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Introduction
Thousands of methodology and application studies have 
been published since the arrival of high-throughput tech-
nology, such as microarray; however, only a handful of these 
articles involved equivalence tests.1–5 Examples of situations 
where equivalence tests would be valuable include identify-
ing housekeeping genes, identifying common molecular 
mechanics between diseases, and identifying genes with a 
specified expression trajectory across time or conditions. In 
a low-dimensional setting, equivalence tests have been suc-
cessfully applied to RT-PCR data for identifying constantly 
expressed genes.6 In high-dimensional settings, equivalence 
tests have been applied to microarray data for identifying 
common genes underlining different diseases2 or genes whose 
expressions followed a specific pattern across time points.3 For 
methodology development, Qiu and Cui evaluated the perfor-
mance of two one-sided t-tests (TOST) in identifying equiv-
alently expressed genes from microarray data.4 They showed 
that with a reasonable equivalence limit, TOST has relative 
high power while keeping the false discovery rate (FDR) low.

Although two-group equivalence tests have been applied 
to microarray data with promising results, there are no pub-
lished studies involving tests of equivalence with more than two 

groups in high-dimensional data. One reason for the relatively 
small amount of literature on multigroup equivalence tests in 
general is that two-group equivalence tests can be extended 
to k groups (k . 2) using the intersection–union principle.7–9 
This principle establishes that testing all possible pairs using a 
two-group equivalence test such as TOST at level alpha will 
result in a level alpha test for multiple groups. However, apply-
ing the intersection–union principle to construct an overall k 
group equivalence test usually results in an overly conservative 
test because the actual size for individual pairwise test is at 
most alpha unless one of the individual tests is exactly level 
alpha.8,9 In addition, this test is based on TOST, which has 
been shown to have low power because of the boundary defini-
tion for alpha.10 Perhaps a better test for k group equivalence is 
the F-test for equivalence proposed by Wellek.9 The F-test for 
equivalence is the noncentral version of the classical one-way 
ANOVA F-test. It utilizes the squared Euclidean distance as 
a summary of the overall distance between k group means. 
The noncentral F-test for equivalence is the uniformly most 
powerful invariant test of its kind. Additionally, as a modi-
fication of the F-test, it shares the same desirable properties 
such as being an unbiased and level alpha test. Another multi-
group equivalence test is the range test for equivalence, which 
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is similar to the studentized range test for differences. It uses 
the maximum mean difference between group means as the 
measure of similarity between groups. Therefore, rejecting the 
null hypothesis of equivalence guarantees all the group means 
significantly equivalent. This will result in a more stringent 
test in the equivalence testing scenario than in the usual one-
way ANOVA scenario. In this paper, we evaluate the range 
test and the F-test for their performance on microarray data in 
comparison with TOST using simulations and a cancer data-
set analyses.

Methods
To illustrate the methods used, we consider a general situation 
for a gene expression microarray study comparing k groups 
with an equal number of samples per group. Suppose we have 
G genes and the observations, Xijg, are from a normal distribu-
tion, N(µ σig g, 2), where i = 1,…,k groups, j = 1,…,n samples 
per group, and g = 1,…,G genes. In this setup, we also assume 
equal variance across groups within genes. Since we will be 
testing one gene at a time, we will omit gene notation g here-
after for simplicity.

The F test. We denote the overall mean of the k groups 
as µ.. Based on Wellek,9 the F-test uses a standardized and 
squared global Euclidean distance, which we denote as ψ 2. 
For a single gene, it is given as
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Equation (1) is a measure of the overall deviation of 
the group means from µ.. Thus, for each gene, we test the 
hypothesis:

	 H vs HO A: . :ψ ε ψ ε2 2 2 2≥ <   	 (2)

with ε 2 (greater than 0) denoting the chosen equivalence 
limit.

With equal number of samples per group, our estimate of 
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where Xi  and X . are the estimated group mean and overall 

mean, respectively, and N is the total number of samples. If we 
multiply ψ 2 by n/k −1, this statistic has a noncentral F distri-
bution with k −1, N − k degrees of freedom, and noncentrality 
parameter of nε 2.

The range test. Unlike the F-test that summarizes the 
magnitude of the difference among group means using an 
overall Euclidean distance, the range test summarizes the 
magnitude of the pairwise differences using the maximum 

difference among all the paired group means.9 If we wish for 
all paired differences among µ1,…,µk be within some limit δ, 
we just need to ensure that the maximum paired difference is 
less than δ.

