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ABSTRACT High levels of circulating immunocomplexes (ICs) are found in patients with either infectious or sterile inflamma-
tion. We report that patients with either Plasmodium falciparum or Plasmodium vivax malaria have increased levels of circulat-
ing anti-DNA antibodies and ICs containing parasite DNA. Upon stimulation with malaria-induced ICs, monocytes express an
NF-�B transcriptional signature. The main source of IC-induced proinflammatory cytokines (i.e., tumor necrosis factor alpha
[TNF-�] and interleukin-1� [IL-1�])in peripheral blood mononuclear cells from acute malaria patients was found to be a
CD14� CD16 (Fc�RIIIA)� CD64 (Fc�RI)high CD32 (Fc�RIIB)low monocyte subset. Monocytes from convalescent patients were
predominantly of the classical phenotype (CD14� CD16�) that produces high levels of IL-10 and lower levels of TNF-� and
IL-1� in response to ICs. Finally, we report a novel role for the proinflammatory activity of ICs by demonstrating their ability to
induce inflammasome assembly and caspase-1 activation in human monocytes. These findings illuminate our understanding of
the pathogenic role of ICs and monocyte subsets and may be relevant for future development of immunity-based interventions
with broad applications to systemic inflammatory diseases.

IMPORTANCE Every year, there are approximately 200 million cases of Plasmodium falciparum and P. vivax malaria, resulting
in nearly 1 million deaths, most of which are children. Decades of research on malaria pathogenesis have established that the
clinical manifestations are often a consequence of the systemic inflammation elicited by the parasite. Recent studies indicate that
parasite DNA is a main proinflammatory component during infection with different Plasmodium species. This finding resembles
the mechanism of disease in systemic lupus erythematosus, where host DNA plays a central role in stimulating an inflammatory
process and self-damaging reactions. In this study, we disclose the mechanism by which ICs containing Plasmodium DNA acti-
vate innate immune cells and consequently stimulate systemic inflammation during acute episodes of malaria. Our results fur-
ther suggest that Toll-like receptors and inflammasomes have a central role in malaria pathogenesis and provide new insights
toward developing novel therapeutic interventions for this devastating disease.
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Despite different etiologies and clinical manifestations, there
are many parallels between malaria and systemic lupus ery-

thematosus (SLE). In both diseases, nucleic acids are thought to be
responsible for activating innate immune sensors and promoting
systemic inflammation (1–4). Activation of nucleic-acid-sensing
Toll-like receptors (NAS-TLRs) may be either pathogenic or pro-
tective in both SLE (5–8) and malaria (9–12). Likewise, tumor
necrosis factor alpha (TNF-�), a cytokine induced by TLR activa-

tion, can either mediate resistance or enhance the pathogenesis of
either disease (13–16). Intriguingly, for many decades effective
antimalarial drugs have been used to treat SLE patients. These
drugs accumulate in lysosomes, where they raise the pH, and are
thought to mitigate the symptoms of SLE by preventing activation
of endosomal TLRs (17).

How nucleic acids gain access to intracellular innate immune
receptors is an important question in understanding the patho-
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genesis of SLE and malaria (7). In SLE, immunocomplexes (ICs)
containing pathogenic anti-DNA/RNA antibodies are thought to
be important carriers of human nucleic acids to the intracellular
compartments of B cells and phagocytes, where they can activate
the endosomal TLRs and possibly transit to the cytoplasm, where
other DNA sensors can be engaged (4, 7, 8, 18, 19). Importantly,
high levels of ICs are also found in both human and rodent ma-
laria (20–22). However, the importance of DNA-containing ICs in
activation of innate immune cells and pathogenesis of malaria is
unknown.

The IgG Fc receptors have an important role in internalization
of ICs by innate immune cells. Once bound to the Fc portion of
IgG, Fc receptors can inhibit (e.g., Fc�RIIB) or activate (e.g.,
Fc�RIIIA and Fc�RI) monocyte functions (23). Indeed, a loss-of-
function polymorphism in the gene encoding the deactivating
Fc�RIIB protects against malaria but enhances susceptibility to
SLE (24–28).

In this study, we report that ICs containing Plasmodium DNA
activate intracellular DNA sensors�Our data indicate a previously
undescribed role of the proinflammatory activity of ICs by dem-
onstrating their ability to induce inflammasome assembly,
caspase-1 activation, and interleukin-1� (IL-1�) secretion, pri-
marily via CD14� CD16 (Fc�RIIIA)� CD64 (Fc�RI)high CD32
(Fc�RIIB)low monocytes. Our findings have important implica-
tions for understanding the role of ICs and monocyte subsets in
malaria pathogenesis and, more broadly, for understanding other
infectious and autoimmune diseases.

