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Abstract: Epstein-Barr Virus (EBV), the first human virus related to oncogenesis, was initially identified in a Burkitt 
lymphoma cell line in 1964. EBV infects over 90% of the world’s population. Most infected people maintain an as-
ymptomatic but persistent EBV infection lifelong. However, in some individuals, EBV infection has been involved in 
the development of cancer and autoimmune disease. Nowadays, oncogenic potential of EBV has been intensively 
studied in a wide range of human neoplasms, including Hodgkin’s lymphoma (HL), non-Hodgkin’s lymphoma (NHL), 
nasopharyngeal carcinoma (NPC), gastric carcinoma (GC), etc. EBV encodes a series of viral protein and miRNAs, 
promoting its persistent infection and the transformation of EBV-infected cells. Although the exact role of EBV in the 
oncogenesis remains to be clarified, novel diagnostic and targeted therapeutic approaches are encouraging for the 
management of EBV-related malignancies. This review mainly focuses on the experimental and clinical advances of 
EBV-associated lymphoproliferative disorders.
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Introduction

Epstein et al. firstly discerned Epstein-Barr 
Virus (EBV) in a cell line establishes from a 
Burkitt lymphoma biopsy by electron microsco-
py in 1964 [1]. EBV was recognized as the first 
virus to be directly implicated in carcinogene-
sis. In vitro, EBV can promiscuously infect nor-
mal resting B-lymphocytes and almost always 
transform them into proliferating blasts, exhib-
iting B-lymphotropic nature [2].

EBV (also called human herpesvirus-4) is an 
enveloped virus, containing a DNA core sur-
rounded by a nucleocapsid and a tegument. Its 
linear, double-stranded DNA genome of EBV 
encodes approximately 100 genes [3]. Although 
herpes viruses are ubiquitous in nature, 
humans serve as the only natural host for EBV. 
EBV-1 and EBV-2 (two subtypes of EBV) are dif-
ferent in geographic distributions and the orga-
nization of the genes encoding EBV nuclear 
antigen (EBNA) [4]. EBV-1 is more prevalent in 
most populations and is more efficient in trans-
forming infected-B cells [5]. However, EBV-2 is 

detected frequently in New Guinea, equatorial 
Africa, and Alaska [6, 7].

Primary infection with EBV typically occurs in 
childhood and is generally asymptotic. While in 
adolescence or adulthood, it is associated with 
a self-limiting infectious mononucleosis syn-
drome in approximately one third of the cases 
[8, 9], manifested by fever, pharyngitis, malaise 
and atypical lymphocytosis [10]. Upon primary 
infection, most individuals remain a life-long 
carrier of the virus without serious sequelae 
[11]. However, a small population will develop 
neoplasms, including solid tumors and hemato-
logic malignancies [12-14]. This article is to 
review the current understanding on the role of 
EBV in the EBV-associated lymphoproliferative 
disorder from the view of pathogenesis, progno-
sis, and therapeutic approaches.

EBV infection 

EBV is transmitted from host to host by saliva 
and oral contact in most cases with rare cases 
of transmission by transfusion [15]. It is gener-
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ally hold that EBV infects and replicates within 
oropharyngeal epithelium in primary infection. 
This is followed by the infection of circulating B 
lymphocytes [16]. It is assumed that the periph-
eral EBV-infected memory B cells can return to 
Waldeyer’s ring, undergo reactivation and pro-
duce infectious virus to be shed into saliva. In 
healthy individuals, both humoral and cellular 
immune responses are evoked by primary 
infection of EBV. Antibodies (e.g. IgG, IgM, IgA) 
against EBV viral capsid antigen or early anti-
gen neutralize the viruses [17, 18], and EBV-
specific cytotoxic T lymphocytes (CTLs) destroy 
most infected cells expressing viral proteins 
[19-21]. In infectious mononucleosis, almost 
half of the CD8 (+) cells in the peripheral blood 
are EBV-specific CTLs [22]. However immune 
system can’t eliminate the virus completely. 
EBV eventually enters memory B cells and 
infects nearly 1 in 10,000 to 100,000 memory 
B cells [23, 24]. In this condition, EBV is non-
pathogenic and invisible to the immune system 
of the host.

