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Abstract

Large-scale population-based imaging studies of preclinical and clinical heart disease are 

becoming possible due to the advent of standardized robust non-invasive imaging methods and 

infrastructure for big data analysis. This gives an exciting opportunity to gain new information 

about the development and progression of heart disease across population groups. However, the 

large amount of image data and prohibitive time required for image analysis present challenges for 

obtaining useful derived data from the images. Automated analysis tools for cardiac image 

analysis are only now becoming available. This paper reviews the challenges and possible 

solutions to the analysis of big imaging data in population studies. We also highlight the potential 

of recent large epidemiological studies using cardiac imaging to discover new knowledge on heart 

health and well-being.
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Introduction

The burden of cardiovascular disease (CVD) is rapidly increasing due to higher prevalence 

of obesity, diabetes, and metabolic syndrome [1]. Our current understanding of multivariate 

risk factors involved in the etiology of CVD is largely due to prospective population-based 

research studies such as the Framingham Heart Study [2], the MONICA project [3], and the 

INTERHEART study [4]. These have established the now well-known major cardiovascular 

risk factors of hypertension, smoking, lipid profile, obesity, diabetes, and inactivity [5]. 

These studies demonstrate the value of population-based longitudinal studies for predicting 

and preventing cardiovascular disease.
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Recently, non-invasive imaging has been incorporated into several large-scale prospective 

longitudinal studies, in order to develop predictive biomarkers derived from cardiac 

structural and functional measurements [6, 7•]. Longitudinal follow-up and monitoring of 

events enable examination of the progression of disease from sub-clinical manifestations 

(e.g., remodeling) to clinical symptoms, and the study of the relationship between imaging-

derived biomarkers and adverse events. In particular, cardiac magnetic resonance (CMR) 

imaging is increasingly used in cohort-based studies, since it requires no ionizing radiation 

or anatomical “windows” and has high resolution and reproducibility [8–10]. CMR has a 

wide range of contrast mechanisms and can provide detailed information on cardiac 

morphology (size, shape) and function (ventricular pump function, tissue strain and torsion, 

regional wall motion abnormalities), flow, and microstructure [11, 12]. The combination of 

non-invasive imaging with epidemiological and clinical data offers a rich source of “big 

heart data,” which opens up new avenues of exploration to improve our understanding of the 

progression of sub-clinical disease across different population groups [13]. These studies 

therefore form a substantial part of the global move to P4 medicine (predictive, preventive, 

personalized, and participatory) [14] through big data informatics.

A substantial hurdle that must be overcome for this vision to be realized is the prohibitively 

large resource currently required for quantification of clinically meaningful parameters from 

the vast amounts of image information available. Current clinical practice typically requires 

manual assessment of the images, which is time consuming and prone to subjective bias in 

the measurements. Robust and accurate automated image analysis is required for objective 

assessment of imaging bio-markers. This review examines the challenges involved and 

recent steps towards this goal.

Large-Scale Cardiovascular Imaging Studies

Examples of large-scale studies which explicitly performed cardiovascular imaging for 

mechanistic insights into disease progression are summarized below.

Multi-Ethnic Study of Atherosclerosis

The Multi-Ethnic Study of Atherosclerosis (MESA) was designed to investigate the 

manifestation of sub-clinical disease and the progression to clinical symptoms in several 

population sub-groups in the USA (African-American, Chinese, Hispanic, and white) [15]. 

Initiated in 2000, MESA has followed 6814 men and women aged 45–84 years old across 

six centers for over 10 years. The analysis of 10 years' follow-up has recently been 

completed for around 3000 participants [16]. CMR was utilized to assess sub-clinical 

disease processes [17]. A substantial ancillary study program facilitates data sharing and 

collaborations.

Jackson Heart Study

The Jackson Heart Study (JHS) was designed to investigate the mechanism of 

cardiovascular disease in African-Americans living in the southeastern USA (Jackson, MS) 

[18, 19]. Overall, 5302 people aged 21–84 years participated. This high-risk group has 

increased mortality from cardiovascular disease as well as higher incidence of hypertension, 
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obesity, and diabetes. Economic, sociocultural, behavioral, dietary, and physical activity 

measures were related with cardio-metabolic risk factors [20]. Both CT and CMR 

examinations were acquired in approximately 3000 participants to measure heart function 

and calcium scores [21].

