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Abstract

High-energy photon detectors are often made thick in order to improve their photon-detection 

efficiency. To avoid issues of parallax and increased signal variance that result from random 

interaction depth, we must determine the 3D interaction position in the imaging detector. With this 

goal in mind, we examine a method of calibrating response statistics of a thick-detector gamma 

camera to produce a maximum- likelihood estimate of 3D interaction position. We parameterize 

the mean detector response as a function of 3D position and estimate the parameters by 

maximizing their likelihood given prior knowledge of the pathlength distribution and a complete 

list of camera signals for an ensemble of gamma-ray interactions. Demonstrating this calibration 

method with simulated gamma-camera data, we show that the resulting calibration is accurate and 

can be used to produce unbiased estimates of 3D interaction position.

I. Introduction

DETECTORS used for high-energy photon detection are often made thick in order to improve 

their photon-detection efficiency. Use of a thick detector material, in turn, motivates our 

need to estimate depth of interaction (DOI) for each gamma ray. If we estimate only the 2D 

position of interaction in a gamma camera, ambiguity in DOI may result in a loss of detector 

and/or image resolution [1]. Random DOI can cause increased signal variance, which in turn 

can degrade the 2D resolution of a gamma camera. Additionally, DOI ambiguity for 

obliquely incident gamma rays causes parallax, which can subsequently limit image 

resolution. Random DOI can also degrade coincidence-timing resolution for a time-of-flight 

PET system [2]. For many clinical gamma cameras with moderately thick scintillators (<10 
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mm), signal-variance and parallax issues are mitigated by choice of camera geometry and 

optical properties. However, to avoid these issues in general for a thicker gamma-ray 

detector, we must estimate the 3D coordinates of interaction.

A variety of statistical methods for estimating DOI in a thick monolithic detector have been 

suggested [1, 3-5]. To make efficient use of information contained by the camera signals g = 

{gm, m = 1…M}, we determine the 3D interaction position R = {x, y, z} by maximum 

likelihood (ML) estimation [1, 6]:

(1)

Here, the operator argmax maximizes its operand with respect to the indicated parameter, 

and the caret denotes a parameter estimate. The operand pr(g ∣ R, E) is a probability model 

of g given R and energy E. However, interpreted as a function of the parameters R and/or E 

for given g, pr(g ∣ R, E) is called a likelihood function. In this paper, we assume E to be 

known and we estimate just R. An equivalent and often more convenient method of finding 

an ML estimate is to maximize the log likelihood ln[pr(g ∣ R, E)].

To generate this ML estimate, we need a model for pr(g ∣ R, E), and we must calibrate 

representative statistics of this model as a function of R for given E. Experimentally, we 

hold R and E fixed and measure g for an ensemble of gamma rays. Lateral interaction 

position and energy of a gamma ray are controlled by tightly collimating a known source. 

However, gamma-ray pathlength is beyond our control and remains a random variable.

In this work, we show how to use prior knowledge of the pathlength distribution and the set 

of observations for an ensemble of gamma-ray interactions to calibrate 3D model statistics. 

We demonstrate this method by simulation of signal generation and output from a 

monolithic-scintillator gamma camera. For this purpose, we use a photon-transport Monte 

Carlo algorithm (SCOUT) described in Chapter 4 of [7].

II. MODELING pr(g ∣ R, E)

We consider the detector response to single-interaction (photoelectric) events in a thick 

scintillation camera with multi-anode photomultiplier tube (MA-PMT) readout (Figure 1). 

The fraction of scintillation light collected by each PMT is small due to geometric and 

quantum collection efficiency. A low efficiency binomial selection of scintillation light 

results in an independent Poisson probability model for each PMT input signal [8]. 

Assuming negligible electronic and gain noise, the probability for the PMT output signals is 

then modeled as a multivariate scaled-Poisson:

(2)

Here, ⟨…⟩ is an ensemble average and u(…) is a rounding operator. There are a total of M 

photodetectors (channels). For the mth photodetector, Gm is the channel gain, Nm is the 
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number of input photoelectrons, and  is the mean of Nm for given R and E. We often refer 

to the vector  as the mean detector response function (MDRF). 

Hence, to characterize pr(g ∣ R, E), we only need to determine Gm and  for each 

photodetector.

III. CALIBRATING 

To calibrate the 3D MDRF, we chose a parametric representation such as a polynomial (see 

Section IV), and then we estimate the parameters for this representation. Let Θ ≡ {Θi, i = 

1…I} be a set of parameters representing the mean detector response functions for the M 

photodetectors, . The data from which we want to estimate the parameters is 

the set of observations, Γ ≡ {γj, j = 1…J}, for J events produced using a collimated gamma-

ray source to control the position and orientation of incident gamma rays (Fig. 2). 

