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Abstract
In this study, we investigated the suitability of ultrathin and porous polyimide (PI) membrane

as a carrier for subretinal transplantation of human embryonic stem cell (hESC) -derived ret-

inal pigment epithelial (RPE) cells in rabbits. The in vivo effects of hESC-RPE cells were

analyzed by subretinal suspension injection into Royal College of Surgeons (RCS) rats. Rat

eyes were analyzed with electroretinography (ERG) and histology. After analyzing the sur-

face and permeability properties of PI, subretinal PI membrane transplantations with and

without hESC-RPE were performed in rabbits. The rabbits were followed for three months

and eyes analyzed with fundus photography, ERG, optical coherence tomography (OCT),

and histology. Animals were immunosuppressed with cyclosporine the entire follow-up

time. In dystrophic RCS rats, ERG and outer nuclear layer (ONL) thickness showed some

rescue after hESC-RPE injection. Cells positive for human antigen were found in clusters

under the retina 41 days post-injection but not anymore after 105 days. In rabbits, OCT

showed good placement of the PI. However, there was loss of pigmentation on the hESC-

RPE-PI over time. In the eyes with PI alone, no obvious signs of inflammation or retinal atro-

phy were observed. In the presence of hESC-RPE, mononuclear cell infiltration and retinal

atrophy were observed around the membranes. The porous ultrathin PI membrane was

well-tolerated in the subretinal space and is a promising scaffold for RPE transplantation.

However, the rejection of the transplanted cells seems to be a major problem and the given

immunosuppression was insufficient for reduction of xenograft induced inflammation.
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Introduction
Retinal pigment epithelium (RPE) is a monolayer of cells between the neural retina and the
choriocapillaris. It is vital as part of the blood-retina-barrier. It also supports photoreceptor
function and survival by providing nutrients, absorbing stray light, phagocytosing photorecep-
tor outer segments, and controlling regeneration of visual pigments, ion flow, and oxidative
stress [1].

RPE degeneration has a major role in pathogenesis of retinal diseases including age-related
macular degeneration (AMD), a leading cause of blindness in developed societies [2]. In AMD,
local degeneration of RPE eventually leads to death of photoreceptors [3]. A promising future
treatment for AMD is cell therapy and submacular transplantation of RPE, which has been
studied extensively [4]. Human pluripotent stem cells (hPSCs) are potential and readily avail-
able source for RPE replacement [5, 6]. Recent stem cell -based clinical trials for RPE-related
diseases aim to establish safety and dosing with RPE cell suspensions derived from human
embryonic stem cells (hESCs) [7, 8]. However, concerns remain that suspended RPE may fail
to survive or function in the long-term on the diseased Bruch’s membrane [9, 10]. Another
approach under clinical trial in Japan is transplantation of autologous human induced pluripo-
tent stem cell (hiPSC) -derived RPE sheets without a supporting artificial scaffold [11, 12].

Biomaterial based carriers could facilitate surgical handling of intact RPE and ensure better
long-term function of the transplanted cells [11–13]. Several materials have been proposed for
RPE transplantation [14–17]. However, to date, transplantations of human RPE-scaffolds have
been reported only with adult and fetal RPE cells on polyester in rabbits [18, 19] and with
hPSC-RPE cells on parylene-C in rats [13, 20]. Despite encouraging results, further studies are
needed to improve the biocompatibility of the scaffolds. One potential material is synthetic
polymer polyimide (PI). Depending on its structure, PI has been clinically approved and its
ocular biocompatibility has been demonstrated [21, 22]. Previously, PI membranes have been
tested for subretinal transplantation in rats and pigs [23, 24]. We have also demonstrated that
PI supports culture of hESC-RPE [25].

In this study, we aimed to further characterize the suitability of ultrathin and porous PI for
subretinal transplantation of hESC-RPE. First, we assessed the in vivo effects of the hESC-RPE
cells by injecting them subretinally in Royal College of Surgeons (RCS) rats, an FDA approved
animal model for retinal degeneration [26]. For PI membrane transplantations, a larger eyed
animal model rabbit was chosen for evaluation of surgical feasibility of the membrane. To our
knowledge, this is the first report of in vivo studies with hPSC-RPE-biomaterial sheet trans-
plantation in larger animals.