UK Biobank

UK Biobank (UKB) is an extensive study that recruited 500, 000 people aged between 40 

and 69 years in 2006–2010 from across the UK. Questionnaires, physical examinations, and 

biological samples have been obtained. An imaging enhancement sub-study has recently 

begun with the aim of imaging 6000 participants in the pilot phase [7•], with the objective of 

scaling up to 100,000 participants over a 5–6-year period. Imaging modalities include CMR 

examinations, abdominal MRI, brain MRI, carotid ultrasound, and DEXA. Data are being 

made available on request.

Canadian Partnership for Tomorrow Project

The Canadian Partnership for Tomorrow Project (CPTP) aims to develop a comprehensive 

study to understand how environment, lifestyle, and genetics contribute to chronic diseases 

[22]. Recently, a $16m initiative to gather detailed information from about 10,000 

participants was announced (The Canadian Alliance for Healthy Hearts and Minds), 

including data on environments, lifestyle, and behaviors that could affect their 

cardiovascular health. Participants will be assessed by MRI evaluation of the brain, blood 

vessels, heart, and liver.

ICELAND MI

ICELAND MI is an epidemiologic cohort study of the prevalence of myocardial infarction 

in older individuals. A total of 936 participants were randomly selected from men and 

women aged 67–93 years. CMR scans were collected, including gadolinium contrast images 

to identify scar tissue. This study has shown that a high degree of undiagnosed myocardial 

infarction exists in this cohort and that CMR was able to detect infarction more readily than 

standard methods [23].

Framingham Offspring Study

The Framingham Offspring study [24] was initiated in 1971 as a continuation of the highly 

successful Framingham study. Participants undergo periodic examinations every 3–4 years 

including comprehensive interim history, physical examination, blood pressure, blood tests, 

as well as other testing on a cycle-specific basis. Of these participants, 1707 underwent 

CMR scans during 2002–2006 [25].

The Dallas Heart Study

The Dallas Heart Study was initiated in 2000 and designed as a single-center population-

based study of multiethnic cardiovascular disease in Dallas County, TX. Of 6101 

participants interviewed, 2971 received imaging examinations including cardiac MRI, 

electron beam CT, and dual-energy X-ray absorptiometry. Cardiac MRI revealed two to 

three times higher prevalence of LV hypertrophy in blacks than in whites [26].
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Registries

Registries such as the EuroCMR registry [27] seek to evaluate the utility and efficacy of 

imaging in the clinical context. The main goal is to evaluate the prognostic potential of 

CMR as well as cost-effectiveness. More than 27,000 consecutive patients have been 

enrolled from 57 centers in 15 countries in the EuroCMR registry. Similarly, the Global 

CMR registry has recently been established to collate MRI patient data from around the 

world with 44,000 cases contributed to date.

Data Sharing Initiatives

Sharing imaging and clinical data with the wider research community is essential to the 

development of the field [28]. Central to this data sharing framework is a secured protection 

of private patient data, as required under the Health Insurance Portability and Accountability 

Act (HIPAA) regulations in the USA and Directive 95/46/EC in the EU. In order to facilitate 

data sharing, all data must be obtained with institutional review board approval and 

informed participant consent compatible with data sharing. Data must be de-identified and 

participant confidentiality and privacy must be protected so that the identity of the 

participants remains unknown.

Infrastructure to support data sharing has been developed by the Cardiac Atlas Project 

(CAP), a worldwide consortium to host large-scale cardiac image data with derived analyses 

and associated diagnostic information [29]. Over 3000 CMR cases have been contributed to 

the database from several different studies. More than 20 research groups worldwide are 

using this resource for various research activities, including large-scale generalization of 

cardiac motion for percutaneous coronary intervention, characterization of shape variation 

for medical device design, learning-based registration to extract morphological information, 

quantification of local cardiac remodeling for electromechanical simulations, and automatic 

identification of wall motion abnormalities.