The hypothesis for the range test is

	 H vs HO i m A i m: max / : max / ,   µ µ σ δ µ µ σ δ− ≥ − < 	 (3)

where δ is the equivalence limit defined in the next section. 
The test statistic is

	
R
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where X k( ) and X ( )1  are the largest and smallest group means, 
respectively. The S here is the pooled sample standard devia-
tion from all groups,
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the studentized range statistic is not easily obtainable, we used 
Monte Carlo11 methods to simulate the distribution of Rs and 
obtain approximate critical points and P-values. The algorithm 
that was used is given in the simulation section in Appendix A.

Two one-sided t-tests. In the multigroup setting, the 
hypothesis for TOST is HO:µi −  µm≥η  vs  HA :µi −  µm<η. 
The null hypothesis is rejected, and equivalence is concluded 
if µ µ η σ αi m nt− −( ) < −/ ,2 2 for all i ≠ m group comparisons, 
where σ is the pooled variance between treatment groups i 
and m, and t nα,2 2−  is the upper quantile of a t distribution with 
2n − 2 degrees of freedom, and η is the equivalence limit.

Definition of equivalence limit – the F test. Both F-test 
and the range test are considered tests for “scaled equivalence.” 
This is because the hypotheses are formulated for a standard-
ized effect size. Hence, we use a moment-based criterion called 
difference ratio (DR)12 for our definition of the equivalence 
limit. Under the assumption of equal variance, the population 
DR is given by

	
DR = +θ σ

σ
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where θ 2 represents the squared difference between two 
groups and σ 2 is the variance.13 To extend equation (6) to the 
multigroup cases (k . 2), we rely on the following result given 
by Casella and Berger14
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Since there are k choose 2 pairs of group means for µi and 
µm, we can extend (6) to
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ε 2 21

2
1= −( ) −( )k DR .	 (8)

The FDA suggests a DR of 1.25 for clinical equivalence 
testing; however, we use a range of DR values in our simula-
tion study to determine what values of DR are the most practi-
cal and meaningful for gene expression analysis.

Definition of equivalence limit – the range test. As 
we did with the F-test, we use the same DR to establish our 
equivalence criteria for the range test. Hence, the range test 
statistic can be related to the DR as

	 δ = −( )2 12DR 	 (9)

Definition of equivalence limit – TOST. As TOST 
is used to test for equivalence between each pair of group 
means, k  =  2, the equivalence limit for TOST was set as 

η =
−( )DR2 1

2
.

Simulation studies. Simulation design. Simulation stud-
ies were carried out to evaluate the tests in terms of type I error 
and power. Although the F-test and range test hypotheses 
that differ in their measures of distance between group means 
cannot be compared directly, they can still be evaluated for 
their individual performances. To put them on a more com-
parable footing, we used the same simulated data to evaluate 
both tests and to compare them with TOST.

Data were simulated for two different scenarios. In the 
first scenario (single-gene simulations – Scheme 1), the data 
for each treatment group were generated independently from 
a normal distribution. This simulation can be associated with 
data from just a single gene. In the second scenario (high-
dimensional simulations – Scheme 2), high-dimensional data 
were generated based on residuals from a real dataset.15 More 
details of the simulations are provided in Appendix A.

Simulation settings. Single-gene simulation parameter 
settings. A total of 10,000  simulations were conducted for 
each unique parameter setting. For sample size n, we chose 
values that would typically be found in a microarray dataset, 
n =  (3, 6, 8, 10, 15, 20). For the group size, k, we used the 
settings of k = (3, 4, 5). The DR was varied using the settings 
of DR  =  (1.25, 1.4, 1.55, 1.7, 1.85). The variance settings,  
σ2 (0.04, 0.12, 0.24), were set based on representative values 
from a real microarray dataset. They represent the first, second, 
and third variance quartiles of the real microarray dataset used 
for the high-dimensional simulations. Means for each treat-
ment group were simulated with values of a = (0.45, 0.35, 0.25, 
0.20, 0.15, 0.10, 0.05, 0). The effect size of the F-test is summa-
rized by the square root of ψ 2 in equation (1), while the effect 
size of the range test is the square root of the maximum mean 
difference in equation (4) between any two group means.

