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Abstract

Introduction

Advances in high-throughput technologies have generated diverse informative molecular

markers for cancer outcome prediction. Long non-coding RNA (lncRNA) and DNA methyla-

tion as new classes of promising markers are emerging as key molecules in human can-

cers; however, the prognostic utility of such diverse molecular data remains to be explored.

Materials and Methods

We proposed a computational pipeline (IDFO) to predict patient survival by identifying prog-

nosis-related biomarkers using multi-type molecular data (mRNA, microRNA, DNA methyl-

ation, and lncRNA) from 3198 samples of five cancer types. We assessed the predictive

performance of both single molecular data and integrated multi-type molecular data in

patient survival stratification, and compared their relative importance in each type of cancer,

respectively. Survival analysis using multivariate Cox regression was performed to investi-

gate the impact of the IDFO-identified markers and traditional variables on clinical outcome.

Results

Using the IDFO approach, we obtained good predictive performance of the molecular data-

sets (bootstrap accuracy: 0.71–0.97) in five cancer types. Impressively, lncRNA was identi-

fied as the best prognostic predictor in the validated cohorts of four cancer types, followed

by DNA methylation, mRNA, and then microRNA. We found the incorporating of multi-type

molecular data showed similar predictive power to single-type molecular data, but with the

exception of the lncRNA + DNA methylation combinations in two cancers. Survival analysis
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of proportional hazard models confirmed a high robustness for lncRNA and DNAmethyla-

tion as prognosis factors independent of traditional clinical variables.

Conclusion

Our study provides insight into systematically understanding the prognostic performance of

diverse molecular data in both single and aggregate patterns, which may have specific ref-

erence to subsequent related studies.

Introduction
Cancer prognosis prediction is crucial to controlling the suffering, progression, and death of
patients. Accurate outcome prediction can be used clinically to select the best of several avail-
able therapies for cancer patients and improve their chances of survival[1, 2]. Traditionally,
prognosis is based on clinical pathological parameters such as tumor stage, metastasis, and
pathologic diagnostic age[3]. Recently, a number of distinctive molecular biomarkers have
been surveyed and applied to access the clinical outcome of patients, such as protein-based
(phosphorylation states, cell surface receptors), DNA-based (SNP, CNV), and the RNA-based
(mRNA, microRNA, ncRNA) [4–7]. Additionally, there is growing evidence suggesting that
long non-coding RNA (lncRNA) and DNAmethylation can mediate oncogenic or tumor sup-
pressive outcomes, representing new classes of promising biomarkers[5]. However, most
studies focus on either one single cancer lineage or on individual platform data, whereas a com-
prehensive comparison to determine the relative prognostic power for each class of molecules
for a specific cancer would ideally provide a more effective diagnostic platform. This would
also allow consideration of whether targeting the joint biomarkers would provide better control
of cancers[2]. Despite the growing availability of data describing these various molecules,
previous studies or available frameworks/pipelines have not investigated these questions.

Strategies such as RT-PCR and immunohistochemistry have investigated a considerable
number of biomarkers for prognosis[8–10]. However, most of the biomarkers were found by
“educated guesses” rather than via a systematic, genome-wide approach. Additionally, only a
few have been used in a clinical setting and the utility of the majority of these wet-lab-based
markers remains to be determined[4]. More recently, using high-throughput profiles, compu-
tational approaches like machine-learning approaches [11–16] and different survival models
[17–19] are being applied to identify candidate biomarkers with prognostic values for disease.
While these methodologies have accumulated large amount of molecular signatures with
acceptable accuracies, little systematic research has been performed to determine the prognos-
tic power of diverse molecular signatures and their relative importance. This is because most
studies suffer from one or several of the following four problems: (i) deficiency of molecular
profiles, (ii) limited to single cancer lineage, (iii) underdeveloped strategies to explore optimal
predictors in terms of high dimension data and tumor heterogeneity. Nevertheless, The Cancer
Genome Atlas (TCGA) project aggregated large quantity of genomic data was found to
increase the understanding the clinical pathologies of different molecular platforms in human
cancers[20–23], which would help the translation of biological data into prognostic utility.

