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Abstract

The prediction of protein folding rates is a necessary step towards understanding the princi-
ples of protein folding. Due to the increasing amount of experimental data, numerous pro-
tein folding models and predictors of protein folding rates have been developed in the last
decade. The problem has also attracted the attention of scientists from computational fields,
which led to the publication of several machine learning-based models to predict the rate of
protein folding. Some of them claim to predict the logarithm of protein folding rate with an
accuracy greater than 90%. However, there are reasons to believe that such claims are
exaggerated due to large fluctuations and overfitting of the estimates. When we confronted
three selected published models with new data, we found a much lower predictive power
than reported in the original publications. Overly optimistic predictive powers appear from
violations of the basic principles of machine-learning. We highlight common misconceptions
in the studies claiming excessive predictive power and propose to use learning curves as a
safeguard against those mistakes. As an example, we show that the current amount of
experimental data is insufficient to build a linear predictor of logarithms of folding rates
based on protein amino acid composition.

Introduction

Understanding the self-organization of protein structure is one of the most important prob-
lems of the last 50 years in biophysics [1]. Massive experimental and theoretical efforts have led
to a better understanding of protein folding [2] culminating in successful predictions of protein
structures [3-6] and de novo protein design [7]. In the light of this spectacular progress, appar-
ently simpler tasks still remain problematic. One of them is predicting the rate of protein fold-
ing, i.e. the speed at which a protein renatures in vitro in conditions matching the physiology.
Surprisingly, proteins fold fast (from microseconds [8] to hours [9]) even though the number
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of conformations is astronomical. This fact, known as the Levinthal paradox [10], remained
unexplained until the discovery of nucleation mechanism [11]. Nucleation-based model solved
the paradox, while predicting that the time required to fold a protein is proportional to L*?,
where L is the number of residues [12,13]. In contrast, the influence of the protein topology on
the folding was discovered empirically [14]. Developing methods to predict protein folding
rate may highlight unknown determinants of protein folding and lead to a detailed understand-
ing of how proteins self-organize.

Predictive methods usually provide an estimate for the natural logarithm of the folding rate
of a protein (here referred to as the log folding rate), and they are typically scored using the cor-
relation between the predicted log folding rate and the actual log folding rate. For convenience,
we will refer to this score as the “correlation of the model”, even though it is a joint property of
the model and of the training set. It has long been observed that the folding rate of a protein
strongly depends on its length [13,15,16]. Consequently, models that predict the log folding
rate using only the length of a protein can reach correlations as high as 0.70 [17]. By using the
topology of the protein [14], the correlation can be further improved [18]. Can more sophisti-
cated approaches make better predictions, and if so, what key features must be taken into
account?

The ongoing accumulation of experimental data [14,19-22] has accelerated the develop-
ment of statistical and machine learning methods to address this question [23-34]. Those stud-
ies claim correlations ranging from 0.74 [27] to 0.99 [24], among which many lie above 0.90
[24,29-33]{FormattingCitation}. Here, we tested three of those models [24,26,29] against
recently collected experimental data. We found much lower predictive powers than the original
claims. In all instances, the unifying cause was overfitting, an umbrella term describing situa-
tions where models perform well on training data and poorly on new data. Based on this, we
suggest that claims of high correlations should be taken with caution and that future studies
should demonstrate that they do not suffer from overfitting by using learning curves.

Results
Data set

We collected folding rates obtained experimentally using two references [22,35]. The whole
data set contains 113 single-domain proteins without disulphide bonds; 74 of those have two-
state folding kinetics in physiological conditions, and the remaining 39 have multi-state kinet-
ics (S1 Table). Here on we refer to this combined data set as “data set 113”.

Small sample singularities

In a study by Huang and Tian [26], the authors introduce a parameter Q for each amino acid,
defined as the sum of its rigidity R [36] and its dislike for all regular secondary structures D. D
is calculated as a linear combination of parameters P, Pg and Py, [37], which measure the
resistance of each amino acid type to form o-helix, f-sheet and reverse turn, respectively. The
authors estimated the three parameters by fitting a linear regression model on experimental log
folding rates. Summing Q over all the amino acids of the protein, they obtain a total €, used as
a predictor of the log folding rate. The reported correlation of the model for 40 two-state pro-
teins from 30 to 200 residues long is equal to 0.82 (blue circles in the Fig 1).

We benchmarked the model of Huang and Tian using log folding rates of proteins from
data set 113 (red circles in the Fig 1). On this new data set, the model achieved a correlation of
0.63. Here we took care of including only two-state proteins, as the model makes claims for this
category only. For the same reason, we included proteins of length comprised between 30 and
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Fig 1. Correlation of Huang and Tian’s model. The correlation between Q, the sum of amino acid foldabilities proposed in [26], and the log folding rates for

two-state proteins. Blue dots represent proteins from the data set of Huang and Tian [26]. Red symbols show two-state proteins from data set 113.