In latent infection, the EBV genome is main-
tained as a multicopy circular episome in the 
host cell or by integrating the viral DNA into the 
host genome, the expression of EBV genome is 
restricted in order to escape the immune sur-
veillance of the host [25, 26]. According to the 
patterns of expression of EBV genome, latency 
has been classified into three types (type III 
latency, type II latency, and type III latency) [27, 
28].

EBV infected naïve B cells in the lymphoid tis-
sue of Waldeyer’s ring, which express the full 
spectrum of latent gene products, show type III 
latency (growth program). The products include 
6 EBV nuclear antigens (EBNA1, 2, 3A, 3B, 3C, 
and LP), 3 latent membrane proteins (LMP1, 
2A, and 2B), EBV-encoded RNAs (EBERs) [29, 
30]. EBV activates B cells to become proliferat-
ing blasts through by the growth program. The 
naïve infected B cells enter the germinal center 
(GC) where they proliferate and clonally expand. 
The germinal center infected cells exhibit type II 
latency (default program), which characterized 
by a restricted EBV gene expression pattern 
(limited to EBNA1, LMP1, LMP 2A and 2B, and 
EBERs) [31]. Through the process of the germi-
nal center reaction, these infected GC cells dif-
ferentiate into memory B cells to exit from the 
cell cycle and enter the peripheral circulation. 
The EBV-infected memory B cells in periphery 

expressing only EBERs, so they rarely detected 
by the immune system. However, some of them 
that express EBNA-1 protein divide occasional-
ly to maintain the long-term reservoir of EBV, 
which is referred to type III latency [28, 32]. 

The exact mechanism that EBV pushes newly 
infected B cells into long-lived memory B cells 
is poorly understood when compared with the 
biology of normal B cell. The Latent protein and 
genes of EBV may provide part or most of the 
signals required for the transition from the EBV-
infected lymphoblast to a memory B cell, while 
the rescue signals for the immune-activated B 
cell blast mainly depend on antigen and anti-
gen-specific helper T cells (Ths) [33, 34]. It is a 
continuum from a naïve B cell to either a mem-
ory cell or plasma cell. Disruption of the normal 
process by transforming events may cause a 
clonal expansion and the differentiation block-
age of cells resulting in the development of lym-
phoid malignancies [35].

In the infection cycle, EBV risks the attack by 
the immune system of host until it finds the 
excellent shelter in resting memory B cells. In 
growth program, the lymphoblastoid cells that 
fail to differentiate out of the cell cycle will be 
destroyed by the immune response [33]. In 
addition, the germinal or memory B cells may 
be directly infected incidentally owing to the 
high viral load in infectious mononucleosis [36, 
37]. These bystander infected B cells, which fail 
to quit the cell cycle and expand rapidly, will be 
destroyed by the EBV-specific CTLs [38]. 
However, the blast cells may develop into lym-
phomas under aberrant immune surveillance.

Lauri, L. et al. found that the promoter for 
immediate-early BZLF1 gene (the gene that 
begins viral replication) becomes active only 
after memory cells differentiate into plasma 
cells [39]. The differentiation of B cells into 
plasma cells in tonsil may provide the signal for 
the lytic cycle. It is suggested that the EBV-
infected peripheral B cells constitute a func-
tional reservoir which can differentiate into 
plasma cells, complete the viral cycle and 
secrete viral particles [40].

EBV-associated lymphoproliferative disorders

The initial link between EBV and lymphoprolif-
erative disorders begins with the study of 
Burkitt lymphoma [1]. The capacity of EBV to 
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immortalize B-lymphocytes in vitro and turn 
them into lymphoblastoid cell lines was soon 
demonstrated. Subsequently, EBV was proven 
to be the causative agent in most infectious 
mononucleosis [41]. Now, EBV infection has 
been an area of active research in Hodgkin’s 
lymphoma (HL), non-Hodgkin’s lymphoma 
(NHL), and immunodeficiency-related lymphop-
roliferative disorders. The classification system 
of EBV-associated lymphoproliferative disor-
ders is comprehensive and ever-changing, con-
taining not only clinical characteristics but also 
the features of morphology, immunology, cyto-
genetics, and molecular genetics [27].