In this study, we have implemented a pipeline to identify prognosis-related biomarkers in
multi-omic profiles including RNA-seq, DNA methylation Bead ChIP, and microRNA-seq
and compared their relative prognostic power in five TCGA cancers. During the modeling pro-
cess, biomarkers crucial to clinical outcome were ranked and selected using our Iterative
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Deletion Feature Optimal (IDFO) approach. Moreover, we assessed the predictive utilities of
both individual and integrated multi-omic predictors to investigate their contribution to model
performance, and the predictive power of diverse molecular predictors in respective cancers
were further evaluated in independent test sets. Survival analysis was used to determine the
prognostic utility of IDFO-identified predictors alone or in combination with clinical variables.
Furthermore, to facilitate the use of our approach, we also implemented a publicly available R
source code (CAPM.R), which allows researchers to build prognosis models for other datasets.
Our study provides a dynamic risk assessment system for cancer prognosis prediction, which
not only reveals the prognostic utility of multi-omic data across cancer types, but also facilitates
the understanding of lncRNA and DNA methylation as potential prognostic markers on tumor
progression.

Materials and Methods

Datasets
We assembled 3198 publicly available tumor samples into array-based data among five types of
cancers from The Cancer Genome Atlas (TCGA) project, which have been published in [20, 24–
27] (Table A in S1 File describes the detailed sample distributions). All tumor samples were
selected based on the following criteria: (a) signatures (mRNA/lncRNA/microRNA transcripts,
DNAmethylation probes) absent in 50% of the tumor samples were removed as the irrelevant,
(b) samples with matched clinical information (e.g., survival time, age, tumor stage), (c) tumor
patients with only up to one month survival after surgery were excluded to avoid any potential
confounding influence of postoperative complications. Most of the tumor samples were com-
posed of three different molecular profiling data sets, which were RNA-seq, microRNA-seq, and
DNAmethylation Bead ChIP. Four types of molecular signatures were extracted as prognosis
predictors from the three molecular data profiles, including lncRNA and mRNA signatures from
RNA-seq profiles, DNAmethylation signatures were from the DNAmethylation Bead ChIP
450k/27k, and microRNA signatures were from the microRNA-seq profiles. For each molecular
data profile, we randomly selected two-third of tumor samples to construct (i.e. ‘train’) predic-
tion models to identify best performance predictors, and the remaining third of samples were
utilized for an independent test of these predictors. Datasets corresponding to different cancers
were analyzed separately. Moreover, for predicting the outcome of patients, tumor samples were
assigned to either a ‘good’ or ‘poor’ outcome groups as prognosis labels. The threshold of two
outcome groups was defined on the basis of clinical characterization of respective cancers (which
have the advantage of yielding two outcome groups with equal size in each cancer).

Dichotomization of survival data
We dichotomized the censored survival data for each type of cancer by assigning a threshold of
cutoff time as: 2 years for patients with colon adenocarcinoma (COAD), 3 years for lung squa-
mous cell carcinoma (LUSC), serous cystadeno carcinoma (OV), uterine corpus endometrioid
carcinoma (UCEC), and 5 years for breast invasive carcinoma (BRCA). The patients who
lived beyond the cutoff time were labeled as ‘good prognosis’ the deceased were labeled as ‘bad
prognosis’. Patients with censored survival times that were before the cutoff threshold were
excluded (e.g., less than 1 month).

Pre-processing of genomic and epigenome profiles
RNA-seq: TCGA RNA-seq level 2 data were normalized and processed by calculating the reads
per kilo base per million mapped reads (RPKM) value for the expression of lncRNA/mRNA
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transcripts. To match the assembled transcripts into detailed lncRNAs/mRNAs, all transcripts
were aligned to the Human Genome by the reference list from the UCSC (GRCh37/hg19),
while transcripts with> half of its lengths with in an lncRNA/mRNA were identified as a
match[28].

MicroRNA-seq: microRNA expression levels were assayed via TCGA microRNA sequenc-
ing level 3 data (Illumina Genome Analyzer & Hiseq 2000). The calculated expressions for
transcripts aligning to a particular miRNA were retrieved from both the miRNA isoform and
quantification files (available at the TCGA data portal along with metafiles annotating each
dataset)[29].

DNAMethylation Bead ChIP: The DNAmethylation data sets in most tumor cohorts are
composed of the Illumina 450K and/or 27K array platforms. Accordingly, we selected the over-
laps CpGs (measured with the Infinium type II assay) that were present on both of the two
platforms (Infinium 450K and 27K) and had no more than 10% missing values across all sam-
ples in each type of cancer, respectively.

