 (0.03) 0.85 (0.03)
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