Group means were simulated as following for compari-
son purpose:

a.	 For k = 3 groups, data were simulated so that n observa-
tions were from normal distribution N(a/2, σ 2) for groups 
1 and 2 and n observations were from normal distribution 
N(−a, σ 2) for group 3.

b.	 For k = 4 groups, n observations were from normal dis-
tribution N(a, σ 2) for groups 1 and 2 and n observations 
were from normal distribution N(−a, σ 2) for groups 3 
and 4.

c.	 For k = 5 groups, n observations were from normal distri-
bution N(a, σ 2) for group 1, n observations from normal 
distribution N(a/2, σ 2) for groups 2 and 3, and n obser-
vations from normal distribution N(−a, σ 2) for groups 4 
and 5.

Thus, the square root of the noncentrality parameter for 
the F-test is a a a2 2 2 2 2 22 7 10/ , / , /σ σ σ   when the num-
ber of groups (k) is 3, 4, and 5, respectively. For the range test, 
the effect size is 2a/σ regardless of k.

High-dimensional simulation parameter settings. The same 
DR and group mean values were used as the single-gene simu-
lations. The number of samples in each group was set as the 
same as the replicates in the microarray dataset, n = 5. Variance 
σ 2 was estimated from the random subset of genes. The simu-
lations were conducted for 1000 genes and 500 simulations. 
For more details of how high-dimensional data were simu-
lated, please refer to “Scheme 2 simulation” in Appendix A.

Prostate cancer dataset analysis. A published prostate 
cancer dataset (GSE6099) was generated from laser capture 
microdissection samples hybridizing to Chinnaiyan Human 
20K Hs6 array (GPL2013). It has 104  samples from vari-
ous stages of prostate cancer cells and putative progenitors as 
well as some controls. The goal of the project was to study 
the expression profiling of prostate cancer progression from 
benign to metastasis.16

We downloaded the normalized data from Gene Expres-
sion Omnibus (GSE6099) and only focused on samples from 
benign, prostatic intraepithelial neoplasia (PIN), low grade, 
high grade, and hormone-refractory (HR) stages. We fil-
tered out 2832 genes with .30% of samples at background 
hybridization level in all stages. For the remaining genes, we 
conducted an example analysis using a combination of equiva-
lence and differential expression tests. We picked one pattern 
of expression, lower in benign stage, higher but equal in PIN, 
low-grade prostate cancer (PCA), and high-grade PCA stages, 
and lower in the metastatic PCA HR stage, to illustrate the 
application of multigroup equivalence testing. A one-sided 
t-test was used for differential expression testing, lower in 
benign stage and lower in the metastatic PCA HR stage. Both 
the range test and the F-test were tried for the equivalence 
testing, equal expression among PIN, low-grade PCA, and 
high-grade PCA stages. The equivalent limit DR was set as 
1.55 for intermediate stringency. The significant genes were 
analyzed for Gene Ontology (bioprocess) terms and KEGG 
pathway using DAVID (http://david.abcc.ncifcrf.gov/).
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Results
To evaluate the F-test and range test for their performance 
on microarray data, we conducted two types of simulations. 
One is for a single gene under the assumption of normality. 
The other one has 1000 genes and is based on a real micro
array data set. We also applied the tests to a prostate cancer 
microarray dataset.

For normally distributed data, the F test achieves good 
power while controlling the Type I error. The noncentral 
F-test is a well-known statistic and provides a fairly intuitive 
method for detecting equivalence among multiple groups, 
namely, group size .2. To evaluate the potential utility of the 
noncentral F-test in the equivalence analysis of microarray 
data, we first conducted some single-gene simulations based 
on normal distributions for simplicity.

The power of the F-test increases with sample size. As 
expected, when the group sample size increases, the power of 
the F-test increases in all settings (Fig.  1). For example, in 
panel (e) when sample size is 3 (red line), the maximum power 

that can be achieved is 0.38 for the variance of 0.12 and group 
size of 4. However, the power increases to  0.79 for sample size 
of 6 (orange line) with the same settings of the other parame-
ters. It goes up to 0.92 and 0.98 when sample sizes are 8 and 10 
(green and purple lines), respectively. The power gain dimin-
ishes when sample size further increases from 15 to 20, which 
is represented by the close black and blue lines in Figure 1.

The power of the F-test increases as the variance increases. As 
the F-test is a scaled hypothesis test, intuitively, increasing 
the variance reduces the effect size; therefore, it is easier to 
reject the null hypothesis. This is confirmed by the differences 
in the speed of power decreases in different rows of panels 
in Figure 1. For example, all the power lines approach to 0 
around mean value of 0.35 in Figure 1E while they approach 
to 0 around mean value of 0.5 in Figure 1F.