RESULTS
Increased levels of cytokines and circulating ICs in sera of ma-
laria patients. The levels of IL-6, IL-8, and IL-10 in the plasma of
malaria patients used in this study (see Fig. S1 in the supplemental
material) are consistent with our prior data (29, 30). To evaluate
the immunostimulatory properties of sera from malaria patients,
we incubated peripheral blood mononuclear cells (PBMCs) from
healthy donors with RPMI medium containing 20% sera from
either Plasmodium vivax- or Plasmodium falciparum-infected sub-
jects. We found that only sera from malaria patients, not those
from healthy controls, triggered TNF-� production (Fig. 1A). The
TNF-� levels were undetectable in similarly diluted (20%) patient
sera (data not shown), ensuring that it was released from mono-
cytes and not presented a priori in the tissue culture medium.

We hypothesized that circulating ICs were responsible for
stimulating monocytes. Indeed, we detected high levels of ICs in
sera of the same patients with acute untreated malaria (Fig. 1B).
The levels of ICs were also measured in sera from P. vivax-infected
patients before and after chemotherapy and compared with
healthy donors as baseline controls. We found high levels of ICs in
sera from patients during acute P. vivax episodes (mean, ~16.1
�g-equivalents [�g-eq]/ml) compared to healthy donors (mean,
~2.3 �g-eq/ml). The IC levels in the sera of treated patients were
intermediate (mean, ~12.1 �g-eq/ml) and differed significantly
from patient serum pretreatment and healthy controls (Fig. 1C).
We found no correlation between the level of ICs and parasitemia.

FIG 1 High levels of ICs in sera from P. falciparum- and P. vivax-infected patients. (A) Monocytes from healthy donors were incubated with individual sera from
P. vivax (n � 3) and P. falciparum (n � 8) malaria patients at a 1:5 (20%) dilution in tissue culture medium or stimulated with 100 ng/ml of LPS, and TNF-�
production was evaluated 24 h later by ELISA. (B) IC levels in sera from malaria patients and healthy individuals, as well as in purified IC preparations, as positive
controls. (C) ICs in the sera of P. vivax-infected subjects (n � 22) before and 30 to 45 days after treatment as well as in healthy donors (n � 4). Different colors
indicate different levels of parasitemia. IC levels shown in panels B and C were measured by the MicroVue CIC-C1q enzyme immunoassay kit. Horizontal lines
indicate the average for each group. P values were determined by Student’s t test (A and B) and paired t test (C).
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Circulating ICs from malaria patients contain Plasmodium
DNA. We next measured the levels of IgM and IgG specific for
double-stranded DNA (dsDNA) and single-stranded DNA (ss-
DNA) in the sera of P. vivax- and P. falciparum-infected patients.
As in SLE patients, the levels of anti-dsDNA IgG and IgM were
significantly increased in the sera of acutely infected patients over
those in sera from healthy donors (Fig. 2). Anti-dsDNA IgG per-
sisted at least 30 to 40 days after treatment and parasitological cure
in either P. vivax- or P. falciparum-infected individuals. In con-
trast, anti-ssDNA IgG and IgM levels in malaria patients did not
differ from the corresponding levels measured in healthy donors
(data not shown).

The levels of human and parasite DNA present in ICs and total
plasma from malaria patients were determined by quantitative
PCR using CCND1- and SSUrRNA-specific primers. CCND1 is a
single-copy gene optimized to quantify human DNA (http://
www.rtprimerdb.org, primer ID 3605). SSUrRNA is a multicopy
gene from P. vivax, which allows amplification and quantitation of

DNA in a highly sensitive and Plasmodium species-specific man-
ner. We observed increased levels of both human and parasite
DNA in the plasma of P. vivax malaria patients before treatment.
Circulating human DNA persisted, although at lower levels,
whereas parasite DNA was not detectable in plasma following an-
timalarial chemotherapy (Fig. 3A). Similarly, parasite DNA was
detected in purified ICs from P. vivax malaria patients before and
(at much lower levels) after treatment. Human DNA was detected
at very low levels in IC preparations from the same patients
(Fig. 3B). Benzonase treatment degraded DNA and confirmed the
presence of DNA in ICs from malaria patients (Fig. 3C).

An NF-�B transcriptional signature in monocytes stimu-
lated with ICs. We next profiled mRNA expression of highly en-
riched monocytes (over 99% purity) collected from four healthy
donors (Fig. 4). A custom code set for NanoString analysis was
designed for 98 genes related to inflammatory responses. Genes
were divided into six groups: NOD-like receptor signaling path-
way; TLR signaling pathway; NF-�B signaling pathway; cytokines
and cytokine receptors; adhesion molecules, chemokines, and
chemokine receptors; and interferon (IFN)-stimulated genes. Of
these, 27 genes had augmented expression upon IC stimulation
(fold change, �1.8; P value, �0.05) (see Table S1 in the supple-
mental material). Of the 27 differentially expressed genes, five
were from the NF-�B family, and most of the genes with enhanced
expression were proinflammatory cytokines and chemokines
known to be induced by NF-�B (Fig. 4).

ICs derived from malaria patients induce cytokine produc-
tion by human monocytes. We then examined if ICs from malaria

FIG 2 High levels of circulating anti-dsDNA in patients undergoing acute
episodes of P. vivax and P. falciparum malaria. Levels of circulating anti-
dsDNA IgG (top) and IgM (bottom) measured by ELISA in sera from patients
with acute episodes of P. vivax (n � 58) and P. falciparum (n � 25) malaria and
convalescent (conv) individuals 30 to 45 days after antimalarial therapy. Sera
from uninfected healthy donors (control; n � 28) and lupus patients (n � 19)
were used as negative and positive controls, respectively. Significant differ-
ences are indicated with P values using the Mann-Whitney U test. NS, nonsig-
nificant.