Materials and Methods

Surface and permeability characterization of ultrathin PI membrane
The properties of ultrathin (7.6 μm) PI membranes (pore diameter 1 μm, pore density 2.2 x 107

pores/cm2; it4ip, Seneffe, Belgium) were examined with scanning electron microscopy (SEM),
atomic force microscopy (AFM), contact angle analysis, and Ussing chamber system. A com-
monly used RPE culture substrate, polyethylene terephthalate (PET) membrane, was analyzed
for comparison.

The pore distributions were determined by SEM (Quanta 3D, FEI, UK) operating at 5 kV.
Samples were sputter coated with a thin layer of gold, using an Emitech K500X (Quorum Tech-
nologies, UK) to reduce charging and image distortion.

AFM (Nanoscope Dimension 3100, Vecco, USA) was equipped with a TESPA silicon tip
(Vecco) mounted on a cantilever of stiffness of 20–80 N/m-1, operating at a resonance of 300

Polyimide as Carrier for Subretinal Delivery of hESC-RPE

PLOSONE | DOI:10.1371/journal.pone.0143669 November 25, 2015 2 / 18

grant numbers 866/31/2009 and 549/31/2011 (HS);
the Academy of Finland, (www.aka.fi), grant numbers
218050 (HS), 133879 (TI), and 260375 (SN); the
Finnish Cultural Foundation, (www.skr.fi), grant
number 130858 (AS); Tampere Graduate Program in
Biomedicine and Biotechnology, (www.uta.fi/bmt/
doctoral_programme.html) (HH); BONFOR/Gerok
Scholarship, (www.ukb.uni-bonn.de/quick2web/
internet/internet.nsf/vwUNIDLookup/
B72A5EAAF5CFF627C1257658002584DA), grant
number O-137.0019 (BS and FT); the Emil Aaltonen
Foundation, (www.emilaaltonen.fi), (SN). None of the
funders had any role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: PA and OO are employed by
Santen Oy. This project was partly funded by TEKES,
which requires shared funding with industrial
partners. In this study the commercial partner was
Santen Oy. This commercial affiliation has not
influenced the performance or presentation of the
work described in this manuscript.

http://www.aka.fi
http://www.skr.fi
http://www.uta.fi/bmt/doctoral_programme.html
http://www.uta.fi/bmt/doctoral_programme.html
http://www.ukb.uni-bonn.de/quick2web/internet/internet.nsf/vwUNIDLookup/B72A5EAAF5CFF627C1257658002584DA
http://www.ukb.uni-bonn.de/quick2web/internet/internet.nsf/vwUNIDLookup/B72A5EAAF5CFF627C1257658002584DA
http://www.ukb.uni-bonn.de/quick2web/internet/internet.nsf/vwUNIDLookup/B72A5EAAF5CFF627C1257658002584DA
http://www.emilaaltonen.fi


Hz and a scan rate of 0.996 Hz. Images were acquired in tapping mode. Root mean square aver-
age (Rq) values were calculated from 12 scan areas of 2 μm x 2 μm. Images were analyzed with
the Nanoscope 6.11r1 Software (Vecco).

Static contact angle (CAM2000, KSV Instrument Ltd., Finland) measurements were taken
using a 5 μl drop of Milli-Q water. Ten to 13 readings were performed per membrane type.

Flux of a small molecular weight (700 Da) Alexa Fluor1 568 Hydrazide sodium salt (Life
Technologies, Paisley, UK) at a concentration of 0.0065 mM was measured in Ussing chamber
system (Physiologic Instruments, San Diego, CA) as described previously [16]. Samples were
collected from the receptor chamber at 60, 120, 180 and 240 min. The diffusion of Alexa
Fluor1 568 Hydrazide sodium salt across the membranes was characterized by calculating the
apparent permeability coefficient (Papp, cm2s-1) as Papp = dC/dt/(60C0A), where dC/dt is the
slope of the linear portion of the permeability curve, C0 is the initial concentration in the
donor chamber, and A is the exposed surface area of the hESC-RPE monolayer (0.031 cm2).
The cumulative permeability demonstrates the percentage of diffused fluorescent marker in the
receptor chamber compared to initial concentration in the donor chamber over time.

Culture of hESC lines and RPE differentiation
The National Authority for Medicolegal Affairs Finland has approved our research with
human embryos (Dnro 1426/32/300/05). We also have a supportive statement from the local
ethics committee of the Pirkanmaa hospital district Finland to derive and expand hESC lines
for research purposes (R05116).