Hodgkin’s lymphoma (HL)

Hodgkin’s lymphoma is a distinct disorder 
accounting for 30% of lymphoid malignancies 
worldwide. It is marked by the presence of neo-
plastic cells called the Reed-Sternberg (HRS) in 
the inflammatory milieu [42]. The following evi-
dence implies the association between EBV 
and HL. In 1971, Levine et al. reported the ele-
vated antibodies titers to EBV antigens in 
Hodgkin lymphoma patients [43]. Moreover, it 
was also observed that individuals with a past 
history of infectious mononucleosis are more 
susceptible to HL [44]. In 1987, EBV DNA was 
detected in lymphoid tissues of Hodgkin’s lym-
phoma with southern blot hybridization [45]. 
Subsequently, the presence of EBV DNA in HRS 
cells was confirmed by situ hybridization and 
single-cell PCR [46, 47].

Different subtypes of HL vary greatly in the EBV 
presence. EBV positivity in lymphoma tissue is 
detected in ~70% of mixed cellularity (MC) sub-
type, > 95% of lymphocyte-depleted (LD) sub-
type, and 10-40% of nodular sclerosis (NS) sub-
type; the lymphocyte-predominant (LP) subtype 
is almost always EBV negative [48]. The inci-
dence of EBV in HL also has geographic varia-
tions. Percentage of EBV incidence observed in 
HL patients of developed countries is 
30%~50%, whereas the percentage is nearly 
100% in children of developing countries [49-
53]. Moreover, the association of EBV with 
Hodgkin’s lymphoma seems to be stronger in 
pediatric and older cases compared with young 
adults [54-56], which may to be partly related 
to the less developed and senescent immune 
system respectively. 

It is still controversial with regard to the origin 
of HL. Although T-cell origin is postulated in rare 

cases of HL, hypermutation of immunoglobulin 
gene in HRS cells is highly consistent with GC B 
cells. Moreover, type II latency of EBV in HL sup-
ports the GC B origin of HL. Molecular analysis 
demonstrates that HRS cells often carry non-
sense or crippling mutations in the variable 
region of immunoglobulin genes [57]. 
Unexpectedly, some unknown survival signals 
rescued such cells which should be eliminated 
by the programmed cell death (apoptosis) in 
germinal center under normal circumstances 
[58].

HRS cells exhibit type II latency (expressing 
LMP1, LMP2A and 2B, EBNA1, and EBERs) pro-
vides some clues for the oncogenic potential of 
EBV in the transforming events of HL which 
remains poorly understood. LMP-1 has been 
postulated to act as a constitutively active 
CD40 receptor by self-aggregation and oligo-
merization, resembling the cellular growth sig-
nal that normally results from the binding of 
CD40 ligand [59, 60]. Several oncogenic signal-
ing pathways have been implicated in the func-
tion of LMP-1, such as nuclear factor-κB (NF-
κB), C-Jun NH2-terminal kinase (C-Junk), p38 
mitogen-activated protein kinase (P38MAPK), 
and Janus kinase/signal transducers and acti-
vators of transcription (JAK/STAT) [61-64]. 
LMP-1 also protects the EBV-infected cells from 
apoptosis by increasing the expression of Bcl-2 
and A20 [65, 66]. LMP2A has been reported to 
mimic the presence of BCR in transgenic mice 
[67]. What’s more, EBV BCRF1 protein exhibits 
homology to human IL-10, which is essential for 
the suppression of host immune system [68]. 
However, the exact role of EBV in the develop-
ment of HL remains poorly understood.

B-cell non-Hodgkin’s lymphoma

Owing to the preferential infection of B- 
lymphocytes, EBV is predominantly implicated 
in hematologic malignancies of B-cell type. The 
EBV-associated B-cell non-Hodgkin’s lympho-
mas reviewed below include Burkitt lymphoma 
(BL), EBV-positive diffused large B cell lympho-
ma (DLBCL) and so on.