FIG 3 High levels of human and parasite DNA in plasma and ICs of P. vivax
malaria patients. (A and B) Quantitative PCR to determine levels of human
CYCLIN D1 (CCND) and P. vivax SSUrRNA (18S from rRNA) genes in plasma
from P. vivax patients (n � 24) before and 30 to 45 days after treatment as well
as in healthy donors (n � 5) (A) and DNA extracted from purified ICs from P.
vivax malaria patients (n � 8) before and 30 to 45 days after treatment as well
as healthy donors (n � 5) (B). (C) Quantification of total DNA extracted from
purified ICs from P. vivax malaria patients (n � 6) before and after Benzonase
treatment. Significant differences are indicated with P values using a paired
t test.

Inflammasome Activation by Immunocomplexes

November/December 2015 Volume 6 Issue 6 e01605-15 ® mbio.asm.org 3

http://www.rtprimerdb.org
http://www.rtprimerdb.org
mbio.asm.org


patients could induce cytokine production by PBMCs from
healthy donors. We incubated PBMCs from healthy donors with
different concentrations of purified ICs and measured TNF-�,
IL-1�, and IL-10 levels in culture supernatants 24 h after stim-
ulation. We observed that 60 �g/ml of purified ICs induced
near-maximal cytokine production by PBMCs (see Fig. S2A in
the supplemental material) and chose this concentration for
the remaining experiments.

We next evaluated whether DNA is an important component
for the immunostimulatory activity of ICs. To address this ques-
tion, we used E6446, a compound that binds DNA and RNA in the
lysosomal compartment and blocks activation of TLR7 as well as
TLR9 (10, 31) and potentially other DNA/RNA sensors. PBMCs
stimulated with lipopolysaccharide (LPS) and E5564, a TLR4 an-
tagonist (32), were used as controls. Pretreatment of PBMCs with
the DNA/RNA inactivator E6446 (2 �M) for 3 h followed by stim-
ulation with ICs for 24 h resulted in 40 to 50% inhibition of IL-1�
but no inhibition of TNF-� or IL-10. At a higher concentration,
E6446 (20 �M) inhibited 70% of TNF-� and 90% of IL-1� as well
as IL-10 production (see Fig. S2B in the supplemental material).
Control experiments using the TLR4 antagonist E5564 (2 �M)
resulted in ~100% inhibition of LPS-induced cytokines but had
no effect on IC-induced cytokine production by PBMCs. Collec-
tively, these data suggest that parasite DNA fragments formed

during malaria are main components of ICs and are involved in
induction of cytokines by human PBMCs.

We previously demonstrated that PBMCs from malaria pa-
tients express various gamma interferon (IFN-�)-inducible genes
and become hyperresponsive to TLR agonists (30). Relative to
unprimed cells, priming with IFN-� enhanced IL-1� and TNF-�
and decreased IL-10 production by PBMCs from healthy donors
stimulated with malaria-induced ICs (Fig. 5A). We also evaluated
the main cell source of cytokines in PBMCs stimulated with ICs.
For these experiments, we used total PBMCs, PBMCs depleted of
monocytes, and a highly enriched monocyte population (CD14�

cells). Our results show that �95% of the cells in the purified
population are CD14� CD16� (Fig. 5B, bottom left panel). A
minor population of monocytes expressed low levels of CD14 and
high levels of CD16. Monocytes were the main source of TNF-�,
IL-1�, and IL-10 (Fig. 5B). Importantly, IFN-� priming upregu-
lated expression of CD64 and downregulated expression of CD32,
while expression of CD16, CD11b, and CD35 was unchanged. As
CD32 is a deactivating Fc�R, these results further suggest that
IFN-� priming shifts the balance of Fc�R expression toward a
proinflammatory one (Fig. 5C; also see Fig. S3 in the supplemental
material).

ICs induce high levels of proinflammatory cytokines by
CD14� CD16� CD32low monocytes from P. vivax malaria pa-
tients. We next looked at the responsiveness of PBMCs from P.
vivax malaria patients to ICs. As previously reported (30, 33) for
various TLR agonists, we found that PBMCs from patients under-
going acute malaria episodes were highly responsive and pro-
duced high levels of IL-1� and TNF-�, but not IL-10, upon stim-
ulation with ICs (Fig. 6A). As shown in Fig. 6B, and in Fig. S4 in
the supplemental material (and previously reported), the fre-
quency of CD14� CD16 (Fc�RIIIA)� cells is increased in patients
with acute P. vivax infection and drops to levels seen in healthy
individuals 30 to 40 days posttreatment (34, 35). Furthermore, we
defined CD14� CD16� cells as the primary source of cytokines
among different monocytes from malaria patients (Fig. 6C).
Hence, after treatment the profile of cytokines produced by
PBMCs shifted back to an anti-inflammatory one, producing
high IL-10 levels and low IL-1� and TNF-� levels (Fig. 6A),
which coincided with the lower frequency of CD14� CD16�

cells in convalescent patients. Importantly, while expression of
the deactivating Fc�RIIB (CD32) was unchanged, CD64 mean
fluorescence intensity (MFI) was increased in CD14� CD16�

cells as well as CD14� CD16� cells from malaria patients
(Fig. 6D). Thus, the ratios of CD16/CD32 and CD64/CD32
expression by monocytes were changed to proinflammatory
ones during malaria. We also looked at expression of receptors
that may interact with complement-coated ICs, i.e., CD35
(CR1) and CD11b (a component of CR3), and found no differ-
ence in expression levels when comparing patients before and
after treatment and parasitological cure (see Fig. S5 in the sup-
plemental material).

Inflammasome specks and caspase-1 activation in mono-
cytes stimulated with ICs from malaria patients. The results pre-
sented in Fig. 5B and 6C indicated that monocytes are the main
source of IL-1� in PBMCs. Hence, we investigated whether
monocyte stimulation with ICs leads to activation of caspase-1.
Highly purified monocytes were obtained from PBMCs of healthy
donors and stimulated with ICs. Approximately 4% and 8% of
stimulated monocytes expressed either the NOD-like receptor

FIG 4 NF-�B transcriptional signature in monocytes stimulated with ICs.
Purified monocytes from four different healthy donors were either unstimu-
lated or stimulated with ICs (60 �g/ml) for 6 h and analyzed for gene expres-
sion using the NanoString technology. Data were normalized using house-
keeping genes, and fold increase in gene expression was calculated in reference
to unstimulated samples from the same patient. Different signaling pathways
are depicted in the heat maps and show differentially expressed genes (rows)
for each healthy donor (columns) that have diminished (green), unaltered
(black), and enhanced (red) expression. Table S1 in the supplemental material
provides the P values of genes which showed significantly enhanced expression
as determined by the unpaired t test.
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protein 3 (NLRP3) or absent in melanoma 2 (AIM2) inflam-
masome specks, respectively, while NLRC4 (NLR family, CARD
domain-containing 4) specks were not detected (Fig. 7A). In ad-
dition, apoptosis-associated speck-like protein containing a
caspase recruitment domain (ASC) colocalized with either NLRP3
or AIM2 inflammasome specks. Our results also show that pro-
caspase-1 was autocleaved into mature caspase-1 (p10 subunit)
after monocyte stimulation with ICs (Fig. 7B). Importantly, we
show that monocytes purified from PBMCs from patients under-
going acute episodes of P. vivax malaria express NLRP3� ASC� or
AIM2� ASC� specks (Fig. 7C) as well as active caspase-1 (34).
These findings suggest that ICs stimulate inflammasome assem-
bly, caspase-1 activation, and IL-1� secretion in vivo during acute
malaria infection.

DISCUSSION

Malaria is a devastating disease, infecting ~200 million people and
killing close to 1 million children every year (36, 37). Paroxysm, a
main pathophysiological response to Plasmodium infection, is
characterized by cycles of sharp peaks of high fever accompanied
by chills and rigors, which coincide with synchronized release of
parasites from red blood cells (RBCs). While fever may aid in host
defense, delaying the growth of pathogens, it is also associated
with various pathological processes, such as respiratory distress,
anemia, and neurological manifestations that cause morbidity
and mortality in malaria. These clinical manifestations are associ-
ated with a systemic production of pyrogenic cytokines, such as
TNF-� and IL-1�. However, many of the basic details of malaria-

FIG 5 Monocytes are the main source of cytokines in PBMCs stimulated with ICs derived from malaria patients. (A) PBMCs isolated from healthy donors were
either unprimed or primed with 100 ng IFN-� and stimulated with 60 �g/ml of ICs from either P. vivax or P. falciparum malaria patients, and cytokine levels were
measured 24 h later. (B) CD14� monocytes were positively selected from PBMCs of three healthy donors. Total purified monocytes, monocyte-depleted PBMCs,
and total PBMCs were either unprimed or primed with IFN-� (100 ng/ml) and stimulated with 60 �g/ml of ICs from malaria patients. TNF-�, IL-1�, and IL-10
were measured by CBA 24 h after stimulation. Results are representative of one out of three experiments. (C) PBMCs were either unprimed or primed with 100 ng of
IFN-� overnight and stimulated with ICs for 24 h. FACS analysis was performed with gating on CD14� cells and evaluating the levels of expression (MFI) of CD16, CD32,
CD64, CD11b, or CD35. Results shown are representative of one out of three experiments. P values shown in panel A were determined by a paired t test.
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induced cytokinemia are not fully understood (38, 39). Here, we
provide evidence that ICs carrying Plasmodium DNA are potent
stimulators of cytokine synthesis by human monocytes through
activation of innate immune receptors and may contribute to the
pathogenesis of malaria.