Signature evaluation methodology: IDFO
The IDFO approach was composed of three basic procedures (Fig 1):

1. The Prognosis Risk Prioritization (PRP) ranking. There were a large number of candidate
variables within the diverse molecular profiles, which would cost enormous calculation dur-
ing model training. To overcome this “dimension curse”, we developed this pre-biomarker
ranking strategy: Prognosis Risk Prioritization (PRP) to screen out the most representative
prognostic variables as initially model training features for each molecular profile, respec-
tively. In this process, we explored two steps:

a. a calculation of Zxi for extracting differentially expressed/methylated signatures xi
between the two outcome groups. As formula,

Zxi
¼ G1 � G2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
ðs2

1 þ s2
2Þ

r ð1Þ

Here G1 was the average expression/methylation value of signature xi in the 1st group,

and G2 was the average expression/methylation value of xi in the 2ed group, σ was the
standard deviation of two respective group, 1 = group one, 2 = group two.

b. Punicox, a calculation of univariate Cox p value of molecular signature xi, which used the
expression/methylation values of xi as the variable for a univariate Cox regression sur-
vival analysis.
Finally, the PRPrisk value of signature xi was calculated as using this formula,

PRPrisk value ¼ �Zxi
log10ðPunicoxÞ ð2Þ

Where Zxi
derived from Eq 1.

2. Model building. For comprehensively evaluating the prognostic ability of multi-platform
molecules to respective cancer types, we utilized 5 machine learning models in combination
with 4 feature extraction strategies to establish a performance pipeline. Two other steps
were used: model building and feature selection. Five machine learning algorithms (see in
Supplementary Methods in S1 File) were proposed in model building, which are support
vector machine (SVM), k-nearest neighbors (KNN), logistic regression (LR), random forest
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(RF) and NaiveBayes (NB). The performance of each classifier was evaluated using 632—
Bootstrap method, using this formula,

Bootacc ¼
1

n

Xn

i¼1

ð0:368� accitrain þ 0:632� accitestÞ ð3Þ

Where n was the total number of repeats, accitrain and accitest were the ith experiment train

accuracy and test accuracy. Here we split two-thirds samples for training and one-thirds
samples for testing, both of which were extracted from the original training sets.

3. Feature selection. In this procedure, we proposed four feature extraction strategies, namely
as SVM-RFE, RF-IS, LASSO and PFS (Supplementary Methods in S1 File) to determine the
optimal set of features comprehensively. The feature selection procedure started with the
PRP algorithm ranked n-top-weighted features (for detailed numbers see Supplementary
Methods and Figure A in S1 File) and then iteratively eliminated a number or a fraction of
the least important/crucial features determined based on respective extraction strategies

Fig 1. Flowchart of the IDFO approach. This flowchart contains three basic steps: (i) PRP ranking of molecular features, (ii) model construction and (iii)
feature optimization and validation.

doi:10.1371/journal.pone.0142433.g001
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until the highest bootstrap accuracy was obtained. During the feature optimization process,
an average accuracy of 10,000 times random re-sampling with replacement was calculated
as the estimate accuracy for each iterative selected feature sets. To evaluate the stability of
the PRP feature ranks, a Monte Carlo simulation using R package GMCT[30] was also per-
formed by randomly selecting equal number features for the respective molecular models in
each tumor. Finally, the highest bootstrap model was identified as the best prognosis model
and its screened out features were then tested in test set for independent validation. The
model construction, statistical analysis and graphs were performed using Bioconductor
(www.bioconductor.org).

Statistics
Student’s t tests were used to compare differential expressed signatures (mRNAs, lncRNAs,
DNAmethylation, and microRNAs) among two risk groups. The Wilcoxon signed rank test
was adopted to assess the statistical significance of survival distribution of the two prognosis
groups classified by MCPHR models, per this formula,

w2 ¼ ðS1 þ S2Þ2
ðV1 þ V2Þ

ð4Þ

Where S1 and S2 was the rate of survivors in two risk groups, V1 and V2 was the variance of S1
and S2.