Correlation coefficients were calculated using only proteins of length comprised between 30 and 200 residues, depicted as circles (0.82 for Huang and Tian’s

/

set and 0.63 for two-state proteins from data set 113). Proteins with fewer than 30 amino acid residues are shown as triangles, while those with more than

200 residues are shown as squares. The line shows the prediction from the original model by Huang and Tian [26].

doi:10.1371/journal.pone.0143166.9g001

200 residues only. Thus, the discrepancy is not due to extrapolation beyond the domain of

validity of the model.
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Fig 2. Correlation coefficient of Huang and Tian’s model for different samples. Forty data points were
randomly sampled from a meta data set and the model described by Huang and Tian [26] was fitted again
10,000 times. The meta data set consists of two-state proteins from 30 to 200 residues combined from [26]
and data set 113, without duplicates. The histogram of the obtained correlation coefficients was then plotted.
The correlation coefficient ranges from 0.5 to 0.8 approximately, which shows that robust estimation of the
correlation cannot be achieved with 40 proteins.

doi:10.1371/journal.pone.0143166.9002

To understand the difference with the original claim, it is important to realize that linear
regression is an estimation problem. In other words, the coefficient of correlation is a random
variable with an inherent uncertainty due to sampling. A widespread misconception is that
unbiased estimators are exact. The fundamental issue here is that the estimators are inaccurate
due to the low amount of experimental data in the training set. The correlation can be high
because the training set accidently contains an unusually high number of proteins that strictly
follow the model of Huang and Tian.

To show this, we combined the original training data set from [26] with data set 113,
removed duplicates, and sampled 40 proteins at random (the number of proteins of the original
training set) in order to fit again the model of Huang and Tian. As can be seen on Fig 2, the
coefficients of correlation thus obtained fluctuate widely; most of the values are comprised in
the range 0.5-0.8.

A danger of statistical approaches is that the training sample may not be representative of
future data sets. Modelling peculiarities found only in the training set will result in overfitting.
With a correlation equal to 0.82, the training set used by Huang and Tian is an outlier
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(p = 0.004), explaining why the predictive power was low on new data. In general, smaller sam-
ples have more chances of being aberrant. With 40 data points, the authors may have found a
correlation anywhere between 0.5 and 0.8. Unfortunately, one cannot know that a sample used
for training is non-representative before acquiring new data. But one can discover that this is
possible by inspecting the variance of the estimates. Learning curves can be used for this pur-
pose, as we suggest below.

Overtraining

In another study by Gromiha, the author predicts the log folding rates of proteins from physi-
cal and conformational properties of their amino-acids [24]. Separating proteins based on their
secondary structures (“alpha-helices only”, “beta-sheets only” or mixed) he obtains three mod-
els, with a range of correlations between 0.95 and 0.99. In a later study by Gromiha, Thanga-
kani and Selvaraj, the authors use the same approach on a larger data set and obtain
correlations between 0.90 and 0.99 [29].

We challenged the models of the first study with the proteins of data set 113 and obtained a
predictive power much lower than claimed [24]. The coefficients of correlation for categories
“alpha-helices only”, “beta-sheets only” and mixed were -0.28, 0.008 and 0.02, respectively. The
first measure is negative, but not significantly different from 0 (correlation test, p = 0.147), so it
should be interpreted as no evidence for statistical association. The last two numbers speak for
themselves.

The parameters of the second study are not given explicitly but the authors provide the
model as web service [29]. The interface conveniently allows to submit inputs of unknown
structural class. Using this option, we submitted the proteins of data set 113 and obtained a
correlation coefficient with the measured log folding rates equal to 0.14. In summary, those
models have no or very modest predictive power. How to explain that they had spectacular per-
formance on the earlier data sets?

The common issue between those models is overtraining. When the same training set is
used many times, the risk is that a model accidentally captures the singularities of the data set.
This risk increases when the training set is small and when the number of trainings is large. In
the first study for instance, the training set for “beta-sheets only” consisted of 13 proteins [24],
and it was used to train over 2 million models (each with 3 to 6 parameters).

Overtraining is a ubiquitous risk in machine learning because it is easy to perform unwit-
tingly. The standard approach to reducing this risk is to separate the data into a training set
and a testing set. The training set is used to choose a predictive model, and the testing set is
used to evaluate its predictive power. In the variant of this approach called cross-validation, the
procedure is repeated and averaged, so that the same data point may be used for training and
for testing. Cross-validation is a good statistical practice but not a guarantee, as even cross-vali-
dated models may be overtrained.