In order to pool data from several disparate studies, any bias in the results due to imaging or 

analysis protocol must be removed, so that data from all studies can be compared on a level 

playing field. Atlas-based bias correction methods have been proposed for solving this 

problem [30]. Patient-specific models of heart shape and motion are used to provide a 

standard coordinate system, which maps the heart according to anatomical location. The 

shape parameters of the models give information on the shape mean and variation across the 

cohort, as well as the progression of remodeling due to disease or the benefits of treatment. 

CAP has developed methods to pool data from different sources in a standardized manner 

and to correct bias arising from imaging or analysis protocol. CAP is endorsed by the 

Society for Cardiovascular Magnetic Resonance, which maintains an upload site where 

cases can be contributed to the atlas project [31].

Atlas-based methods have been applied in the MESA baseline cohort to investigate the 

shape variation among subcohorts [32•]. Figure 1 shows the analysis pipeline. Contours 

derived from the core laboratory were adjusted for breath-hold misregistration and registered 

to a common coordinate system. Principal component analysis was used to characterize 

global shape distributions. After correction for height, the dominant shape component was 
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associated with heart size. After size, the second dominant shape component was sphericity 

at end-diastole (13 %) and concentricity at end-systole (10 %). The resulting shape 

components distinguished differences due to ethnicity and risk factors with greater statistical 

power than traditional mass and volume indices.

Challenges

With large population-based studies involving medical imaging, there is an enormous 

amount of data processing required. Without automated processing methods, this data 

mountain would be insurmountable. Crucial to the development of such methods is the 

availability of benchmark datasets with validated ground truth. These are essential for the 

validation of algorithms and objective comparison of the strengths and weaknesses of 

different methods. Several problem areas are considered below, with emphasis on open 

“challenges”: community-driven collaborative projects, often held in association with a 

conference, designed to enable researchers to compare and contrast different methods 

applied to standardized datasets with common ground truth. An index of challenges in 

general biomedical image analysis can be found at http://www.grand-challenge.org/, while 

more specialized cardiac image and modeling analysis challenges are available at http://

www.cardiacatlas.org/web/guest/challenges.

Ventricular Function

Balanced steady-state free precession CMR imaging can provide the most accurate estimates 

of mass and volume of any imaging modality. Several automated methods have been 

proposed for locating the inner and outer contours of the left and right ventricles; for a 

review, see [33]. Common methods include graph cut [34] or level set [35]segmentation 

methods, and multi-atlas registration and label propagation methods [35]. Benchmarking 

studies are particularly useful in this area but are limited by the need for validated ground 

truth. Traditionally, experts manually draw contours on each image, but this is 

counterproductive for high-volume data due to time-consuming and painstaking processes. 

This has resulted in limited numbers of cases with expert ground truth.

In 2009, a left ventricular segmentation challenge was held using 45 cases from a mixed 

patient dataset (normal, heart failure, myocardial infarction, and hypertrophy) by using 

expert-drawn contours as the ground truth at end-diastolic and end-systolic frames [36]. The 

data are in the public domain and can be accessed directly via the Cardiac Atlas Project 

website. To leverage the robustness and usability of large-scale data for ventricular function 

benchmarking, an updated challenge was held in 2011 with more cases (200 patients with 

myocardial infarction) and ground truth available for all frames in the cine sequence [37]. 

An interesting feature of this work is the ability to update the consensus contours using 

statistical fusion methods. If a new dataset meets certain quality requirements, with 

acceptable bias and precision, the ground truth contours can be updated to incorporate this 

new information. This resulted in a mechanism by which researchers can continue to upload 

results and refine the ground truth [37]. As more groups participate, the consensus becomes 

more robust and less influenced by any particular contributor.
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Flow

Blood flow is directly related to the morphology and function of the cardiovascular system. 

Accurate blood flow measurement remains a challenge because of the process involving 

flow velocity field mapping inside heart chambers and through the great vessels as well [38]. 