The power of the F-test increases along the increase of DR. 
For the simulations, we tried different equivalence criteria 
that depend on DR. The results showed that the choice of DR 
has a major impact on the F-test power (Table 1). For a mean 
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Figure 1. Power curves for the F-test from single-gene simulations. The columns represent the different group sizes (k = 3, 4, 5), and the rows represent 
different variances (σ2 = 0.04, 0.12, 0.24). The sample sizes (N values) are indicated by the legend in the first panel. The simulated mean value represents 
the group mean values denoted as “a” throughout the text. The DR is set as 1.55.
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value of 0.10, increasing the DR from 1.25 to 1.55 elevates the 
power from 0.15 to 0.54 for a fixed representative variance of 
0.12, group size of 4, and sample size of 6. Further, increasing 
the DR to 1.85 increases the power to 0.86. The results for the 
other mean values are similar.

The type I error of the F-test is on target. The type I error 
of the F-test was evaluated using simulations with effect size 
set on the boundary of the null hypothesis. Table  2  shows 
the results for DR of 1.55. It is clear that the rejection rate is 
fluctuating around the target alpha value of 0.05. The fluctua-
tion in the range of values for type I error seems independent 
of variance, sample or group size, and more likely because of 
variability within the simulation itself. Similar results were 
obtained for other DR settings (data not shown).

The power of the F-test is affected by increasing the number of 
groups. To investigate how group number affects the power of 
the F-test, we simulated data with mean values that would give 
the same effect size across groups. To compare power for dif-
ferent group numbers, we used the square root of the noncen-
trality parameter in equation (8) as our measure of effect size. 
Figure 2 shows the power of the F-test for a DR of 1.55, vari-
ance of 0.12, and sample size of 6. The power curves for each 
of the group numbers (3, 4, and 5) show that increasing the 
number of groups increases the power of this test. For example, 
for an effect size of 0, the power is 0.61 when group size is 3, 
0.78 when group size is 4, and 0.88 when group size is 5.

The range test also achieves moderate power but with 
conservative type I error for single-gene simulations. Unlike 
the F-test that controls the difference among group means 
through the noncentrality parameter, the range test controls 
the mean difference using the standardized maximum differ-
ences among groups. The rejection region of the range test is 
more intuitive than that of the F-test. To compare the range 
and F-test on as equal a footing as possible, we used the same 
simulated dataset to evaluate both tests.

In Table 2, we observed the type I errors for both tests 
when the DR is set at 1.55 and alpha at 0.05. The type I error 
for the range test is overly conservative for group sizes .3. 
In fact, regardless of variance or sample size, the type I error 
decreases as group size increases.

The power of the range test increases with sample size. Similar 
to the F-test, increasing sample size increases the power of the 
range test (Fig. 3). For example, the power increases from 0.15 
to 0.36 when sample size is increased from 3 to 6 for a DR of 
1.55, variance of 0.12, group size of 4, and simulated mean 
value of 0.10 (Fig. 3E). The power further increases to 0.58 
when sample size is increased to 10.

The power of the range test increases along with variance. Like 
the F-test, the range test for equivalence is a scaled hypothesis 
test. As such, a larger variance yields an overall smaller effect 
size, which increases the power to reject the null hypothesis. 
Figure 3 shows that the decrease of power along the increase 

Table 1. Power of the noncentral F-test.

DR a = 0 a = 0.05 a = 0.1 a = 0.15 a = 0.2 a = 0.25 a = 0.35 a = 0.45

1.25 0.279 0.251 0.15 0.048 0.016 0.002 0 0

1.4 0.54 0.521 0.345 0.154 0.059 0.014 0 0

1.55 0.767 0.725 0.544 0.328 0.157 0.066 0.003 0

1.7 0.898 0.851 0.738 0.516 0.287 0.135 0.01 0

1.85 0.958 0.941 0.855 0.679 0.453 0.257 0.035 0.001

Notes: Group size is set as 4, variance is set as 0.12, and sample size is set as 6. Type I error rate is set as 0.05. a, group mean value (effect size).
Abbreviation: DR, difference ratio. 

Table 2. Type I error for the noncentral F-test and range tests from single-gene simulations.