To illustrate this point, we generated two Gaussian samples with a pseudo-random genera-
tor. Being generated separately, the samples are independent. Consistently, the measured cor-
relation between them was -0.0495 (correlation test, p = 0.625). When then performed 5-fold
cross-validation as in [34] by segmenting the samples in five blocks, using four to train a linear
model and measuring the predictive power on the fifth. There are many ways to segment the
sample in 5 blocks, and there is as much flexibility to choose a partition where the predictive
power is abnormally high. In our example, 1,000,000 tested partitions gave the best correlations
equal to 0.20 (positive) and -0.47 (negative), associated p-values without multiple-hypothesis
correction equal to 0.044 and 7-1077, respectively (Fig 3). Claiming that these models have
cross-validated correlation equal to 0.20 and -0.47 is true but harmful, since there is in reality
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Fig 3. Cross-validation results for two independent Gaussian samples. In this toy model, we try predict a
variable from an uncorrelated predictor. The predictive power is null, but the model can be overtrained and
give the illusion that the variables are correlated. We repeatedly performed 5-fold cross validation 1,000,000
times on the same data set (n = 100). The plot shows the distribution of the obtained coefficient of correlation.
The highest value is 0.202, and the lowest is -0.472 (associated p-values without multiple-hypothesis
correction equal to 0.044 and 7-1077, respectively).

doi:10.1371/journal.pone.0143166.g003

no statistical association between the variables. As in other cases of overfitting, the definitive
criterion is to measure the predictive power on new data, that is to say data that were never
“seen” by the model at any stage of its construction.

How much can be achieved?

How much predictive power can be achieved from statistical and machine learning-based meth-
ods is an open question. In particular, it is often impossible to establish a hard limit between the
achievable and the non-achievable. In this section, we focus on composition-based predictions of
the log folding rate because the number of features is small enough for an exhaustive linear fit.
We consider the most complete linear model based on amino-acid composition, that is to say,
the one that consists of one parameter per amino-acid. In this model, each amino-acid type
brings its own contribution to the log folding rate of the protein. This model contains 21 parame-
ters and extends every linear model based on amino-acid composition.
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Fig 4. Learning curves of the linear regression model. The mean (n = 1000) correlation coefficient of the training and test sets between the predicted and
observed log folding rates (blue and red lines, respectively) is plotted as a function of the dataset size, together with the standard deviations of both sets (blue
and red regions, respectively). Sixty percent of the examples are assigned to the training set and 40% to the test set. a. Log folding rates were fitted with 20
features corresponding to the absolute amino acid frequency of each protein. A clear overfit can be seen as a gap between the two correlation lines. b. Log
folding rates were fitted using a single feature corresponding to the amino acid length of each protein to the power of 2/3, In(ks) ~ -L?® [13]. There exists a
nearly-perfect correspondence between training and test sets, and a slightly higher correlation on the test set than in Fig 4A.

doi:10.1371/journal.pone.0143166.9004

We fitted this model with an increasing number of data points and plotted the learning
curves in Fig 4A. The learning curve consists of the amount of explained variance R* (the
square of the coefficient of correlation) on a test data set and on the data set used for training.
As the sample size increases, there are more points to fit in the training set with the same num-
ber of parameters, so the explained variance decreases (blue). Meanwhile, the model becomes
more general and acquires more predictive power on new data, so the explained variance on
the testing set increases (red). The vertical distance between the two lines shows the extent of
overfitting, or in other words the lack of fit of the model when confronted with new data.
When the two curves meet, the model is not overfitted and the true predictive power is the
value of the common asymptote. Note that for consistency with the previous sections, we plot-
ted the correlation coefficient instead of the more common R?. The two lines do not converge,
even when all the data points available are included, which means that there is presently not
enough experimental data to properly train the complete model.

On the other hand, we used one of the simplest existing model to fit the same data, namely
the nucleation-based model In(kg) ~ -L*[13], which only takes into account the size of the
protein L. For this model, the learning curve shows that the explained variances on the training
and test sets are indistinguishable (Fig 4B), which means that the model is not overfitted (for
LY?[16] and In(L) [15] the curves are indistinguishable as well, data not shown). However, the
performance corresponds to a correlation around 0.70 with a significant uncertainty around
this value even when all the data points are included.