Burkitt lymphoma (BL) is a particularly aggres-
sive B-cell lymphoma with enhanced cell prolif-
eration and rapid tumor progression [69]. 
According to distinct clinical and epidemiologic 
features, BL is categorized into three variants: 
endemic BL (eBL), sporadic BL (sBL), and HIV 
associated BL. EBV has been detected in > 



EBV-associated lymphoproliferative disorders

14659 Int J Clin Exp Med 2015;8(9):14656-14671

90% cases of eBL (affecting children in equato-
rial Africa and New Guinea), but only 15%-20% 
in sBL (affecting children and young adults 
worldwide) and 30%-40% in the HIV-related 
BLs [70-72]. Almost all the three subtypes 
exhibit c-myc translocation, such as t(8;14)
(q24;q32) and its variants [71, 73], which has 
become a hallmark of BL [74]. The contribution 
of EBV and c-myc translocation to BL is far 
more complicated. 

Most EBV positive BL cases exhibit a restrictive 
pattern of EBV-genome (EBERs and EBNA-1), 
which is referred to latency I as seen in memory 
B cells of healthy carrier [32, 71]. However, it is 
generally hold that BL is a tumor of GC B cell 
origin, considering that the phenotype of the BL 
cells is highly consistent with the GC cells [75, 
76]. Takada, K. et al. believed that EBV contrib-
uted to the malignant phenotype of Akata BL 
cell line [76]. The experimental formation of 
aggressive lymphomas in cotton-top marmo-
sets and owl monkeys also implicated the 
oncogenic potential of EBV [1]. Nevertheless, 
EBV was regarded as a passenger for BL rather 
than the initiating factor by some doubters, 
considering the variable EBV association in the 
3 subtypes. 

In addition, EBV is necessary yet not sufficient 
to cause eBL. With regard to the co-infection of 
EBV and Pf-malaria in eBL etiology, there are 
two prevailing theories. One assumes that 
B-cell expansion and EBV reactivation induced 
by Pf-malaria increases the number of latently 
infected B-cells and the possibility of c-myc 
translocation [77-81]. The other theory argues 
that EBV-specific T-cell immunity is impaired 
during Pf-malaria co-infection, leading to the 
escape of EBV-infected B cells (including those 
with cmy-translocation) [82-85]. The exact 
oncogenic mechanism behind the co-infection 
remains to be elucidated.

Diffuse large B-cell lymphoma (DLBCL) is the 
most common lymphoid neoplasm worldwide, 
accounting for 30% to 40% of all non-Hodgkin’s 
lymphoma (NHL) [86]. It has been revealed that 
DLBCL is a group of aggressive lymphomas 
with great heterogeneity in morphologic, molec-
ular genetic, and clinical features [87]. Germinal 
center B cell-like (GCB) and activated B cell-like 
(ABC) are the two subsets of DLBCL according 
to the cell-of origin model. EBV is usually pres-
ent in post-transplant DLBCL and HIV-

associated DLBCL in the setting of immune 
impairment. Lymphomatoid granulomatosis 
(LYG), plasmablastic lymphoma (PBL), primary 
effusion lymphoma (PEL) and DLBCL associat-
ed with chronic inflammation, are frequently 
seen in immunosuppressive patients and 
exhibit type III latency of EBV. However, in immu-
nocompetent hosts, EBV-infection is only asso-
ciated with DLBCL in about 10% of cases [88]. 
Depending on different immune status of EBV-
positive DLBCL cases, EBV infection exhibits 
type II or III latency. The number of EBER posi-
tivity may range from 10% to almost all tumor 
cells of DLBCL. Increasing evidence suggests 
that DLBCL occurring in perhaps immunose-
nescence of aging are more frequently associ-
ated with EBV [86, 88]. Immunosenescence 
may rely on multiple factors, such as thymic 
atrophy, decrease of B-cell diversity, accumula-
tion of anergic memory cells, reduction of T 
cells cause by persistent infection.

In the 2008 WHO classification, EBV-positive 
DLBCL of the elderly is defined as an EBV-
positive monoclonal large B-cell lymphoprolif-
erative disorder arising in immunocompetent 
patients > 50 years [89]. The incidence of EBV-
positive DLBCL of the elderly among DLBCL in 
Asian or Latin American countries ranges from 
8 to 15% [75, 90-92], whereas it is only < 5% in 
Western populations [93, 94]. 

There are no uniform cutoffs for EBER positivity 
used by investigators worldwide [90, 95, 96]. 
Most EBV-positive DLBCL of the elderly patients 
have an activated B-cell (ABC) immunopheno-
type with predominant activation of NF-κB path-
way [97]. Increasing studies have observed 
that this provisional entity has an aggressive 
clinical course manifested by poorer response 
to chemotherapy and worse outcome com-
pared with the age-matched DLBCL without 
EBV infection, independent of the International 
prognostic Index [75, 90, 98].