The likelihoods ratio test was used to compare the fit of two models (e.g., IDFO predictor
models with and without additional variables) which was based on computing the likelihood
ratios. The likelihood function was calculated using this formula,

LðβÞ ¼
Yn

i¼1
½f ðtiÞ�wi ½SðtiÞ�1�wi ð5Þ

Where S(ti) was the survival function which showed the proportion of the ith patient alive at
time t; The density function f(ti) was the probability of dying in the small interval of time t; wi

was the weighted mean survival rate calculated from 1 Vi

.
, where Vi was the variance of sur-

vival rates; n was the total number of patients in respective cohorts. The Kaplan–Meier Analy-
sis and log-rank likelihood models were used to test for differences in survival and the Kaplan-
Meier curves were drawn based on the median risk score. The p values in all statistical tests less
than 0.05 were considered significant. The above statistical analyses were performed using the
R packages: ‘survival’ and ‘survcomp’.

Multivariate Cox proportional Hazard Regression
The multivariate Cox proportional hazard regression model, as the most popular mathematical
modeling approach was applied to estimate the hazard ratios, relative risks, corresponding 95%
confidence intervals (CI) and survival curves by using several/multiple explanatory variables
(molecular and/or clinical variables). As an example, a parametric model was based on the
exponential distribution using this formula,

log hðtÞ ¼ aþ b1x1 þ b2x2 þ � � � þ bkxk ð6Þ
Where, h(t) was the hazard function, the x1,x2,. . .xk were the covariates, and β1,β2,. . .,βk were
the coefficients of respective covariates, where, β>0 represented the covariate risk factor
related with ‘poor prognosis’ on the contrary, β<0 indicated the covariate protected factor
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related with ‘good prognosis’. The constant α in this model represented a log-baseline hazard,
since log h(t) = α or h(t) = exp(α)when all of the x values were zero.

Risk scores. R(t) was computed for the prognostic risk of each patient, and defined as a linear
combination of predictor variables weighted by their respective Cox regression coefficients,
and calculated using this formula,

RðtÞ ¼ exp�hðtÞ ð7Þ
Where R(t) was the risk score of patient t, h(t) was the hazard value calculated by the multivari-
ate Cox regression model (derived by Eq 6).

R codes: CAPM
To allow users to apply our constructed pipeline to other data sets, we implemented a publicly
available R source code (CAPM.r) to perform cancer prognosis prediction, which is freely
available at http://www.escience.cn/people/lixu/index.html.

Results

Evaluation of the prognostic performance of diverse molecular data
The flow chart of our study is shown in Fig 2. We assembled 3198 publicly available tumor
samples into array-based data among five TCGA cancer types: breast invasive carcinoma
(BRCA)[26], colon adenocarcinoma (COAD)[27], lung squamous cell carcinoma (LUSC)[25],
uterine corpus endometrioid carcinoma (UCEC)[31] and serous cystadeno carcinoma (OV)
[24]. The five cancer types were chosen because their TCGA cohorts included sufficient sam-
ples with multiple types of molecular data and clinical information (Table A in S1 File). Each
cancer type was composed of four molecular data profiles, including (i) lncRNA: Illumina
HiSeq 2000 RNA Sequencing V2; (ii) mRNA: Illumina HiSeq 2000 RNA Sequencing V2; (iii)
DNAmethylation: Illumina Infinium Human DNAMethylation 27K, 450k; (iv): microRNA:
Illumina Genome Analyzer/HiSeq 2000 microRNA sequencing platform. In order to compre-
hensively evaluate the predictive power of the four types of molecular signatures to their
respective cancers, we constructed a group of 5 classifiers (SVM[32], KNN[33], NaiveBayes
[34], RandomForest[35], Multinomial logistic regression[14]) in combination with 4 feature
extraction strategies: The Least Absolute Shrinkage and Selection Operator (LASSO)[36], Sup-
port Vector Machine based Recursive Feature Elimination (SVM-RFE)[37], Random Forest
importance spectrum based feature selection (RF-IS)[38], and Prioritization-eliminated feature
selection (PFS) (Supplementary Methods in S1 File) to build a prognosis computational pipe-
line which named as the Iterative Deletion Feature Optimization method (IDFO, see Methods
and Fig 1).