Variance F Test Range Test

n = 3 n = 6 n = 8 n = 10 n = 3 n = 6 n = 8 n = 10

0.04 0.049 0.047 0.058 0.051 0.047 0.045 0.062 0.054

k = 3 0.12 0.057 0.055 0.045 0.055 0.054 0.053 0.044 0.058

0.24 0.057 0.044 0.05 0.049 0.053 0.041 0.05 0.051

0.04 0.062 0.04 0.065 0.038 0.028 0.015 0.023 0.013

k = 4 0.12 0.043 0.047 0.044 0.059 0.019 0.016 0.014 0.017

0.24 0.062 0.064 0.047 0.054 0.035 0.012 0.015 0.015

0.04 0.057 0.039 0.055 0.043 0.01 0.007 0.005 0

k = 5 0.12 0.055 0.049 0.057 0.042 0.016 0.007 0.006 0.006

0.24 0.04 0.067 0.052 0.04 0.003 0.009 0 0

Notes: k, number of groups; n, sample size. DR is set as 1.55. Type I error rate is set as 0.05.
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of mean values lessens as the variance increases in general. 
For illustration, consider the orange lines in Figure 3D and E; 
the power of the range test increases from 0.12 to 0.36 when 
the variance is increased from 0.04 to 0.12 for a DR of 1.55, 
group size of 4, and simulated mean value of 0.10. The power 
further increases to 0.43 when variance is increased to 0.24 
(Fig. 3F) for the same parameter settings.

Increasing DR increases the power of the range test. The 
DR greatly affects the power of the range test (Table  3). 
For example, for a simulated mean value of 0.15, the power 
increases from 0.02 to 0.16 when DR is increased from 1.25 to 
1.55 and increases to 0.39 when the DR is increased to 1.85 for 
a representative sample size of 6, variance of 0.12, and group 
size 4. The same trend is obtained under other parameter set-
ting combinations.

Power of the range test decreases with increasing group num-
bers. The power of the range test behaves in a similar fashion to 
that of the F-test for most of the parameter settings. However, 
one of the main differences is that the power of the range test 
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Figure 2. The power of the F-test is affected by a number of groups. In this 
figure, the power is given for a DR of 1.55, variance of 0.12, and sample 
size of 6. k, group numbers. Adjusted effect size is calculated as the square 
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Figure 3. Power for the range test from the single-gene simulations. The columns represent the different group sizes, k = 3, 4, 5, and the rows represent 
different variances, σ2 = 0.04, 0.12, 0.24. The sample sizes (N values) are indicated by the legend in the first panel. The simulated mean value represents 
the group mean values denoted as “a” throughout the text. The DR is set as 1.55.

http://www.la-press.com
http://www.la-press.com/cancer-informatics-journal-j10


Multigroup equivalence analysis for high-dimensional expression data

259Cancer Informatics 2015:14(S2)

consistent with the fact that TOST is an average equivalence 
test. It has higher power when variances are smaller, which is 
opposite to the F-test and range test.

High-dimensional simulation results. In order to study 
the power of these tests in a more realistic microarray data set-
ting, we used a sample of 1000 genes (more details are given in 
the “Scheme 2 simulation” in Appendix A) from the Caloric 
Restriction Mimetic dataset15 and explored how the power 
behaved for different values of the means and DRs. The sam-
ple and group sizes are set the same as the original data, 5 and 
3, respectively. The variance of each gene is estimated from the 
real data sample. Thus, in this scenario, the power analysis is 
viewed as more of an “average” power across the genes.

The results show that F-test and range test have similar 
power curves (Fig.  5), which are consistent with the results 
from single-gene simulations in that their powers are most 
similar for group size of 3. The only obvious difference is at 
very low DR setting, DR  =  1.25, where the range test has 
lower power. On the other hand, these two tests have very 
different power curves from TOST. Their powers are much 
higher at low mean values but lower at higher mean values, 
which indicate that F-test and range test tend to identify 
genes with smaller fold changes but larger variances compared 
to TOST.

Prostate cancer data analysis. Prostate cancer has many 
progressing stages, such as the benign stage, putative precur-
sor PIN, localize PCA at various grades, and metastatic HR 
prostate cancer stage. To understand the altered molecular 
processes during prostate cancer progression, Tomlins et  al 
profiled the gene expression in 101 microdissected samples.16 
They integrated the gene expression analysis with the molecu-
lar concepts to identify a set of biological processes, includ-
ing protein biosynthesis, E26 transformation-specific (ETS) 
transcriptional targets, androgen signaling, and cell prolifera-
tion, that distinguish the different stages of prostate cancer. 
They used pairwise differential expression to select signature 
genes that are differentially expressed between stages without 
formal analysis for equal expression for drawing profile trajec-
tories associated with each group of signatures.

As an example of the application of our equivalence tests, 
we used a combination of differential testing and equivalence 
testing to formally identify genes that follow a specific tra-
jectory among the prostate cancer progression stages. The 

Table 3. Power of the range test.