Human ESC lines Regea08/023 and Regea08/017, which were previously derived in our lab-
oratory [27], were cultured as previously described [28]. The hESC-RPE differentiation was
performed spontaneously in floating cell clusters using RPEbasic method as described previ-
ously [28]. For enrichment, the pigmented areas were isolated manually using a scalpel. Subse-
quently, cells were dissociated with 1x Trypsin-EDTA (Lonza, Basel, Switzerland) or Tryple
Select (Life Technologies), filtered through 40 μm cell strainer (BD Biosciences, NJ, USA), and
seeded 160 000–200 000 cells/cm2 on collagen IV -coated (human placenta, 5 μg/cm2; Sigma-
Aldrich, MO, USA) 24-well plates (NUNC, Thermo Fisher Scientific, Tokyo, Japan). After
enrichment, the pigmented cells were replated on collagen IV -coated (5 μg/cm2) 24-well plates
from which the cells were dissociated for injections. For PI membrane transplantation, the cells
were replated on laminin-coated (human placenta, 10 μg/cm2; Sigma-Aldrich) PI.

Transplantation studies
All animal experiments were approved by the Finnish National Animal Experiment Board
(STH832A and PH398A) and the state regulatory authorities of North Rhine-Westphalia
(LANUV 84–02.04.2014.A082), and were performed in accordance with the ARVO Statement
for the Use of Animals in Ophthalmic and Vision research. All efforts were made to minimize
suffering. The animals were maintained in temperature controlled environment in a 12 h light-
dark cycle with free access to water.

Cell suspension injection
These protocols have been described in detail in S1 Materials and Methods.

Prior injection, the expression of RPE/eye-related genes and proteins were analyzed from
the hESC-RPE cells with reverse transcription polymerase chain reaction (RT-PCR) and
immunocytochemistry. Passage three hESC-RPE cells (100 000 cells per injection) were used
for subretinal injections into dystrophic and non-dystrophic RCS rats. The study groups were
1) no injection (n = 1 eye/rat strain), 2) injection of RPEbasic medium without cells (n = 1 eye/
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rat strain), 3) injection of hESC-RPE in RPEbasic medium (n = 4 eyes/dystrophic and n = 3
eyes/non-dystrophic). The viability of cells left over from injections and kept in suspension for
6 h at +4°C was analyzed with LIVE/DEAD1 Cell Viability Assay kit (Life Technologies).

PI membrane transplantation
For PI membrane transplantation, 1 × 4 mm bullet shaped implants were manually cut with a
scalpel from laminin-coated PI membranes without and with hESC-RPE. The membranes
were kept at +37°C until transplanted.

Nine albino New Zealand White rabbits weighing 3.1–3.9 kg were used. Due to the long fol-
low-up time, systemic administration of immunosuppressant was chosen instead of repeated
intraocular injections. The rabbits received 25 mg/kg cyclosporin A (Novartis, Basel, Switzer-
land) in drinking water starting two days before the transplantation until the end of follow-up
(three months). The volume of water consumed by the animals was recorded daily. The rabbits
were anesthetized with an intramuscular injection of 5 mg/kg xylazine (Bayer AG, Leverkusen,
Germany) and 25 mg/kg ketamine (Parke-Davis Scandinavia AB, Solna, Sweden). Anesthesia
was maintained with intravenously administered xylazine/ketamine. Topical anesthesia was
performed with oxybuprocaine hydrochloride (Santen, Osaka, Japan) and the pupils were
dilated with tropicamid (Santen) and 2.5% phenylephrine hydrochloride (Bausch & Lomb, NJ,
USA).

Limbal conjunctival openings and 20 gauge sclerotomies were made into inferotemporal,
inferonasal and superior segments of the right eye for infusion cannula, endoillumination, and
other surgical instrumentation, respectively. Partial vitrectomy was performed using Accurus
vitrectomy system (Alcon Laboratories, TX, USA). A small posterior retinotomy was made
using 27 gauge injection needle tip and a small retinal bleb was gently raised by injecting bal-
anced salt solution (BSS) into subretinal space. PI membrane alone (n = 3) or with hESC-RPE
cells (hESC-RPE-PI, n = 5) was placed into subretinal space via superior sclerotomy and reti-
notomy using 23 gauge Grieshaber forceps (Alcon Labs, TX, USA). Retinal bleb was then reat-
tached by passive aspiration of subretinal fluid via silicone tip 20 gauge cannula and vitreous
cavity filled with 5000-centistoke silicone oil. Sclerotomies and conjunctival openings were
closed using 7–0 Vicryl sutures. One animals underwent surgery without delivery of PI mem-
brane (surgical control).