During the feature optimization process, the classifiers for each molecular data were initially
trained by the Prognosis Risk Prioritization algorithm (PRP; see Methods) ranked features and
then iteratively eliminated a number or a fraction of the least important/crucial features which
were determined by four-feature extraction strategies until the optimal panel of features was
observed. To evaluate the stability of the PRP method, a Monte Carlo Simulation (MCS) was
also performed to select equal size of features as random validation for the respective profiles
in each tumor. A classifier with the highest bootstrap accuracy[39] was identified as the opti-
mal model and the best performance predictors were then tested in independent test cohorts.
The model performances of each molecular data (‘train’) in combination with respective fea-
ture selection strategies are highlighted in Fig 3a–3e. We observed that, 1) the bootstrap accura-
cies of all classifiers ranged from 0.71 to 0.97 (Table B in S1 File), which indicated good
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performance of IDFO approach for multiple cancer types; 2) the PRP ranked feature sets
resulted in significantly improved accuracy compared with random selected MCS feature sets
(average accuracy: PRP = 0.81, MCS = 0.59; one-sidedWilcoxon signed rank test: P<1.12e-5);
3), and there was no apparent difference between the classification algorithms with respect to
tumors, and the performance of diverse molecular signatures did not vary significantly across
cancers, confirming a highly robust of genomic and epigenetic data in prognosis prediction; 4)
of all 20 optimal prognostic models (5 cancers � 4 molecular data sets), 12 out of 20 (60%) were
obtained by the PFS algorithm, followed by LASSO (30%) and SVM-RFE (10%), which indi-
cated that our novel feature selection approach proposed had good performance similar to tradi-
tional methods (Table B in S1 File). Subsequently, to compare the predictive performance of the
four types of molecular signatures with an unbiased validation, we applied the best prognosis
predictors from each training model to an independent test set. Notably, as is shown in Fig 3f,
the lncRNA signatures illustrated the best performance in four cancers: BRCA (test set accuracy:
0.78,Ntest set = 159), COAD (test set accuracy: 0.85,Ntest set = 48), LUSC (test set accuracy: 0.77,
Ntest set = 56), and OV (test set accuracy: 0.79, Ntest set = 75). DNAmethylation was the second
best predictor of BRCA (test set accuracy: 0.76,Ntest set = 73), COAD (test set accuracy: 0.79,
Ntest set = 67), LUSC (test set accuracy: 0.77, Ntest set = 42), ovarian cancer (test set accuracy: 0.7,
Ntest set = 146), and the third best predictors in UCEC (test set accuracy: 0.8,Ntest set = 81).

Fig 2. An overall scheme of the prediction pipeline. This pipeline contains four mainly procedures: I) Data processing. We assembled a collection of 3198
tumor samples in five types of human cancers, which composed of four types of molecular data including: lncRNA, microRNA, mRNA, and DNAmethylation.
Each type of molecular data in respective cancers was processed into array based matrix using CAPM preprocessing methods. II) Feature ranking.
Molecular features associated with prognosis were analyzed and sorted according to the PRP algorithm. For each type of molecular data, we selected top-
weighted 100 signatures as the initial feature sets in each of the five cancers, respectively. III) Model building and feature selection. In this process, we
adopted five classifiers in combination with four feature selection algorithms to establish the prognosis prediction baseline. During the feature selection
process, each group of features was trained with 10,000 times randomization and the best performing feature panel with highest bootstrap accuracy was
chosen for each molecular data per cancer. IV) Validation. To evaluate the predictive power of each molecular data, the best performing features were further
applied to independent test in each cancer cohorts, respectively.

doi:10.1371/journal.pone.0142433.g002
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mRNA and microRNA as traditional clinical baseline markers, were ranked lower than our ini-
tial expectations. mRNA was the third best predictors in BRCA (test set accuracy: 0.64,Ntest set =
159), COAD (test set accuracy: 0.64, Ntest set = 48), LUSC (test set accuracy: 0.76,Ntest set = 56)
and OV (test set accuracy: 0.6, Ntest set = 75). MicroRNA data resulted in worse predictive power
compared with all other data types. In addition, due to the remarkable performance of lncRNAs
in patient survival stratification, we further performed literature retrieval to examine the possi-
bility for any evidence of the correlation between IDFO-screened lncRNAs and prognosis pro-
gression. Of all 157 optimal lncRNA predictors in five cancers (21 in BRCA, 36 in COAD, 33 in
LUSC, 41 in OV, 37 in UCEC), 22 lncRNAs had been previously reported in literature (Table F
and Figure B in S1 File). These results suggested that our approach could potentially identify
trustable prognosis associated lncRNAs, and we posited newly identified lncRNAs, either in iso-
lation or as composite markers, may be crucial to clinical practice.