DR a = 0 a = 0.05 a = 0.1 a = 0.15 a = 0.2 a = 0.25 a = 0.35 a = 0.45

1.25 0.183 0.154 0.085 0.022 0.009 0.001 0 0

1.4 0.335 0.297 0.18 0.065 0.027 0.004 0 0

1.55 0.54 0.519 0.341 0.156 0.065 0.014 0 0

1.7 0.712 0.692 0.487 0.288 0.143 0.056 0.004 0

1.85 0.816 0.766 0.607 0.39 0.203 0.105 0.01 0

Notes: Group size is 4, sample size is 6, and variance is 0.12. a, group mean value (effect size).
Abbreviation: DR, difference ratio.

diminishes when the number of groups increases. The decrease 
in power for each increase in group number is more acute when 
the change is between the lower group numbers. For example, 
power declines from 0.51 to 0.37 when the number of groups 
increases from 3 to 4 and the decline is more moderate (to 
0.33) when the number of groups is 5 for a DR of 1.55, vari-
ance of 0.12, and sample size of 6. These results and similar 
ones can be seen in Table 4.

The range test is less powerful than the F-test for larger group 
sizes. The power of the range test is within 0.15 of the F-test regard-
less of the other parameter settings when group size is 3. Figures 1 
and 3 illustrate this result. However, the power of the F-test is 
sometimes twice that of the range test for the same parameter set-
tings when the group number is larger than 3. For example, the 
power of the F-test is 0.7, which is more than twice the power of 
the range test (0.33) for a group size of 5, variance of 0.12, sample 
size of 6, DR of 1.55, and a simulated mean value of 0.10.

F-test and range tests are more powerful at smaller 
sample sizes but less powerful at higher mean values than 
TOST. The simulation results from TOST are shown in 
Figure 4. Compared with Figures 1 and 3, it has lower power 
than F-test and range test at smaller sample sizes, such as 3, 
especially when the variance is relatively high. It has no power 
when sample size is 3 and variance is 0.12 or larger. How-
ever, TOST retains power much better against the increase of 
mean values than the F-test and range test, especially when 
the variance is small (top two rows in Fig. 4). These results are 

Table 4. Power of the range test depends on group numbers.

Group Mean Value SMax k = 3 k = 4 k = 5

0 0.000 0.629 0.561 0.504

0.05 0.289 0.573 0.468 0.446

0.1 0.577 0.517 0.364 0.333

0.15 0.866 0.399 0.163 0.193

0.2 1.155 0.266 0.07 0.083

0.25 1.443 0.193 0.021 0.038

0.35 2.021 0.04 0 0.002

0.45 2.598 0.005 0 0

Notes: The settings of the other parameters are DR, 1.55; variance, 0.12; and 
sample size, 6. The effect size of the range test (SMax) is given in Equation (4). 
The mean value is the value assigned to the group means in the single-gene 
simulations.
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Figure 5. Power comparison among range test, F-test, and TOST tests from the high-dimensional simulations. Colored lines represent different values of 
the DR. The “a” values are the simulated group mean values. Sample size is 3.
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Figure 4. Power for the TOST from the single-gene simulations. The columns represent the different group sizes, k = 3, 4, 5, and the rows represent 
different variances, σ2 = 0.04, 0.12, 0.24. The sample sizes (N values) are indicated by the legend in the first panel. The simulated mean values represent 
the group mean values denoted as “a” throughout the text. The DR is set as 1.55.

trajectory we picked is similar to the protein synthesis trajec-
tory (low in benign stage, higher but equal across the PIN and 
two localized PCA stages, and lower again in the metastatic 
HR stage; Fig. 7 in the study by Tomlins et al.16) At FDR of 

0.05, we identified 639 and 652 significant genes using range 
test and F-test, respectively. These two lists largely overlap 
with 636 genes in common. The heatmap of these genes (Sup-
plementary Fig. 1) shows a similar pattern to that of protein 
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biosynthesis and ETS targets in Figure  7  in the study by 
Tomlins et al.16 Gene Ontology and KEGG pathway analysis 
using DAVID (http://david.abcc.ncifcrf.gov/) show that these 
genes are highly enriched for protein biosynthesis as expected. 
In addition, they are also highly enriched for protein phos-
phorylation and protein catabolism (Supplementary Table 1), 
which are consistent with protein biosynthesis and ETS tar-
gets. This analysis demonstrates the application of multigroup 
equivalence in identifying additional genes that follow the 
specified trajectory based on a small group of genes.