In order to better protect the hESC-RPE on PI and aid surgical manageability of the mem-
brane, we evaluated the suitability of a custom-made shooter instrument [19] for delivery of
ultrathin PI into the subretinal space of rabbits (n = 6, pigmented chinchilla bastard,>1.5kg),
according to previously published surgical techniques [18]. In brief, following a 2 port 23G vit-
rectomy with the Mach 2 cutter attached to a Megatron S4 MPS device and 25G chandelier illu-
mination connected to a Xenotron 3 light machine (all Geuder SG, Heidelberg, Germany),
which included manual induction of posterior vitreous detachment, the surgeon (BVS)
attempted to pass implants without cells through an enlarged retinotomy in a bleb retinal
detachment into the subretinal space.

Post-transplantation analyses
Electroretinography (ERG) measurements and optical coherence tomography (OCT)

imaging. Dark-adapted Ganzfeld ERGs were recorded under dim red light from the rats (one
to two animals per study group) 37 days post-injection and from all the rabbits before surgery
and 15–17, 35–39, and 73–79 days after transplantation. Systemic and topical anesthesia and
dilation of the pupils were performed as mentioned above (rabbits) or in S1 Materials and
Methods (rats). ERG recordings were performed using a portable handheld multi-species
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Electroretinograph Model 2000 Unit (HMsERG, OcuScience, NV, USA). The eyes were stimu-
lated with a mini-Ganzfeld dome either bilaterally with both eyes inside the dome (rats) or uni-
laterally with the center of the dome positioned 2 cm from the tested eye (rabbits). As a
recording electrode, an ERG-jet contact lens electrode with gold mylar film was used for rabbits
and a silver-embedded thread electrode with mini contact lens for rats (both from OcuScience).
The ground and reference electrodes were stainless steel needle electrodes.

The recordings were performed in a Faraday cage. In rabbits, the ground electrode was
placed subcutaneously over the external occipital protuberance and the reference electrodes
were placed a few centimeters caudal to the lateral canthus. In rats, the ground electrode was
placed subcutaneously above the base of the tail and the reference electrodes were placed sub-
cutaneously in each cheek. The recording electrodes were placed on the cornea with 2% meth-
ylcellulose. Scotopic flash ERGs were recorded at 1, 3, 10, 30, 100, 300, 1000, 3000, 10000, and
25000 mcds/m2. Signals were amplified, digitized, averaged, and stored using ERGView 4.380R
software (OcuScience). The analysis was performed with ERGView 4.380R software by evaluat-
ing the ERG waveforms as well as by measuring the amplitudes and implicit times for the a-
and b-waves.

Three months after transplantation, OCT was performed to rabbits using Stratus OCT scan-
ner, (Carl Zeiss Meditec, Dublin, CA, USA).

Retinal histology and immunohistochemistry. The animals were humanely euthanized
at the end of the experiment with carbon dioxide (rats) or with overdose injection of pentobar-
bital sodium (rabbits). The eyes were fixed in Davidson’s fixative and processed for paraffin
embedding following standard techniques and cut into five-micron sections. For histology,
specimens were conventionally stained with haematoxylin and eosin, and observed under a
microscope (Nikon Instruments Europe, Amsterdam, Netherlands). ONL thickness was mea-
sured from three separate sections per eye with ImageJ Processing and Analysis Software [29].
A total of 10–12 measurements were taken per section. From manipulated eyes, 5–6 measure-
ments were taken from the graft site and 5–6 distally from the graft site with 100–200 μm
intervals.

For immunohistochemistry, the samples were deparaffinated, hydrated and stained using
conventional protocols. Antigen retrieval was performed by boiling slides for 5 min in 0.01 M
citrate buffer (pH 6.0). Primary antibody information is listed in S1 Table. Primary antibodies
were diluted 1:50 (anti-CRALBP, anti-CD68, anti-CD3, anti-TRA-1-85) for overnight at +4°C.
Alexa Fluor 568-conjugated donkey anti-mouse IgG and Alexa Fluor 488-conjugated donkey
anti-goat IgG (both 1:400, Life Technologies) were used as secondary antibodies. Sections not
incubated with primary antibodies served as negative controls. Images were taken using Olym-
pus IX51 fluorescence microscope (Olympus, Tokyo, Japan).