Observations γj for the jth gamma ray consist of the camera signals Nj ≡ {Nmj, m = 1…M}, 

and event tags specifying the beam position R0j, the beam orientation sj, and the gamma-ray 

energy Ej. Thus, we calibrate  by estimating the parameters Θ that maximize the likelihood 

pr(Γ ∣ Θ) for given list-mode data Γ:

(3)

The responses for different gamma-ray events are independent. If we have prior knowledge 

of the pathlength (L) distribution pr(L ∣ R0j), we can express ln[pr(Γ ∣ Θ)] as:

(4)

where for a multivariate scaled-Poisson:

(5)

Note that  scales with the average amount of light produced by a gamma-ray interaction. 

Thus, with knowledge of the average energy dependence of scintillator light yield f(E) (as in 

[9]), we can separate the energy dependence of :

(6)

We can then use multiple gamma-ray energies to calibrate just the spatial dependence of the 

MDRF, η(R, Θ).

IV. PARAMETRIC REPRESENTATION OF η(R, Θ)

Various choices of Θ exist. For example, we can use a regular array of discrete samples 

(voxels). Another approach is to use a physical model for light propagation with several free 
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parameters. Alternatively, since η(R, Θ) should vary smoothly with R, we may choose Θ as 

the set of parameters for an analytic form (e.g., see [10]).

For example, we use a hybrid approach; we fit the response as a function of depth with a 

cubic polynomial for each calibration beam position: Θ = {ck, k = 1…K}.

(7)

For this representation, we assume K normally oriented calibration beam positions that 

adequately sample the detector area. The parameters for each beam position, ck, are a set of 

4 × M coefficients, where M is the number of photodetectors. ML estimation of Θ in this 

case conveniently separates into K optimization problems of 4 × M parameters each:

(8)

V. Filtering Multiple Interactions

We must filter multiple interaction events to calibrate  for single interactions. We do so by 

applying a likelihood threshold on the 3D-position estimate of each gamma ray. We also use 

prior knowledge of the calibration beam profile to remove events whose position estimates 

are outside of the beam profile.

For an experimental calibration, a simulated 3D MDRF can serve as an initial estimate of . 

For this simulated proof of concept, we use the 2D MDRF, marginalizing depth and 

assuming no depth sensitivity. We then refine our estimate of  by maximizing pr(Γ ∣ Θ) 

given the remaining events. We iterate this process of event filtering and estimation of Θ 

until a steady-state solution is reached (Fig. 3). We keep a portion of the events in each 

iteration that is consistent with the fraction of gamma rays expected to result in a 

photoelectric primary interaction.

VI. Pathlength Distribution

In a homogeneous detector, we expect gamma-ray pathlength to be exponentially 

distributed. However, due to imperfect filtering of multiple interaction events, the pathlength 

distribution of the calibration data is not given by Beer’s law as expected. Rather, this 

distribution depends on the detector geometry, the gamma-ray energy, direction and 

entrance position, and the specific event filter being used. We rely on simulation to 

determine pr(L ∣ R0j, sj, Ej) for a specific detector and filter; see Fig. 4.

VII. Results of a Simulated Calibration

We performed Monte-Carlo (MC) simulations of gamma-ray interaction, light yield, and 

optical transport in the test camera design shown in Fig. 1 using the SCOUT simulation tool 

reported in [7]. Amplification noise and electronic noise were assumed negligible for this 

simulation.
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Making use of the filtering and calibration methods described above, we produced an 

estimate of . We examined two cases: use of just 511 keV gamma rays and use of a 

combination of 4 energies: 140, 171, 245, and 511 keV. Representative results for these 

calibrations of  are shown in Fig. 5. The 3D-MDRF was calibrated on a 1.52-mm lateral 

grid of beam positions. Interpolating the calibrated 3D-MDRF to a 0.76-mm lateral grid, we 

then generated 3D-position estimates for simulated 511 keV gamma-ray interactions of a 

perfectly collimated 45°-slanted beam (shown in Fig. 6). To reject events not likely to have 

been produced under the assumed signal probability model and to improve estimate 

variance, we applied a threshold on the estimate likelihood. For the test-camera design that 

is simulated, resolution of interaction position is on the order of the estimate grid size (0.76 

mm).