EBV-positive DLBCL have also been reported in 
individuals younger than 50 years old without 
apparent immunodeficiency [90, 91, 94, 99]. 
What’s more, Melina Cohen et al. reported the 
association of EBV in pediatric DLBCL patients 
of Argentina [100]. These reports suggest that 
EBV-positive DLBCL is an entity that is not 
restricted to patients who are older than 50 
years of age. However, many doubters believe 
that these younger patients should be excluded 
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because they may have an underlying or unde-
tected immunodeficiency.

EBV positivity was associated with a worse 
prognosis of DLBCL in many reports [75, 90, 
91]. No uniformed strategies have been 
achieved for the EBV-positive DLBCL besides 
the standard therapy for DLBCL (rituximab-con-
taining regimens). More studies are needed to 
evaluate the effect of rituximab on EBV-positive 
DLBCL. The novel approaches, such as EBV-
specific adoptive immunotherapy, application 
of novel antiviral dugs, oncogenic-pathway tar-
geted and miRNA-targeted agents, may be 
promising in the future [101-103].

T/NK-cell non-Hodgkin’s lymphoma

EBV can infect peripheral blood T cells as well 
as NK cell in a few patients with infectious 
mononucleosis [104]. Since the EBV associa-
tion with T-cell proliferation was first described 
in patient with chronic EBV infections [105], 
several T/NK-cell non-Hodgkin’s lymphomas 
have been linked to EBV, although the role of 
EBV in these disorders is largely unknown.

Angioimmunoblastic T-cell lymphoma (AILT) is 
one of the most common subtypes of periph-
eral T-cell lymphoma (PTCL), which is manifest-
ed by generalized lymphadenopathy, hepato-
splenomegaly, anaemia and hyper gamma-
globulinaemia [106]. The lymph node histology 
shows the partial effacement of the lymph 
node architecture by a polymorphic infiltrate of 
lymphocyte, transformed lymphoid blasts, vas-
cular proliferation and follicular dendric cells 
(FDCs) [106]. EBV genome has been detected 
in > 95% of AITL lymph nodes by southern blot 
and PCR [107, 108]. Most notably EBV pres-
ence is detected virtually in B cells, whereas 
rarely seen in T cells of AILT [109], suggesting 
that EBV infection may be secondary to onco-
genesis or that the EBV genome has been lost 
from the malignant cell [25]. 

There is an assumption that an underlying 
immunodeficiency with reduced cytotoxic activ-
ity contributes to the outgrowth of EBV-infected 
cells. The function studies of the T cells recov-
ered from lymph nodes and peripheral blood of 
AITL patients indicated an underlying immuno-
deficiency. This was manifested by a reduction 
of the absolute number of circulating T cells, 
inversion of the CD4⁄CD8 ratio, high percent-

ages of activated T cells (CD8+⁄HLA-DR+), 
defective T-cell response in vitro to the phyto-
haemagglutinin (PHA) mitogen and minimal 
enhanced in vitro suppressor functions [110]. 
AILT-associated immunodeficiency caused by 
chemotherapy may also facilitate the EBV-
infected B cells to proliferate and transform 
[111]. However the cytotoxic phenotype of the 
tumor cells, characterized by T cell intracellular 
antigen 1 (TIA-1) and granzyme B, provides a 
hypothesis that EBV-association T cell lympho-
mas may derived from the proliferating of cyto-
toxic T cells trying to kill the EBV-infected cells 
[31].

The latency pattern for EBV in AITL has not 
been determined although some have assumed 
a restricted latency II program evidenced by the 
expression of LMP1 and the EBERs of B cells in 
some AITL cases [71]. The EBV-positive B cells 
may play a role in maintaining the malignant 
T-cell process [112]. In Yang’s report, EBERs 
increased the expression of IL-9 and conse-
quently promoted T-cell proliferation and trans-
formation [113]. 