Statistical analysis. Statistical analysis between two groups was performed with the
unpaired Mann-Whitney U test using IBM SPSS Statistics software. A p value of< 0.05 was
considered statistically significant.

Results

Suspension injection of hESC-RPE into rat eye
Prior injection, hESC-RPE cells expressed several RPE markers both at the RNA (S1A Fig) and
protein (S1B Fig) level and did not show expression of pluripotency markers OCT4 and
NANOG RNA (S1A Fig). Majority of the cells were still alive in suspension at the time of injec-
tion based on live/dead staining (S1C Fig).

At day 37 post-injection, some functional rescue of ERG signal was detected in hESC-RPE
injected dystrophic eyes (Fig 1) and in one animal ONL thickness was also significantly
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(p< 0.001) preserved (Fig 2). Slight functional rescue (Fig 1) but no ONL preservation (Fig 2)
was detected in the dystrophic eye injected with medium only. In non-dystrophic rats, the ERG
response was slightly lowered in hESC-RPE injected eyes and slightly increased in medium
injected eyes compared to non-injected parallel eyes (Fig 1), but no significant changes were
observed in the ONL thickness (Fig 2). Human antigen TRA-1-85 staining showed that 41
days post-injection most of the injected cells were located subretinally in different sized cell
clusters in all rats (Fig 3A). Injected hESC-RPE cells also remained positive for RPE marker
CRALBP (Fig 3B). In dystrophic eyes, infiltration of CD68 positive cells was observed in the
outer segment debris zone, also without injection (data not shown), and around the injected
hESC-RPE cells (Fig 3C). In one of the dystrophic eyes, infiltration of CD3 positive cells was
also present around the injected cells (Fig 3D). In non-dystrophic eyes, CD68 positive cells
were detected in the subretinal space only in the hESC-RPE injected eyes, mainly around the
injected cells and no CD3 positive cells were detected (data not shown). Clusters of large pig-
mented cells were present even after 105 days post-injection. However, these cells were not pos-
itive for TRA-1-85 or CRALBP. Instead, the pigmentation appeared to co-localize with CD68
staining (Fig 3E). No intraocular tumors were detected.

Surface and permeability characterization of ultrathin PI carrier
For subretinal sheet transplantation of hESC-RPE cells, the suitability of ultrathin PI mem-
brane was examined. SEM was used to evaluate the average pore distribution of PI. PET

Fig 1. Dark-adapted ERG responses following subretinal injections in dystrophic and non-dystrophic RCS rats.Representative and averaged (2 to
20 responses) ERG recordings from dystrophic and non-dystrophic rats 37 days after subretinal injection of hESC-RPE or medium alone compared to the
non-operated fellow eye.

doi:10.1371/journal.pone.0143669.g001

Fig 2. ONL thickness following subretinal injections in dystrophic and non-dystrophic RCS rats.ONL thicknesses were measured from HE samples
of rats euthanized 41 days post-injection. Each column represents one rat eye. Measurements were performed with ImageJ software. Error bars show
standard deviation.

doi:10.1371/journal.pone.0143669.g002
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membrane, a commonly used RPE culture substrate [18, 28, 30, 31], was analyzed for compari-
son. SEM showed that PI membranes had higher pore density compared to PET (Fig 4A).
AFM revealed a clear nanotopography on both membranes (Fig 4B and 4C). PI had slightly
rougher surface morphology (Rq 26.2±9.7 nm) compared to PET (Rq 13.5±3.8 nm). Contact
angle measurements (Fig 4D) demonstrated slightly lower values in the surface wettability for
PI (average 53.9±6.0°) compared to PET (average 70.6±6.4°). PI membranes also demonstrate
higher Papp-value (2.34 x 10–4± 2.47 x 10–5 cm2s-1) compared to the Papp for PET (7.15 x
10–5±2.57 x 10–5 cm2s-1, Fig 4E) and larger increase in cumulative permeability of the small
molecular weight substance over time. After four hours, PI membranes showed high cumula-
tive permeability of 11.3±0.3%, whereas notably lower cumulative permeability of 3.0x0.9%
was recorded for the PET membranes (Fig 4F).