Plasmodium-derived DNA and RNA stimulate nucleic-acid-
sensing TLRs (NAS-TLRs) and AIM2 inflammasomes, as well as
cytosolic sensors that activate the TBK1/STING/IRF3 pathway
(1–3, 40, 41). As a consequence, they elicit both the NF-�� and
type I IFN pathways. However, how parasite nucleic acids become
accessible to these intracellular innate immune receptors is not
completely understood. Recent studies from our group show that
hemozoin, a detoxification polymer of heme released from hemo-
globin digested by Plasmodium merozoites, may have an impor-
tant role in this process. We have shown that phagocytosis of
hemozoin, which is normally bound to Plasmodium DNA, makes
parasite nucleic acids readily available to endosomal TLRs (1, 3).
Furthermore, hemozoin crystals destabilize the phagolysosome
membranes, releasing their contents, including parasite nucleic
acids, into the host cell cytosol, culminating in activation of in-
flammasomes and other cytosolic sensors for DNA and RNA (3).
Internalization and digestion of infected red blood cells (RBCs)

also release hemozoin and parasite nucleic acids into phagolyso-
somes and subsequently into the cytosol, resulting in activation of
innate immune receptors. Therefore, opsonization by IgGs effi-
ciently mediates phagocytosis of infected RBCs as well as parasite
components and may contribute to innate immune activation
during malaria. The data presented here indicate that, as previ-
ously described for SLE (4, 6, 18, 19), DNA-containing ICs derived
from malaria patients trigger monocytes to express an NF-�B
transcriptional signature and produce high levels of proinflam-
matory cytokines. We hypothesize that ICs derived from malaria
patients bind to Fc receptors and are internalized, releasing para-
sitic DNAs into phagolysosomes and subsequently into the mono-
cyte cytosol, where they activate NAS-TLRs and AIM2, respec-
tively.

An important finding of this study is that malaria ICs induced
the formation of NLRP3� ASC�- as well as AIM2� ASC�-
containing inflammasomes in primary human monocytes. Induc-
tion of inflammasome assembly and caspase-1 activation requires
activation of the NF-�B pathway, for instance, by TLR agonists or
cytokines, and consequent expression of inflammasome compo-
nents, e.g., different members of the NLR family, pro-caspase-1,
and pro-IL-1� (42). We believe that ICs derived from the plasma

FIG 6 Purified ICs induce high levels of proinflammatory cytokines by CD14� CD16� monocytes from malaria patients. (A) PBMCs from P. vivax malaria
patients (n � 6) before and 30 to 45 days after treatment were isolated and stimulated with 60 �g/ml of ICs for 24 h. The levels of TNF-�, IL-1�, and IL-10 were
measured in supernatants by CBA. The P values were determined by a paired t test. (B) Flow cytometric analysis shows an increased frequency of CD14� CD16�

cells in PBMCs from two P. vivax malaria patients. The frequency of CD14� CD16� cells decreased to levels similar to those for healthy donors at 30 to 40 days
after treatment and parasitological cure. Results of three additional patients and healthy donors are shown in Fig. S4A in the supplemental material. (C) PBMCs
from two different P. vivax malaria patients were isolated and stimulated with 60 �g/ml of ICs from three different patients for 10 h in culture containing brefeldin
A and submitted to flow cytometric analysis to measure the expression of intracellular TNF-� and IL-1� in CD14� CD16� as well as CD14� CD16� monocytes.
The results are representative of two out of five patients. (D) Top panels show the gating strategy to identify the monocyte subsets: CD14� CD16�, CD14�

CD16�, and CD14lo CD16�. The middle two panels are representative histograms of CD64 and CD32 expression in P. vivax-infected patients and healthy donors
(HD). Bottom panels show the mean fluorescence intensity (MFI) ratios of CD16/CD32 (left) and CD64/CD32 (right) of the three monocyte subsets from P.
vivax-infected patients (n � 6) and in healthy donors (HD, n � 4). *, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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of malaria patients carry Plasmodium DNA and activate intracel-
lular NAS-TLRs, most likely TLR8 and TLR9, which may serve as
the first signal for inflammasome activation. IC-induced instabil-
ity of phagolysosomes and release of their contents into the cytosol
may trigger the formation of NLRP3 inflammasomes. In addition,
AIM2, a DNA sensor, is activated by Plasmodium DNA in mouse
cells and may also provide the second signal for assembly of in-
flammasome platforms during malaria (3). Hence, the results pre-
sented here indicate that circulating ICs from malaria patients
trigger the assembly of NLRP3�/ASC� and AIM2�/ASC� in hu-
man monocytes.