Integration of multi-omic biomarkers to prognosis prediction
Recent studies suggested the integrated multi-omic signatures could efficiently improve the
model performance[28, 40]. To explore whether such hypothesis was appropriate to the
dichotomized overall survival prediction, we extended our IDFO approach to investigate the
performance of integrative modeling of multi-type molecular data in five cancers. As

Fig 3. The performances of diversemolecular signatures in training (A-E) and testing (F) data sets across five TCGA cancers. (A-E) Best predictive
models of each molecular data of five human cancers across different feature selection strategies (columns indicated feature selection strategies: LASSO,
PFS, SVM-RFE, RF-IS, and MCS; rows indicated molecular signatures), (F) Test set accuracies of four types of molecular signatures in five TCGA cancers
(rows indicated molecular data types, columns indicated cancer types). In order to distinguish the results between training and testing, we utilized blue-
colored items for training results (Fig 3A–3E) and red-colored items for testing results. * BRCA = breast invasive carcinoma; COAD = colon adenocarcinoma;
LUSC = Lung squamous cell carcinoma; UCEC = Uterine Corpus Endometrioid Carcinoma; OV = Serous cystadenocarcinoma.

doi:10.1371/journal.pone.0142433.g003
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integrative models require samples not only comprised of multi-omic profiles, but also those
that fulfill the prognostic criteria, we observed a final of 20 integrated multi-omic data groups
in the five cancer types, including 15 double-combination groups and 5 triple-combination
groups (see Table C in S1 File). As there were an insufficient number of microRNA-seq sam-
ples overlapping with the three other molecular profiles, the microRNA signatures were
excluded in the integrated modeling analysis. Table C in S1 File listed the predictive accuracies
(‘test’) of the 20 integrated models. In sum, 80% of the integrated multi-omic data combina-
tions did not show significantly improved predictive power compared to their individual
molecular data (Fig 4A–4C), except for lncRNA + DNAmethylation models in two cancer
types of OV and UCEC (Fig 4D and 4E) (OV: one-sided Wilcoxon signed rank test, DNA
methy+ lncRNA vs. DNA methy: P< 1.2e−4, DNAmethy+ lncRNA vs. lncRNA: P<4.7e−3;
UCEC: DNAmethy+ lncRNA vs. DNA methy: P<1.7e−4, DNAmethy+ lncRNA vs. lncRNA:
P<8.2e−5). Besides, with the increase of molecular types, the performance of triple combina-
tion groups was in accordance with the average level of the single-type molecular models with
limited perturbations in all five cancer types. Consequently, most of the integrated multi-omic
data models showed similar predictive power with their respective individual molecular data
models, suggesting the information content of integrated multi-platform data might largely be
redundant in terms of patient survival stratification. Similar results were also observed in a
recent breast cancer modeling treatment study [1].

Survival analysis: validation of IDFO predictors on censored survival data
In addition to examine the association between IDFO predictors and clinical outcome in
BRCA, COAD, LUSC, UCEC and OV, we subjected the best predictors of respective data

Fig 4. Comparison of the predictive performance of integrated multi-type molecular data and single molecular data in cancer outcome
stratification. (A) BRCA (Noverlaps = 178), (B) COAD (Noverlaps = 161), (C) LUSC (Noverlaps = 97), (D) OV (Noverlaps = 145), (E) UCEC (Noverlaps = 84). For the
respective models in each type of cancer, we performed 10,000 times of random splitting with 2/3 training and 1/3 testing using IDFO pipeline. The dotted red
box indicated the significantly improved performance of two integrated models in (D) OV and (E) UCEC compared with individual data type models (two-
sidedWilcoxon signed rank test, P < 0.01); the dotted blue box indicated the three individual data type models of mr, lnr and meth. The integrated group are
composed of both double-combination and triple-combination molecular signature models. Individual group contained the three individual molecular data
type models. The gray line across seven boxes shows the predictive patterns of integrated groups and individual groups. Noverlaps is the number of overlap
sample occurred in all three molecular data profiles (mRNA, lncRNA and DNAmethylation), lnr = lncRNA, mr = mRNA, meth = DNAmethylation, mr
+lnr = mRNA + lncRNA, mr+meth = mRNA + DNAmethylation, lnr+meth = lncRNA + DNAmethylation, mr+lnr+ meth = mRNA + lncRNA +DNAmethylation.