Discussion
We have taken two most promising approaches for multigroup 
equivalence testing, the noncentral F-test and the range test, 
for equivalence and have evaluated them against TOST using 
simulation study and applied them to a real microarray data-
set.16 The simulation data were generated using two scenarios: 
single-gene simulation and high-dimensional simulation. The 
noncentral F-test and range test9 were evaluated in terms 
of type I error and power. We compared the power of these 
tests with the two-group test, TOST. Our simulation results 
indicate that, for the range of parameter settings investigated, 
the noncentral F-test performs better than the range test in 
detecting equivalently expressed genes in microarray data. 
Additionally, while TOST performs better than the F-test 
and range test for low variance and high sample size, both the 
noncentral F-test and the range test perform better for set-
tings that are more typical of real microarray data (small sam-
ple size and medium variance settings). The noncentral F-test 
and range test were applied to a prostate cancer dataset16 to 
identify genes that show differential expression between some 
stages but equivalent expression among others. Our results 
provided consistent results with the signatures defined by the 
original publication but added hundreds of additional genes 
that have similar expression patterns to the signatures. These 
additional genes can help investigators to thoroughly examine 
the processes that follow this specific expression trajectory. 
Given that our method is well defined, equivalence limits and 
significance levels can be easily adjusted by investigators to 
refine the trajectory to be investigated. In a traditional differ-
ential-based analysis, identifying equal expression often rely 
on ad hoc criteria and clustering for similarity, which can fall 
apart when looking for constant expression across groups or 
stages. The equivalence noncentral F-test and range test can 
be especially helpful when similar molecular mechanisms are 
sought between different diseases. Instead of comparing the 
significant gene lists or gene set enrichment results, expression 
data can be compared directly to identify genes that have same 
expression profiles among different diseases, which should 
increase power.

In our single-gene simulations, we observed that the type 
I error for the F-test is on target throughout all the parameter 
settings, while the range test becomes overly conservative 
along with the increase of group number. This behavior is a 

function of the rejection region of the range test; the number of 
pairwise comparisons increases substantially for every increase 
in group number. While the hypotheses of the range test and 
F-test require a different equivalence criterion, we used the 
same simulated data and mean values to compare the perfor-
mance of these tests on as equal a footing as possible. Both the 
single-gene and high-dimensional simulation results indicate 
that for microarray data, the range test performs equally well 
as the F-test for comparing three groups. Since the range test 
has a more interpretable effect size, it might be preferable over 
the F-test in this scenario. For comparing more than three 
groups, the range test tends to be more conservative and has 
less power than the F-test (Figs. 1 and 2), which makes it less 
useful for a large number of groups.

Both the F-test and range test are scaled tests, which 
controls the ratio of group difference to within-group stan-
dard deviation. One concern of using these tests might be 
that equivalence detections are solely because of the high 
variability. One simple strategy to overcome this concern is 
to simply filter out genes with variance higher than a certain 
percentile. A more sophisticated strategy is to apply vari-
ance shrinkage, which is not so different from handling the 
very small variances using shrinkage for detecting differen-
tially expressed genes. We expect that variance shrinkage 
can have the same benefit in the F-test and range test as 
shown in TOST.5

For controlling the multiple testing problem, we used 
FDR based on the BH procedure of Hochberg and Benjamini.17 
Benjamini et  al.18 showed that this procedure controls the 
FDR at a level lower than the chosen alpha when the distribu-
tion of the composite null hypothesis is stochastically smaller 
than the null distribution of each P-value, which is the case 
for equivalence testing. Thus, the BH procedure can effectively 
control the false discovery although it is conservative.
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Supplementary Materials
Supplementary Figure 1. Heatmap for the 639 genes that 

are expressed low in both benign and HR stages but equally 
high in the other three stages identified using the Range test. 
Expressions are scaled for each gene. red, low; blue, high; 
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white, missing. Heatmap.  2 function in R was used to gener-
ate this heatmap.

Supplementary Table 1. DAVID functional annotation 
enrichment analysis results for the 639 genes identified from 
the prostate cancer data
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4.	 Add the effect sizes “a” according to section 3.2’s part b) 
for k = 3 groups.
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6.	 For i  =  1,…,1000  genes count how many times 
ψ εα


g k N k gF n2
1

2< − −, ; ( ) and divide by 1000. Define this 

count as Pr.
7.	 Do step’s 3.–6. 500 times.
8.	 Calculate the “average power” by averaging the Pr’s, r = 

1,…,500.
Range test

1.	 Let i = 1,…,3 be the number of treatments, and j = 1,…,5 
be the number of replications in a given treatment, and 
g = 1,…,1000 be the number of genes. Using a subset of 
the public dataset described in section 3.3 (Barger et al. 
2008) we created a baseline dataset by doing the follow-
ing: for each observation, Yijg, from the real dataset, sub-
tract off the ith treatment mean, Y Yijg i g− . .