Extranodal nasal NK/T-cell lymphoma is a rare 
tumor with a distinctive ethnic and geographi-
cal distribution, which accounts for 7% to 10% 
of all NHL cases in Asia and Latin America, but 
only 1% of that in Caucasians [114-116]. The 
nasal region is the most frequent site of involve-
ment but the tumor may also invade other 
extranodal sites such as skin, kidney, gastroin-
testinal tract, and the orbit [117, 118]. The 
genotypic and phenotypic features of nasal 
NK/T-cell lymphoma include the expression of 
the NK cell marker CD56 and an absence of 
T-cell antigens and T-cell receptor gene rear-
rangement [119]. This tumor is almost always 
associated with EBV which may be directly 
involved in lymphomagenesis [120, 121]. 
However, the role of EBV in nasal NK/T-cell lym-
phoma is yet to be clearly defined. 

The expression of the latent EBV proteins 
LMP1, EBNA1, and EBER has been detected in 
the lymphoma cells, which pertains to type II 
latency of EBV [122]. LMP1 is supposed to 
increase the sensitivity of the infected NK cell 
to the growth-promoting effects IL-2 [123]. The 
high level of circulating plasma EBV DNA has 
been correlated with high tumor load, extensive 
disease, poorer response to treatment, and 
inferior survival [124-126]. EBV-targeted thera-
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py may be promising considering its constant 
presence in nasal NK/T-cell lymphoma that 
remains incurable in spite of the multi-agent 
chemotherapy and radiotherapy.

Post-transplant lymphoproliferative disorder 
(PTLD) 

Post-transplant lymphoproliferative disorder 
(PTLD) is a heterogeneous collection of lym-
phatic and plasmacytic proliferations affecting 
individuals with therapeutic immunosuppres-
sion after organ transplants [127]. PTLDs con-
tain polyclonal early lesion, polymorphic PTLD, 
monomorphic B-cell PTLD, monomorphic T-cell 
PTLD, and classical Hodgkin lymphoma-type 
PTLD [128]. The incidence of PTLDs may rely on 
multiple factors, such as the transplant types, 
the age of patients, the EBV status of the trans-
plant recipient and donor, intensity of immuno-
suppression, concurrent cytomegalovirus [129, 
130].

Although the real pathogenic process of PTLD 
remains unclear. Notably, EBV has been linked 
to PTLD with a presence of 70%-100% in PTLD 
cases. EBV positivity is nearly 100% in early 
PTLD (within a year after transplantation) and 
PTLD-related Hodgkin lymphoma, and about 
34-80% in late PTLD (usually 5 years post 
transplantation) [25, 131]. Most EBV positive B 
cells in PTLD exhibit type III latency with a wide 
expression of the latent EBV-encoded proteins, 
indicting an important role of EBV for the devel-
opment of PTLD [129]. The mechanism by 
which EBV contributed to oncogenesis of PTLD 
is presumed to be similar with that in HL con-
sidering half of PTLD cases are derived from GC 
B cells [132, 133]. LMP1 and LMP2A may 
resemble the survival signaling normally pro-
duced by CD40 and activated BCR to prevent 
the apoptosis of infected GC without functional 
BCR, leading to the proliferation of neoplastic 
cells [134, 135]. In addition, therapeutic immu-
nosuppression may also facilitate the primary 
infection or reactivation of EBV followed by the 
expansion of B cell with a selective growth 
advantage. 

PTLD prophylaxis, including prevention and 
treatment of EBV reactivation, have shown effi-
cacy to reduce the incidence of PTLD in several 
observations [136, 137]. Although many thera-
peutic strategies have been reported, such as 
EBV-specific targeted approaches, appropriate 

immunosuppression reduction (IR) and combi-
nation of rituximab with chemotherapy [138, 
139]. More experimental and clinical studies 
are in a dire need.

HIV-related lymphoproliferative disorders 

HIV-associated lymphoproliferative disorders 
(LPDs) represent a heterogeneous group of dis-
eases arising in the setting of HIV-associated 
immunosuppression, most of which are highly 
aggressive and of a B-cell origin [140]. One 
recent epidemiologic study found that NHL 
comprises 53% of all AIDS defining cancers 
[141]. HIV-related lymphomas contain (1) sub-
types that can also occur in general population 
(e.g. such as HL, BL, DLBCL and PTCL) and (2) 
subtypes occurring almost exclusively in the 
presence of HIV infection, such as primary effu-
sion lymphoma (PEL), plasmablastic lymphoma 
(PBL) of the oral cavity. There are many sup-
posed risk factors for HIV-related lymphomas, 
such as immunosuppression, cytokine deregu-
lation, chronic antigen stimulation, opportunis-
tic infections with oncogenic virus such as EBV 
and HHV8 [140, 142].