Monocytes are a heterogeneous population, which reflects dif-
ferent developmental stages or activation status with distinct
physiological roles, such as migration to lesions or entry to normal
tissues, production of proinflammatory or anti-inflammatory cy-
tokines, and antimicrobial effector functions (43). These mono-
cyte subsets can be distinguished based on expression of CD14 and
different members of the Fc�R family that may up- or downregu-
late cell responsiveness to ICs. For example, activation of
Fc�RIIIA (CD16a) or Fc�RI (CD64) promotes a proinflamma-
tory response, whereas Fc�RIIB (CD32) triggers an anti-inflam-
matory response (23, 44). Interestingly, the frequency of a single

nucleotide polymorphism in the Fc�RIIB (CD32) gene that abro-
gates the receptor function is augmented in populations from ar-
eas of endemicity, suggesting a survival advantage against malaria.
This same polymorphism is associated with susceptibility to SLE,
further suggesting that CD32 is a negative regulator of the proin-
flammatory response and protects against this autoimmune dis-
ease. Thus, the simultaneous signaling of activating versus inhib-
itory Fc� receptors sets the threshold for cellular activation and
prevents an excessive inflammatory response. Another important
finding of our study is that upon IC stimulation, CD14� CD16
(Fc�RIIIA)� CD32 (Fc�RIIB)low monocytes are the main source
of proinflammatory cytokines in PBMCs from malaria patients.
Hence, the enhanced expression of Fc�RIIIA and/or Fc�RI asso-
ciated with decreased expression of Fc�RIIB� in monocytes from
malaria patients seems to skew the balance of cytokine production
toward a proinflammatory response. Further research is needed to
determine whether activation of Fc�RIIIA or Fc�RI by ICs di-
rectly induces cytokine production by monocytes or simply li-
censes these cells to produce large amounts of proinflammatory
cytokines upon activation of intracellular DNA/RNA sensors.

Furthermore, the cytokine milieu is also an important deter-
minant of the capacity of ICs to stimulate either a pro- or anti-

FIG 7 Inflammasome specks containing NLRP3 and AIM2 after stimulation of monocytes with ICs. (A) Confocal analysis detected ASC (green), NLRP3 (red),
and AIM2 (red) specks in CD14� monocytes stimulated with 60 �g of ICs for 24 h. We also used antibodies to detect NLRC4 inflammasomes, but the results were
negative. Reaction with secondary antibodies in the absence of primary antibody yielded negative results on confocal analysis. The bar graphs show the
frequencies of specks in monocytes derived from healthy donors 24 h after stimulation with 60 �g of ICs. (B) Western blot assay showing pro-caspase-1 and active
caspase-1 (p10) levels in enriched monocytes from healthy donors stimulated with 60 �g/ml of ICs for 24 h. (C) Double-positive NLRP3/ASC and AIM2/ASC
inflammasome specks are found in circulating monocytes derived from P. vivax malaria patients but not from healthy donors.
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inflammatory response (23, 44). This dichotomy is regulated by
cytokines, such as IFN-� and TNF-�, which favor cellular activa-
tion, or IL-10, which modulates activation of professional phago-
cytes. For instance, depending on the clinical form of the disease,
Leishmania infection induces a pronounced proinflammatory re-
sponse (45). In contrast, induction of IL-10 by ICs promotes an
anti-inflammatory response leading to establishment of Leishma-
nia parasitism and disease (46). We found that in clinically ill
patients undergoing acute malaria episodes, ICs trigger mono-
cytes to produce high levels of TNF-� and IL-1� and low levels of
IL-10. This pattern of cytokine production changes to an anti-
inflammatory one after treatment and parasitological cure of ma-
laria patients. Likewise, monocytes from healthy donors stimu-
lated with ICs produce high IL-10 levels and low TNF-� and IL-1�
levels, whereas after IFN-� priming the production of the proin-
flammatory cytokines becomes dominant. These findings are
likely to be relevant to the cytokine storm during malaria; a hall-
mark of this inflammatory response is IFN-�-induced priming of
innate immune cells (30, 34).

It is noteworthy that our studies were conducted in Brazil,
where malaria is an occupational disease and affects mainly adults.
In addition, both P. vivax and P. falciparum forms of malaria in
Brazil are not as severe as those in Africa, where mostly children
�5 years of age develop the disease. Hence, significant differences
are likely to be found among populations from different geo-
graphic regions and different age groups as well as in pregnant
women. It is notable that different studies described TLR9 poly-
morphisms associated with severity of disease in both P. vivax and
P. falciparum malaria patients from Brazil and Africa, respectively
(47–49). Furthermore, higher levels of circulating ICs were found
in African children with severe malaria than in adults and children
with moderate clinical symptoms (50). Moreover, studies have
shown that symptomatic adults in Brazil as well as African chil-
dren infected with P. falciparum are hyperresponsive to TLR ago-
nists, including oligonucleotides containing unmethylated CpG
motifs (30, 51). Hence, as reported here for adult malaria patients,
children infected with P. falciparum are likely to be more respon-
sive to IC stimulation. In contrast, immune individuals in Africa,
who are continuously exposed to P. falciparum, are more tolerant
to disease and less responsive to a TLR9 agonist and may be less
responsive to malaria-induced ICs (52, 53).

In conclusion, many of the signs and symptoms of malaria are
a result of the excessive activation of innate immune cells. This
study provides evidence that ICs are important players in this
process. ICs from malaria patients appear to carry parasite DNAs
to the inner compartment of host cells, making them accessible to
the intracellular innate immune sensors, including NAS-TLRs
and AIM2 inflammasomes. Furthermore, our results suggest that
the ratio of Fc�RI and Fc�RIIIA (stimulatory) expression to
Fc�RIIB (inhibitory) expression influences the magnitude of cy-
tokine response by IC-activated monocytes. Hence, the IgG re-
sponse during the early stage of malaria has an important role in
the activation of the innate immune response and the pathogen-
esis of malaria.