Flow through an image slice or within a 3D block of tissue must be analyzed by firstly 

segmenting the vasculature and secondly integrating the phase contrast velocity within the 

vessel over time [39]. Goel et al. [40] developed a method for automatically identifying the 

ascending and descending aorta and computing flow in phase contrast MRI acquisitions, and 

applied this to 1884 participants of the Dallas Heart Study. Two challenges relating to 

computational analysis of blood flow with MRI velocity data have made single-case 

benchmark data available to the community [41, 42].

Perfusion

The automated analysis of myocardial blood flow (perfusion) remains challenging, since 

there is no standard perfusion imaging protocol. Quantification of absolute blood flow in 

milliliters per gram per minute required detailed knowledge of the pulse sequence 

parameters, in order to correct for the non-linear relationship between contrast concentration 

and signal intensity [43]. There are also several methods available for quantitative analysis 

[44]. However, some methods have shown promising results for quantification on a pixel 

basis [45]. A benchmark dataset has been provided for testing motion correction algorithms 

in the 2014 STACOM perfusion challenge [46].

Landmark Detection

The location and motion of specific landmarks is useful for quantifying cardiac structural 

and functional characteristics and as a precursor for other analyses such as ventricular mass 

and volume quantification. For example, the location of the mitral valve provides 

longitudinal shortening as well as enables the base of the left ventricle to be located. A 

landmark detection challenge in 2012 made 200 cases with manual ground truth available 

for validation and benchmarking [42]. Machine learning methods show promise for 

landmark detection but require large datasets with manual ground truth in order to train the 

algorithms [47, 48].

Scar Quantification

Late gadolinium enhancement provides a robust method for quantifying the scar burden in 

patients with myocardial infarction [49]. A left ventricular scar identification challenge was 

held in 2012 [42]. The challenge made available 30 late gadolinium enhancement MRI data 

sets to participants for segmentation of enhanced regions from post-myocardial infarction 

from 15 patients and 15 pigs that had been subjected to myocardial ischemia. Ground truth 

was established by using manual segmentations from experienced clinical observers.

Left atrial scar burden is also important for evaluation of atrial fibrillation, both for 

identification of patients at risk and for the evaluation of ablation therapy. A benchmark 

challenge for left atrial scar burden was performed recently in association with the 

International Symposium of Biomedical Imaging [50].
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Motion Analysis

CMR tissue tagging provides direct measures of tissue function [51]. Myocardial tissue 

tagging was used in a sub-set of the MESA cohort to evaluate tissue function independently 

of geometric pump function [52]. The Harmonic Phase method was used for analysis since 

this is automatic after contours enclosing the heart have been defined [53]. However, phase 

unwrapping errors and lack of resolution can cause problems. Feature tracking methods can 

provide robust estimates of global strain from untagged cine images, although regional strain 

estimates are more variable [54]. These methods were derived from speckle tracking 

algorithms designed for echo-cardiographic data [55]. All three of these methods were 

compared in an open challenge for motion estimation in which data from 15 volunteers and 

a phantom were made available for benchmarking and validation [56].

T1 Mapping

Information on myocardial cellular structure can be inferred from the local tissue T1, and 

non-contrast T1 mapping methods are now available [57] which give information on the 

extra-cellular matrix [58]. Non-contrast T1 mapping is being employed in the UK Biobank 

CMR extension [7•]. Pre- and post-contrast T1 maps can be used to calculate extra-cellular 

volume [59]. These methods are not currently standardized, but several methods have been 

proposed for automated analysis [60, 61].

Conclusions

Large-scale population-based studies of cardiovascular disease are increasingly utilizing 

non-invasive imaging methods to investigate the mechanisms behind disease development 

and predict future outcomes. This presents challenges for data processing due to the 

enormous amount of data generated. These are being met by community-driven 

benchmarking and validation studies, which are sharing data for the objective evaluation of 

analysis methods.
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Fig 1. 
Flow chart of the atlas construction: a fiducial landmarks defined on the images (3D view 

from anterior), b contours drawn by the core lab, c 3D finite element model showing shape 

control points (yellow), d calculation of remodeling indices, e variation in “sphericity” 

remodeling index (upper and lower panels show ±2σ shape variation from the mean). 

(Modified with permission from Medrano-Gracia et al. [32•]
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