PI membrane transplantation of hESC-RPE into rabbit eye
Apart from cataract formation in some of the rabbits, there were no other significant surgical
complications. OCT showed good placement of the membranes (Fig 5A–5C). In one rabbit
with hESC-RPE-PI some subretinal fluid on the membrane was detected (Fig 5C). A gradual
loss of pigmentation on hESC-RPE-PI was observed over time (Fig 5D). Over two months, a-
wave ERG responses remained roughly equal in eyes with hESC-RPE-PI or PI alone compared
to the fellow eyes. In one rabbit with hESC-RPE-PI, the a-wave amplitude was clearly reduced
in the operated eye (S2 Fig). On the other hand, after two months the b-wave amplitudes were
clearly reduced in all eyes, operated and non-operated, compared to the amplitudes measured
prior surgery (S2 Fig). At the three-month end point, ERG measurements were discarded due
to cataract formation.

Three months after transplantation, histological analysis showed no evidence of intraocular
tumors. In the surgical control or eyes with PI alone, no obvious signs of inflammation or sig-
nificant retinal atrophy were observed (Fig 6A and 6B). However, in eyes transplanted with
hESC-RPE-PI, mononuclear cell infiltration was observed around two out of five membranes
and the ONL was totally destroyed (Fig 6C). In two out of five hESC-RPE-PI transplanted eyes,
ONL was disorganized and the number of nuclei was reduced either over whole or part of the
membrane (Fig 6D). In one eye with hESC-RPE-PI, the ONL thickness was only slightly
reduced and ONL nuclear density was somewhat preserved compared to the areas away from
the membrane (Fig 6E). Overall, ONL thickness was significantly (p< 0.001) reduced over
hESC-RPE-PI compared to regions away from the membrane (Fig 6F).

The hESC-RPE-PI transplantations were performed with surgical forceps. In addition to
difficulties in controlling the membrane during delivery, there is a high risk for damaging the
hESC-RPE cells. Thus, we subsequently studied the use of a metallic shooter instrument with
plain ultrathin PI. Despite multiple intraoperative attempts, delivery of the ultrathin PI proved
incompatible with the shooter instrument in its current form as the membrane was too pliable,
folded around the edges of the instrument during ejection or would be bend at the retinotomy.

Discussion
Differentiation of RPE cells from hPSCs have made cell therapy a potential treatment for RPE-
related diseases [4, 32]. Recent clinical trials with hESC-RPE cell suspensions injected subretin-
ally have so far reported no major adverse effects related to the transplanted cells [7, 8, 33].

Fig 3. Implanted eyes of dystrophic RCS rats. Immunohistochemical staining showing labeling of injected cells 41 days post-injection with antibodies
against human antigen TRA-1-85 (A1-2), RPEmarker CRALBP (B1-2, antibody recognizes also rat CRALBP), macrophage marker CD68 (C), and T-cell
marker CD3 (D). Large pigmented cells detected 105 days post-injection were positive for CD68 antibody (E). Scale bar 100 μm in A-D and 50 μm in E.

doi:10.1371/journal.pone.0143669.g003
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However, for successful treatment, the suspension transplanted cells need to adhere on the
Bruch’s membrane and be integrated into the existing RPE layer to escape cell death and poten-
tial immune rejection and to function properly. In the pathologic environment of diseased ret-
ina, reaching sufficient level of integration may prove to be a difficult task. It is known that
RPE attaches poorly to diseased or aged Bruch’s membrane [34–36]. In animal models, unat-
tached cells have formed large cell clusters and the nonintegrated cells have been eventually
cleared, potentially by macrophages [13, 37, 38]. Likewise, in our cell suspension experiments,
the injected hESC-RPE cells were mainly detected in cell clusters and after 105 days no TRA-1-
85 positive cells could be identified. Instead, the pigmented cells present stained with anti-
CD68 being potentially macrophages which had engulfed the transplanted cells. Short-term,
the hESC-RPE cells survived in the subretinal space and some functional rescue of ERG signals
in the hESC-RPE injected dystrophic rat eyes was detected. Curiously, minor functional res-
cue/improvement of ERG signal was detected also in medium injected eyes in dystrophic and
non-dystrophic rats. It is possible that e.g. macrophages potentially recruited to the injection
site cause this effect by phagocytosis and/or secretion of trophic factors, thus promoting sur-
vival or function of the photoreceptors. Indeed, other cell types than RPE, such as mesenchy-
mal stem cells, have shown similar protective effects following subretinal injection into RCS
rats. The underlying mechanisms still remain mainly elusive, but recent data suggests that acti-
vation of endogenous regenerative mechanisms such as the progenitor potential of retinal
Müller cells may play a role, in particular since a therapeutic benefit does not require the cells
to persist in the transplantation site [39–42].