MATERIALS AND METHODS
Ethics statement. The protocols and consent forms were approved by the
Institutional Review Board of the University of Massachusetts Medical
School (IRB-UMMS H-10268) and the Ethical Committees on Human
Experimentation from Centro de Pesquisa em Medicina Tropical (CEP-

CEPEM 095/2009) and Centro de Pesquisas René Rachou-Fundação Os-
waldo Cruz (CEP-CPqRR 2004), as well as by the National Ethical Com-
mittee (CONEP 15652) from the Ministry of Health, Brazil.

Patients. Individuals were between 18 and 60 years old. Malaria pa-
tients infected with either P. vivax (see Table S2 in the supplemental ma-
terial) or P. falciparum (see Table S3) were diagnosed by a thick blood
smear and confirmed by PCR. The clinical manifestations of malaria were
fever, myalgia, chills, nausea, vomiting, and/or diarrhea, but no patient
had complicated malaria requiring hospitalization. Patients infected with
P. falciparum received a fixed dose of the artemether (20-mg) and lume-
fantrine (120-mg) combination two times a day (four tablets each dose)
for 3 days followed by a single dose of primaquine (45 mg) on the last day
of treatment. Patients infected with P. vivax were treated with chloroquine
(150 mg) every 8 h for 3 days and a single dose per day of primaquine
(15 mg) for 2 weeks. The treatment schedule, dose, and drugs described
above have been tested and are recommended by the Brazilian Ministry of
Health. Healthy donors as well as patients before and after chemotherapy
had 50 to 100 ml of total blood collected using EDTA anticoagulant tubes.
Parasitemic cure was documented by PCR. Exclusionary criteria included
any patient who had a malaria episode in the last 6 months, severe anemia
(defined as a hematocrit of �35), severe disease (requiring admission to
the hospital), any comorbidity, recent or concurrent treatment with anti-
inflammatory or immunosuppressive drugs, or pregnancy.

IC quantitation. The MicroVue CIC-C1q enzyme immunoassay
(Quidel, San Diego, CA) was used to quantify circulating ICs in human
serum according to the manufacturer’s instructions. Serum samples were
diluted 1:50 and tested in duplicate. Results were obtained in reference to
the standard curve and were expressed as microgram-equivalents per mil-
liliter.

Anti-dsDNA and anti-ssDNA antibody ELISA. Anti-dsDNA anti-
body levels in sera of patients and healthy controls were determined as
previously described (54). Briefly, Costar 96-well half-area plates (Corn-
ing Inc., New York, NY) were dry coated overnight at 37°C with 25 �g/ml
of sonicated calf thymus DNA (Sigma-Aldrich, St. Louis, MO) that had
been filtered using a 0.45-�m Millex HA filter (Millipore, Germany) to
remove ssDNA. Plates were blocked and then incubated with serum sam-
ples (1:50 and 1:100 dilutions, 25 �l/well). IgG� or IgM� anti-dsDNA
antibodies were detected using alkaline phosphatase (AP)-labeled anti-
human IgG or anti-human IgM antibody (Southern Biotechnology, Bir-
mingham, AL) and developed with 50 �l/well AP substrate (Sigma-
Aldrich). The optical density at 405 nm (OD405) was measured by using a
Victor microplate reader (PerkinElmer, Waltham, MA). The enzyme-
linked immunosorbent assay (ELISA) to determine the levels of anti-
ssDNA antibodies was performed exactly as described above, except that
the plates were coated with 25 �g/ml ssDNA (Sigma-Aldrich).

IC purification. ICs from plasma were purified using the Affi-Gel
protein A MAPS II kit (Bio-Rad, Hercules, CA). Plasma (1 ml) was
thawed, homogenized, and diluted 1:1 using a filtered binding buffer at
pH 9.0 (Bio-Rad). An Econo-Column chromatography column (1 by
10 cm) was packed with 1 ml of Affi-Gel protein A agarose and equili-
brated with 5 bed volumes of binding buffer. The diluted sample was
applied, and the column was washed with 15 bed volumes of binding
buffer. IgG was eluted with 5 bed volumes of an elution buffer (pH 3.0),
neutralized immediately after elution by the addition of 1 M Tris-HCl
(pH 9.0), and quantified in a NanoDrop spectrophotometer.