2.	 Randomly select 1000 genes from this baseline dataset.
3.	 Keeping the order of the genes, within each gene we per-

mute the observations and treatment groups, and then 
randomly select n = 6 observations to be in each of the 
k = 3 treatment groups.

4.	 Calculate R
X X

Ssg
k g g

g


=
−( ) ( )1 .

5.	 Simulate the distribution of Rsg using the following 
steps:
a.	 Generate n observations for treatment 1 from a 

N g( / , )−δ σ2 2 , n observations from N g( , )0 2σ  for 
treatment 2, and n observations from N g( / , ),δ σ2 2  
for treatment 3.

b.	 Calculate the mean X i g( )
*  and standard deviation 

S i g( )
* , i = 1,…,k = 3 for each treatment group

c.	 Order the means.

d.	 Compute R
X X

Ssg
k g g

g


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−( ) ( )1

e.	 Repeat steps a)–d) 10,000 times
f.	 Order the R sg

 * ’s, from smallest to largest 
R R Rsg sg sg
  * * *( ) ( ) ... ( , )1 2 10 000< < <

g.	 The sample 5th percentile is R sg
 * ( )500  which is an 

estimate of Rs(0.05).
6.	 Count how many times R Rsg sg

 < * ( )500  and divide this 
count by 1000. We denote this value Q   i.

7.	 Do steps 3.–7. 500 times.
8.	 Compute the average power by averaging Q   i, 

i = 1,…,500.

Appendix A: Simulation Algorithms
Single Gene Simulation Procedure (Scheme 1). F test

1.	 Generate n observations from a normal distribution 
according to a), b), or c) of section 3.2. For example, if 
k = 3 we generate n observations according to a), if k = 4 
we generate n observations according to b), and if k = 5 
we generate n observations according to c). Compute 
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k  where Xi  and X  are 

the estimated group mean and overall mean, respectively; 
and N is the total number of samples.

2.	 Do steps 1–2 10,000 times.
3.	 Calculate how many times ϕ2 1

21< −( ) − −( ) / ( ), ;k n F nk N k α ε  
with n  representing mean sample size across groups, 
which is n for equal sample size.
Range Test

1.	 Using the data generated in step 1. of the F test, order the 
group means from smallest to largest.

2.	 Compute R
X X

Ss
k =

−( ) ( )1 , where, X k( ) is the largest 
ordered treatment mean, X ( )1  is the smallest ordered 
group mean, and S is the ANOVA estimate of variance 
as given in equation 1 above.

3.	 Do steps 1.–2. 1000 times. Simulate the distribution of 
Rs as described in the methods section using the follow-
ing steps
i.	 Generate n observations for treatment 1 from a

N ( / , )−δ σ2 2 , n observations each from a N ( , )0 2σ
for treatments 2,…,k-1, and n observations from a 
N ( / , )δ σ2 2  for treatment k.

ii.	 Calculate the mean X i( )
*  and standard deviation 

S i( )
*  = i = 1,…,k for each treatment group.

iii.	 Order the means.

iv.	 Compute R
X X

Ss
k * ( )
*

( )
*

*=
− 1 ,

v.	 Repeat steps i.–iv. 10,000 times.
vi.	 Order the Rs’ from smallest to largest.

4.	 The sample 5th percentile is Rs
* ( )500  which is an esti-

mate of Rs(0.05).
High Dimension Simulation Procedure (Scheme 2). F test

1.	 Let i  =  1,…,3 be the number of treatments, j  =  1,…,5 
be the number of replications in a given treatment, and 
g = 1,…,1000 the number of genes. Using a subset of the 
public dataset GSE11291 described in section 3.3 (Barger 
et al. 2008) we created a baseline dataset by doing the fol-
lowing: for each observation, Yijg, from the real dataset, 
subtract off the ith treatment mean, Y Yijg i g− . .

2.	 Randomly select 1000 genes from this baseline dataset.
3.	 Keeping the order of the genes, but permuting the obser-

vations and treatment groups, randomly select n = 6 obs
ervations to be in each of the k = 3 treatment groups.
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