In order to increase the survival rate of the transplanted cells and to reconstruct or replace
the damaged Bruch’s membrane, efforts have been made to develop a suitable RPE-scaffold
implant [13, 14, 16–20, 43]. The requirements for the scaffold include support of RPE mono-
layer growth and functionality, bio- and immune compatibility, and surgical manageability.
Carrier porosity/permeability is important, especially if the scaffold is not rapidly biodegrad-
able. Elastic modulus is another important parameter, not only to avoid problems like retinal
detachment but to support proper RPE function like phagocytosis which has been shown to be
decreased on firm substrates compared to more flexible ones [44]. To date, there have been no
published large animal studies with transplantation of hPSC-derived RPE on a supportive scaf-
fold. We have previously shown that PI is a suitable culture surface for hESC-RPE [25]. In the
current study, we further examined the porosity and permeability of ultrathin PI and its suit-
ability for subretinal transplantation. The pore density of the studied PI membranes was good
and the pores were evenly distributed. In culture, no dome formation, a typical feature of trans-
porting epithelia on non-permeable surfaces [45, 46], was detected on the PI membranes. PI
was also well tolerated in the subretinal space. Since the examined PI membrane was very thin
and flexible, it conformed well to the shape of the surrounding space and post-surgical retinal
detachments were not observed. Due to the merangiotic nature of rabbit retina, most of the
blood supply of the inner retina is derived from the choriocapillaris [47], which would likely
lead to rapid retinal damage, if blocked by a non-permeable implant. In a previous study by
Montezuma et al. 2006 [24], the authors reported disorganization of the ONL when non-perfo-
rated PI implants were transplanted in pigs, despite the fact that pigs have both choroidal and
retinal arterial blood supply to the retina. In our study, the retinal nuclear layers were well pre-
served over the PI even three months post-transplantation, indicating good permeability and

Fig 4. PI and PETmembrane surface and permeability characteristics. SEMmicrographs of PET and PI surface topography and pore distribution, scale
bars 20 μm (A). AFM 3D images (B) and line profiles (C) demonstrating the surface roughness of PET and PI. Contact angle measurements of PET and PI
(D). The apparent permeability coefficient Papp (E) and the cumulative permeability of small molecular weight fluorescent marker (F) for the PET and PI.

doi:10.1371/journal.pone.0143669.g004
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Fig 5. In vivo follow-up of hESC-RPE-PI implanted rabbit eyes.OCT scans showing hESC-RPE-PI in three different rabbit eyes three months after
transplantation (A-C). Representative fundus photographs showing hESC-RPE-PI (marked with dotted line) of one rabbit one, two and three months after
transplantation (D).

doi:10.1371/journal.pone.0143669.g005
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biocompatibility. On the other hand, when hESC-RPE-PI were transplanted, varying level of
disorganization of the ONL and loss of the photoreceptors were detected in most of the rabbits.
In two out of five rabbits, there was mononuclear cell infiltration around the hESC-RPE-PI.
We also noticed a gradual loss of pigmentation on the membranes, most likely due to the loss
of hESC-RPE and not depigmentation since no TRA-1-85 positive cells were detected on the
implants. Graft rejection in allogeneic and xenogeneic transplantations is a major obstacle.
Although eye is considered as an immune privileged organ and RPE as immunomodulatory tis-
sue, subretinal transplantation experiments with both allografts and xenografts in several ani-
mal models have demonstrated that the immunological privilege of the subretinal space is
imperfect or may be easily compromised [13, 34, 37, 48, 49]. Recent studies indicate, that trans-
planted allogeneic iPSC-RPE cells induce an innate immune response which cannot be over-
come by the immunomodulatory mechanisms in the eye [11, 49]. One major factor in ocular
immune privilege is the blood-retina barrier [50]. This barrier may be broken by diseases, such
as AMD, or surgical procedure, exposing the transplanted tissue to immune rejection.
Although hPSCs express low levels of MHC-I and β2-microglobin at their surface, expression
of these proteins increases upon RPE differentiation. The cells may also acquire immunogenic
features during prolonged culture, especially if exposed to xeno-products and undefined fac-
tors, such as serum [51–53]. Additionally, exposure of iPSC-RPE cells to proinflammatory
cytokine interferon-gamma increases their MHC-II expression. These factors can predispose
allogeneic implants to immune rejection of [11]. In our study, immunosuppressant was admin-
istered in the drinking water. This may be problematic, because water consumption of the ani-
mals varied substantially (daily intake of each animal was between 3%-100% of total water
volume) leading potentially to variation in the cyclosporine plasma levels. As we did not exam-
ine this, insufficient immunosuppression could at least partly explain the loss of transplanted
cells. The type and dose of immunosuppressant, administration route, and duration of immu-
nosuppression remain to be studied further. It may also be, that by using autologous iPSC-RPE
cells no immunosuppression is needed, as these cells seem to be immune tolerated [11, 54]. For
future therapeutical use, ability to reduce the immunogenicity of allogeneic cultured RPE cells,
or use of autologous or HLA-homozygous hiPSCs for better immunological compatibility,
would greatly facilitate the application of hPSC-based RPE cells therapies.