Using the same learning curve approach, we tested slightly more complicated models based
on contact order [14,18,38]. Absolute contact order is the average number of residues separat-
ing by chain the atoms contacting in protein structure [18,38]. Relative contact order is a
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further normalization of absolute contact order by the number of residues, thus describing the
average fraction of protein residues separating the atoms contacting in the structure [14]. For
the purpose of calculating contact order, atoms are assumed to be in contact if they are closer
than d = 6A and the chaining distance between corresponding residues AL > 1, which is rea-
sonable from the physical point of view. With fixed parameters d and AL, the learning curves
are indistinguishable, as with L*> (Fig 5A and 5B). If parameters d and AL are allowed to vary,
the learning curves diverge slightly (Fig 5C and 5D). This slight overfit means that even for a
model with three parameters, the currently available amount of experimental data can be an
issue.

In summary, the lack of experimental data on the rate of protein folding is such that model
fitting suffers large fluctuations, even for models with few parameters.

Discussion

The abstraction of protein folding rate has reduced the complex process of protein folding to a
single number, making it easy to formalize for machine learning tasks. The regular releases of
experimental folding rates [14,19-22,35] makes the prediction of protein folding rates a tempt-
ing task, especially with the use of machine learning techniques, where many models can be
proposed regardless of their interpretation. The additional possibility to split proteins into dif-
ferent structural classes or into two- and multi-state proteins (which proved initially useful in
understanding protein folding principles [14,18]) makes the task even easier. While these tasks
are easy to perform, it is equally easy to make a mistake while performing them.

When challenging published models with new data, we discovered that the claims to predict
the log folding rate with a correlation higher than 0.90 were too optimistic because the models
were overfitted. More precisely, smallish data set and overtraining were the major sources of
overfitting. It is worth mentioning that we did not find any example of overparameterization,
which is another well-known pitfall of machine learning. With 113 experimental folding rates,
the data set used in this study is one of the largest available. This is far from “big data”. Methods
of prediction and feature extraction that have proved successful for larger data sets may not be
directly applied to folding rates. Or, more correctly, not until more data is available. In the cur-
rent context, hypothesis-driven approaches are more called for.

The established determinants of protein folding are protein size and topology [13-16,18].
We argue that the low amount of experimental data currently prohibits discovering more sub-
tle determinants of protein folding rates by statistical and machine-learning methods. The scar-
city of experimental data makes it easier to be the victim of overfitting. As a recommendation
for future studies, we suggest to use learning curves to demonstrate the validity of the models
instead of correlations and p-values.

Methods
Data set

We collected folding rates obtained experimentally using two references [22,35]. The whole
data set contains 113 single-domain proteins without disulphide bonds (“data set 113”). Sev-
enty four of those have two-state folding kinetics at physiological conditions, and the remain-
ing 39 have multi-state kinetics (S1 Table). In order to reproduce the method developed in
[26], we took amino acid compositions, sum of Q’s and log protein folding rates from the Sup-
plementary Table 2 of ref. [26] for 42 records used therein. Huang and Tian excluded two pro-
teins from the final fit, thus leaving 40 proteins for analysis.
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Fig 5. Learning curves of the contact order models. a. Relative contact order model with fixed parameters d and AL (atoms contact in three-dimensional
protein structure if they are closer than d = 6A and belong to the residues having distance by chain AL > 1). b. Absolute contact order model with fixed
parameters d and AL. Relative (¢) and absolute (d) contact order models with varying parameters d and AL. For relative contact order model we restrict the
data set to two-state proteins having less than 150 residues.

doi:10.1371/journal.pone.0143166.g005

Analyses

For one-parameter linear regression fit we used “foldability” Q. Huang and Tian introduced
this parameter as a sum of amino acid rigidity and its dislike for all regular secondary structures
[26]. They also determined Q for each amino acid type. Summing Q values of all residues of
protein we calculated the total Q. FOLD-RATE [29] was queried by a custom Bash script per-
forming an HTTP POST request containing the sequence of the protein of interest and parsing
the html response from the server. Briefly, wget was run with options http://psfs.cbrc.jp/cgi-
bin/fold-rate/foldrateCalculator.pl—postdata = "sequence = $seq&eqn = unknown". All the lin-
ear regression analyses were performed using the Im() function in R with default parameters.
Correlations were likewise computed with the cor() function of R.

To give a lower bound on the number of trainings from [24], we used the following passage
from the text “As the single property with the highest r-value is not sufficient for accurate pre-
diction I have combined different amino acid properties with a multiple regression fit. The
computation has been carried out with the combinations of two to five amino acid properties”.
There are 2,138,360 different ways to choose two to five amino acid properties among 49, rep-
resenting as many different models, with 3 to 6 parameters each.

Supporting Information

S1 Table. The list of proteins used in the paper.
(PDF)
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