Quantitative PCR. DNA samples were extracted from plasma or ICs
using the QIAamp circulating nucleic acid kit (Qiagen, Germantown,
MD) according to the manufacturer’s instructions. Reverse transcription-
quantitative PCRs (qRT-PCRs) were performed in a final volume of 20 �l,
containing ~1 �l DNA, 0.15 �l primers (10 �M initial concentration;
0.075 �M final concentration), 10 �l SYBR green PCR core reagents (Ap-
plied Biosystems), and 8.7 �l sterile water. Primer sequences for the hu-
man CYCLIN D1 (CCND) gene were GCTCCTGGTGAACAAGCTCAA
(F) and TTGGAGAGGAAGTGTTCAATGAAA (R), and those for the P.
vivax 18S from rRNA (SSUrRNA) gene were ACGATCAGATACCGTCG
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TCGTAAT (F) and CAATCTAAGAATAAACTCCGAAGAGAAA (R). A
standard curve was constructed by diluting each gene (from 101 to 107).
Real-time monitoring of PCR amplification was performed using a 7500
Real-Time PCR system, and results were analyzed with 7500 software,
v2.0.5. The temperature profile was 95°C for 10 min followed by 40 cycles
of denaturation at 95°C for 15 s and annealing/extension at 60°C for
1 min.

PBMC and monocyte assays. Blood from patients or healthy donors
was diluted 1:1 in phosphate-buffered saline (PBS), layered onto Ficoll-
Paque gradients with a density of 1.078 g/ml (GE Healthcare, United
Kingdom), and centrifuged for 15 min at 800 � g. The mononuclear cells
at the interface were aspirated, washed, and resuspended at 3 � 105 cells/
well in complete RPMI medium containing 10% fetal calf serum (FCS).
CD14� cells were purified using the EasySep positive selection kit accord-
ing to the manufacturer’s protocol (StemCell Technologies, Canada).
Cells were stained with anti-CD14 (allophycocyanin [APC]) (eBioscience,
San Diego, CA) and anti-CD16 (phycoerythrin [PE]) (Becton, Dickinson,
Franklin Lakes, NJ), and purity was checked by fluorescence-activated cell
sorting (FACS).

NanoString analysis. After stimulation with 60 �g/ml of purified ICs,
human monocytes were lysed in RLT buffer (Qiagen) supplemented with
�-mercaptoethanol and used to determine mRNA abundance by Nano-
String technology as previously described (53). In brief, lysates were hy-
bridized with capture and reporter probes overnight at 65°C and loaded
onto the nCounter preparation station. Purified target/probe complexes
were eluted and immobilized in the cartridge for data collection and
quantification by the nCounter digital analyzer. For side-by-side compar-
isons of nCounter experiments, data were normalized for small variations
using internal positive controls and seven housekeeping genes included in
the CodeSet. The heat map was constructed using the Tiger Multi Exper-
iment Viewer software, version 4.8.1.

Cytokine assays. Levels of human TNF-�, IL-1�, IL-6, IL-8, and IL-10
were measured in PBMC culture supernatants or plasma by the cytomet-
ric bead array (CBA) human inflammatory cytokine kit (Becton, Dickin-
son) and ELISA for IL-1� (R&D Systems, Minneapolis, MN).

Flow cytometry. For intracellular measurement of cytokines, PBMCs
were isolated and cultured for 8 h in the presence of ICs (60 �g/ml) and
brefeldin A (GolgiPlug; Becton, Dickinson). Surface markers were stained
with anti-CD11b, -CD32, -CD35, -CD64, and -CD14 (eBioscience, San
Diego, CA) or anti-CD16 (Becton, Dickinson), fixed and permeabilized
with Cytofix (Becton, Dickinson), and incubated with phycoerythrin–
anti-TNF-� or –anti-IL-1� (Becton, Dickinson). Subsequently, cells were
washed and analyzed by flow cytometry on a FACScan cytometer (Becton,
Dickinson).

Immunoblotting assays for caspase-1. Radioimmunoprecipitation
assay (RIPA) buffer (250 ml) plus protease inhibitor was added to a pellet
containing 1 � 106 stimulated PBMCs. After 15 min on ice, lysates were
centrifuged at 13,000 � g for 20 min at 4°C. Supernatants were separated
on a 15% acrylamide SDS-PAGE gel and transferred onto nitrocellulose
membranes. The membranes were incubated with pro-caspase-1- or
caspase-1-specific antibodies and visualized with HRP-conjugated anti-
body and the ECL system (Amersham, Bucks, United Kingdom).

Confocal analysis. Monocytes obtained from either healthy donors or
malaria patients were analyzed ex vivo or after in vitro stimulation with ICs
for 24 h. Monocytes were fixed with 4% paraformaldehyde, permeabilized
using Triton X-100, and stained with anti-NLRP3 (fluorescein isothiocya-
nate [FITC] or Texas Red), anti-NLRC4 (Texas Red), or anti-AIM2
(Texas Red) (all from Abcam [United Kingdom]) and anti-ASC (FITC)
(Santa Cruz, Dallas, TX). Images were acquired using an LSM510 micro-
scope (Zeiss, Germany) and analyzed by ImageJ software (National Insti-
tutes of Health). Dual-color images were acquired by consecutive scan-
ning with only one laser line active per scan to avoid cross-excitation.

Statistical analysis. All data were analyzed using GraphPad InStat 6.0
software. Comparisons were performed using a one-way analysis of vari-
ance (ANOVA) and Student’s t test. The paired t test was used in experi-

ments where we compared the same patients before and after treatment.
Mann-Whitney U testing was used for nonparametric analysis when data
did not fit a Gaussian distribution.
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