Surgical manageability is an important factor contributing to the success of transplantation.
In the study by Diniz et al. 2013, hESC-RPE were transplanted as a sheets on ultrathin parylene
membranes into the subretinal space of rats. Many of the complications detected in their study,
including damage to the transplanted RPE and increased cell reaction at the implant area,
could potentially be explained by the surgical technique involving choroidal incision com-
monly used in animals with small eyes and large crystalline lenses [13]. In our study rabbit was
chosen as the model animal due to its larger eye size allowing the use of surgical techniques
similar to clinical procedures. However, although the biocompatibility of the ultrathin PI was
good, the surgical technique still requires further development. During the hESC-RPE-PI
transplantations, the membrane was exposed, potentially leading to damage to the hESC-RPE.
To protect the cells, we tested the use of a shooter instrument with ultrathin PI. However, in
their present forms, the ultrathin PI and the shooter instrument were not compatible as PI was
too flexible. Flexibility is a typical problem also with other ultrathin substrates, such as parylene
[20]. Further modifications to improve the surgical manageability of the ultrathin PI

Fig 6. Histological analyses of rabbit retinas three months post-transplantation. HE staining of surgical
control (A), PI alone (B) and hESC-RPE-PI (C and D). ONL thicknesses measured from HE samples, surgical
control (n = 1), PI alone (n = 3), hESC-PI (n = 5) (E). Measurements were performed with ImageJ software.
Error bars show standard deviation.

doi:10.1371/journal.pone.0143669.g006

Polyimide as Carrier for Subretinal Delivery of hESC-RPE

PLOSONE | DOI:10.1371/journal.pone.0143669 November 25, 2015 14 / 18



membrane would facilitate its usefulness in the future. Such enforcement could e.g. be added as
a transient feature, by encapsulating the implant into rapidly biodegradable hydrogel. Alterna-
tively delivery strategies may comprise injection through BSS or viscoelastic, in analogy to the
approach by the Japanese hiPSC-RPE clinical trial [11].

Safety of transplanting cells differentiated from PSCs remains an important aspect.
Although so far in the animal and human trials no major concerns have arisen, the safety of
hPSC-derived cells in therapeutical use awaits final confirmation. In our study, the trans-
planted cells did no longer express pluripotency markers OCT4 and NANOG. Additionally, no
major adverse effects such as tumor formation were detected either in the rat or rabbit eyes.

In summary, ultrathin, porous PI was well tolerated in the subretinal space and preservation
of ONL was observed even after three months of transplantation. We believe, that with proper
modifications and protection of the RPE during transplantation, ultrathin PI is a promising
scaffold material for therapeutic subretinal transplantation of RPE cells.

Supporting Information
S1 Fig. Gene and protein expression profiles of hESC-RPE prior injection into rats. RT–
PCR analysis of eye/RPE and pluripotency marker genes, genomic control reactions excluding
the enzyme are marked ‘-RT’ (A). Cytospin preparations showing the immunocytochemical
staining of RPE/eye markers bestrophin-1, MITF, CRALBP, and PAX6, scale bar 50 μm (B).
Live/Dead cell viability assay showing live cells stained with Calcein-AM (green) and dead cells
with EthD-1 (red), scale bar 100 μm (C).
(TIF)

S2 Fig. Dark-adapted ERG responses following PI transplantation into rabbit eyes. Fig
shows averaged (two responses) flash ERGs recorded at 25 000 mcds/m2. Responses measured
prior operation are in black and responses two months after transplantation are in red.
(TIF)

S1 Materials and Methods.
(DOCX)

S1 Table. Primary antibody information.
(DOCX)

S2 Table. RT-PCR Primer sequences.
(DOCX)
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