It is reported that EBV has been detected in up 
to 60% of all HIV-related lymphomas, and that 
including nearly 100% of primary CNS lympho-
mas, 80% of DLBCL with immunoblastic fea-
tures, 30% to 50% of BLs, 60% of PBLs, 70% of 
PELs, and nearly 100% of HLs arising in the set-
ting of HIV infection [143-145]. The latent types 
of EBV infection in HIV-related lymphomas gen-
erally depend on the histologic subtype of lym-
phoma. We will focus on the subtypes arising 
more specifically in HIV-positive patients. 

Primary central nervous system lymphoma 
(PCNSL) is virtually a subtype of DLBCL that is 
much more common in HIV-infected individuals 
[145]. PCNSL arises in 0.5% of patients with 
AIDS, accounting for 20% to 25% of all HIV-
related lymphomas [140, 146, 147]. EBV can 
be detected almost in all cases of AIDS-related 
central nervous system lymphomas [30], which 
exhibit type III latency. A few studies have 
reported the presence of EBV in the cerebrospi-
nal fluid (CSF) of HIV-positive patients with a 
CNS lesion infers a diagnosis of lymphoma 
[148, 149]. 

Primary effusion lymphoma is a rare tumor 
affecting body cavities without a detectable 
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tumor mass [150]. The immunoglobulin gene 
rearrangements and somatic hypermutations 
of the neoplasm cells support the post-GC 
B-cell origin [151, 152]. Dual infection with 
HHV-8 (also called Kaposi’s sarcoma associat-
ed herpes virus) and EBV (also called HHV-4) 
has been detected in up to 70% of the PEL 
cases [143, 153]. The expression of EBV latent 
encoded proteins in PELs is restricted to 
EBNA1, LMP1, LMP2A, and EBERs, which 
referred to type II latency [143, 154]. The pre-
vailing assumption is that EBV may act as a 
cofactor in the initiating events (because it can 
immortalize and transform B cells in vitro) 
whereas HHV-8 may be the driving force for the 
tumor [151, 155]. The real role of EBV in PEL 
remains indeterminate.

Plasmablastic lymphoma (PBL) is a rare tumor 
predominantly seen in the in the oral cavity of 
HIV-positive patients [156-158]. EBV has been 
detected in approximately 60% of the PBL 
cases regardless of the HIV status, whereas 
EBV genome expression is restricted to the 
EBERs [144, 145]. The potential role for EBV in 
the pathogenesis of PBL remains a mystery to 
be unrevealed.

Therapeutic strategies

Although increasing evidence has demonstrat-
ed the potential role of EBV in EBV-associated 
lymphoproliferative disorders (LPDs), no unified 
targeted therapeutic strategies have been 
established. At present, novel therapeutic 
approaches with promising results have been 
widely investigated. 

Antivirals in clinical use are mainly broad-spec-
trum anti-herpes virus and anticytomegalovirus 
agents with variable anti-EBV effect, such as 
acyclovir, ganciclovir, and valaciclovir. However 
EBV is not in lytic phase and viral thymidine 
kinase enzyme (required for the antiviral reac-
tion) is not expressed in most EBV-associated 
lymphoid disorders, resulting in the declined 
anti-EBV activity. The combination of induction 
of EBV lytic phase with subsequent exposure to 
anti-herpes virus drugs has shed new light for a 
better therapy. The proposed lytic phase induc-
ers include DNA methylase transferase inhibi-
tors, histone deacetylase inhibitors, protea-
some inhibitors, B-cell receptor-blocking anti-
bodies, chemotherapeutic drugs, and cellular 
miRNAs [101, 102, 159, 160]. Combinations 

with optimal antiviral and anti-tumor effects 
remain to be determined.