To measure detector spatial-resolution as a function of position, we can interpolate the 

MDRF and image a slant-beam at different positions in the detector. Alternatively, for an 

ML estimator, we can compute bounds on detector spatial-resolution predicted by Fisher 

information theory [6-7]. In Fig. 7, we show the Cramér-Rao bound on lateral resolution and 

depth resolution of 511 keV gamma rays interacting in the test camera.

VIII. Conclusions and Outlook

By maximizing the list-mode likelihood, pr(Γ ∣ Θ), with prior knowledge of pathlength 

distribution, we are able to accurately calibrate detector response statistics as a function of 

3D interaction position in a gamma camera. Accuracy of the 3D-MDRF calibration for the 

case considered was limited primarily by the parametric representation chosen. In addition, 

we found that use of multiple gamma-ray energies did not significantly improve calibration 

accuracy. However, this latter conclusion may depend on the number of events used to 

perform the calibration.

Making use of the calibrated 3D-position likelihood model, we have then shown how to 

estimate the 3D interaction position. We reject events not likely to have been produced 

under the assumed signal probability model by applying a threshold on estimate likelihood. 

The Cramér-Rao bound on spatial resolution for the simulated test-camera design was 

determined to be sub-millimeter for most of the detector volume in both lateral and depth 

dimensions.

Experimental calibration of detector response statistics as a function of 3D interaction 

position is an area of future work. In a companion presentation [11], a related calibration 

method is used to examine the 3D response function of an experimental camera. Here, a 

locally scaled solid-angle model is used to parametrically represent the 3D MDRF; scaling 

coefficients are then chosen to fit the observed spectra for normal calibration-beam data.

The use of list-mode likelihood for calibration of response statistics as a function of 3D 

position was demonstrated for a continuous-scintillator gamma camera, but is generally 

applicable for other camera types and geometries. For instance, list-mode calibration of 

detector response statistics with DOI can similarly be applied to segmented detectors. 

However, in this case, the detector response is discontinuous across segment boundaries. 
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Therefore, the parametric representation of the MDRF that we use should reflect this fact. 

Calibration of each detector segment can be performed independently.

Having adequately calibrated the detector response for single interactions, we can mitigate 

issues of parallax and signal variance due to random interaction depth. The topic of 

multiple-interaction parameter estimation is another area of work that can be expanded upon 

once we can adequately calibrate the detector response for single interactions (see Section 

3.3.6 of [7]).
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Fig. 1. 
Diagram of simulated test camera.
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Fig. 2. 
Acquisition of data for calibrating the detector response statistics as a function of 3D 

position of interaction. For the current work, the detector response is simulated for an 

ensemble of gamma rays on a regular 1.52 mm-spaced 2D array of collimator beam 

positions. Calibration data can also include various gamma-ray beam angles and energies.
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Fig. 3. 

Calibration procedure of detector response statistics (i.e.,  as a function of 3D 

interaction position. (a) The detector response is measured for an ensemble of gamma rays 

with known input position, direction, and energy. Event data are initially filtered to keep 

only photopeak events. (b) An ML estimate of 3D position for each photopeak event is 

determined. An initial estimate of  is made (from 2D MDRF or simulation). (c) Photopeak 

event data are filtered further by applying a likelihood threshold on 3D-position ML 

estimate and by using prior knowledge of the collimated beam profile. (d) An ML estimate 

of Θ is made. Steps (b)–(d) are repeated until a steady-state solution is reached.
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Fig. 4. 
Probability density of pathlength for normally incident gamma rays at the test camera center: 

(right) all gamma rays, and (left) filtered gamma rays. Events are filtered using a radial 

window of 1 mm about the beam axis and a likelihood threshold that retains a constant 

fraction of events equal to the photoelectric branching ratio.
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Fig. 5. 
Cross section of true vs. ML estimate of  as a function of depth (z) for several anodes with 

interactions through the camera center (x = y = 0). The position of these anodes and the 

lateral interaction position in this case are indicated in the anode grid shown near the top of 

this figure. The accuracy of fit is similar for other anodes and other positions. The estimate 

of  approximates the cubic least squares fit in each case.
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Fig. 6. 
Cross section (y = 0) of 3D ML-estimate distribution for a perfectly collimated 45°-slanted 

511 keV gamma-ray beam using the 4-energy ML estimate for : (top) estimate distribution 

for all events, (bottom) a likelihood threshold is used to remove events not likely to be 

primary photoelectric interactions.
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Fig. 7. 
Cramér-Rao bound of (top) depth and (bottom) lateral detector resolution (FWHM) on a 

vertical cross section (y = 0) of the test camera for 511 keV gamma rays.
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