Adoptive immunotherapy has been reported by 
Walter et al. in the control of cytomegalovirus of 
bone marrow transplant recipients [161]. 
Similar strategy has been intensively studied in 
the management of EBV-associated LPDs. EBV-
specific CTLs recovered from a donor can be 
infused directly into the patient or expanded in 
vitro and then infused to reestablish immuno-
competence, which is a time-consuming, costly 
and labor-intensive process [162]. EBV-specific 
CTLs can recognize and eliminate the EBV-
infected tumor cells, which seems to be feasi-
ble for the EBV-associated LPDs expressing 
more latent proteins. It has been reported that 
EBV-specific CTLs was administrated in the 
management of EBV-associated LPDs; such as 
EBV-associated PTLD, EBV-associated HL and 
EBV-positive DLBCL [163, 164]. However, the 
clinical experience of the EBV-specific adoptive 
immunotherapy remains deficient and the ther-
apy response remain undetermined. What’s 
more, there are many potential risks for patients 
infused with the EBV-specific CTLs, such as the 
graft-versus-host disease (GVHD) and tumor 
resistance caused by the mutations of EBV.

Monoclonal antibodies have provided promis-
ing outcome in the targeted therapy of EBV-
associated LPDs [165, 166], such as rituximab 
(anti-CD20 monoclonal antibody) which has 
been used in a variety of CD20-expressing lym-
phomas [167-169]. A response rate of 69% 
(mostly complete responses) has been report-
ed in a group of transplant recipients [170]. 
More data is needed on the use of rituximab-
based regimens. Brentuximab Vedotin, an anti-
body-drug conjugate (ADC) directed to the pro-
tein CD30, is under further clinical trial as well 
[171, 172]. More monoclonal antibodies speci-
fied for the tumor cells are anticipated.

Approaches targeting oncogenic pathways 
have been intensively studied based on the 
aberrant oncogenic signaling detected in EBV-
associated LPDs. EBV latent proteins can also 
interact with or exhibit homology to many anti-
apoptotic molecules, cytokines, and signal 
transducers, promoting EBV infection, immor-
talization, and transformation [25]. Bortezomib 
(a proteasome inhibitor) has been found to 
induce apoptosis of EBV lymphoblastoid cell 
lines by inhibiting NF-κB pathway [173]. Some 
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experiments show that inhibition of the LMP1/
LMP2A-activated PI3K/Akt signaling can also 
reduce the activity of NF-κB pathway [174]. In 
addition, EBV-associated LPDs have been lined 
to a number of EBV miRNAs which can modu-
late oncogenic or tumor suppressor pathways 
(e.g. p53, c-MYC, RAS) [175], which provide 
rationale for the miRNA-targeted therapeutic 
approaches. EBV was the first virus where miR-
NAs were detected. It has been reported that 
EBV-infected cells can shed viral miRNAs to 
non-infected cells by exosomes. There are two 
main clusters including BART (mRNAs BamHI-A 
rightward transcript) and BHRF1 mRNAs 
(BamH1 fragment H rightward open reading 
frame 1) [175, 176], many of which have been 
involved in lymphomagenesis by interact with 
viral and cellular genes. For example, EBV-miR-
BART5 prevents apoptosis of transformed cells 
by degrading p53-up-regulated modulator of 
apoptosis (PUMA) [177]. EBV-miR-BART9 and 
BART17-5p can down-regulate the expression 
of BCL6, eventually activating NF-κB pathway 
[178]. EBV-miR-BHRF1 is crucial for efficient 
B-cell transformation [179, 180]. EBV miRNAs 
may become valuable biomarkers and thera-
peutic targets in the future.

Conclusion

EBV has been implicated in a wide range of 
human tumors. The current understanding has 
revealed the role of EBV in the initiation, accel-
eration or maintenance of EBV-associated lym-
phoproliferative disorders. The mechanisms, by 
which EBV maintains its latent infection and 
contributes to the lymphoid malignancies, 
remain to be elucidated. Although the therapy 
for EBV-associated lymphoproliferative disor-
ders is largely nascent, considerable novel 
approaches have been reported to be promis-
ing. These approaches include application of 
new antivirals, adoptive immunotherapy, thera-
py targeting oncogenic miRNA or signaling path-
way. Further experimental and clinical data is 
needed to improve therapeutic strategies for 
EBV-associated lymphoproliferative disorders. 
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