doi:10.1371/journal.pone.0142433.g004
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profiles to the multivariate Cox proportional hazard regression (MCPHR) analysis[41] to eval-
uate the correlation of IDFO-predictors with prognosis risk and investigate their clinical utili-
ties. Here, we utilized the MCPHRmodels to compute the relative risks (RR) of tumor patient
and classified the patients into two prognosis groups (‘good prognosis’ and ‘poor prognosis)
according to the median risk scores in respective molecular data profiles. As shown in Fig 5,
in UCEC (n = 586), the three year survival of lncRNA cohort approached 92% in ‘good prog-
nosis’ and 19% in ‘bad prognosis’ (Chisq = 44.5, P = 1.67e-09, log rank test); mRNA cohort
approached 91% in ‘good prognosis’ group and 20% in ‘bad prognosis’ group (Chisq = 29.3,
P< 1e-10, log rank test); while DNA methylation cohort approached 99% in ‘good prognosis’
group and 40% in ‘bad prognosis’ group (Chisq = 17.5, P = 0.0073, log rank test); and in
microRNA cohort, the three year survival of two risk groups approached 77% and 28%
(Chisq = 14.1, P = 1.59e-09, log rank test). In BRCA (n = 671), we obtained a five year survival
of 92% and 65% in two risk groups of lncRNA cohorts (Chisq = 41.5, P = 1.76e-05, log rank
test); 89% and 74% in mRNA cohorts (Chisq = 38.2, P = 7.3e-05, log rank test); 99% and 68%
in DNA methylation cohorts (Chisq = 22.5, P = 0.004669, log rank test); and 100% and 16% in
microRNA cohorts (Chisq = 18.4, P = 0.008759, log rank test). Similar results of statistically
significances were also observed in COAD, LUSC, and OV (details in Table D in S1 File). Nota-
bly, most IDFO predictors emerged as significant variables related to survival (log rank
p< 0.01, Table D in S1 File), and the classified two risk groups in respective molecular cohorts
were associated with statistically significant differences in overall survival (OS) except for the
microRNA cohort in LUSC (logrank test, p = 0.4014, Fig 5k), which suggested a compelling
advantage of IDFO predictors in both dichotomized and/or censored survival prediction.

Many studies have suggested that clinical variables provide additional predictive power to
prognosis models [3, 4, 42]. Therefore, we extended the MCPHRmodel of each type of molecu-
lar data with four additional clinical variables (a) tumor stage, (b) tumor grade, (c) pathologic
diagnostic age, and (d) sex in order to test whether clinical factors would improve the prognosis
predictions in combination with molecular signatures. We compared the performance (C-
index[43], see Supplementary Methods in S1 File) of each molecular prognostic model with
and without clinical variables by computing the P values of two-sided Wilcoxon signed rank
test (see Methods) in each cancer type, respectively. Interestingly, the molecular data + clinical
models resulted in improved predictive performance compared with single molecular data
models in most cancer types, especially in the mRNA and microRNA cohorts (Table E in S1
File). For example, the microRNA + clinical models in BRCA (two-sided Wilcoxon signed
rank test: P< 2.1e-3), LUSC (two-sided Wilcoxon signed rank test: P< 1.7e-3), OV (two-sided
Wilcoxon signed rank test: P< 6.0e-3) and UCEC (two-sided Wilcoxon signed rank test: P<
8.4e-4). Similarly, the mRNA + clinical models in COAD (two-sided Wilcoxon signed rank
test: P< 5.2e-3), LUSC (two-sided Wilcoxon signed rank test: P< 1.4e-2), UCEC (two-sided
Wilcoxon signed rank test: P< 6.5e-3) and OV (two-sided Wilcoxon signed rank test: P< 3.1e-
3) showed statistically significant increased C-index than their respective molecular-data-only
models, which suggested the microRNA and mRNA signatures were more ideal as non-inde-
pendent prognosis factors in clinical outcomes. Similar results were previously observed in Pan
cancer project studies[3, 44]. However, in contrast, few lncRNA/DNA methylation + clinical
models were found with degraded performance compared with their respective individual
molecular models (Table E in S1 File), including the DNAmethylation + clinical models in
LUSC and UCEC (two-sided Wilcoxon signed rank test, LUSC: DNAmethylation + clinical:
P< 7.0e-3; UCEC: DNA methylation + clinical: P< 2.7e-2), and lncRNA+ clinical models in
BRCA and LUSC (two-sided Wilcoxon signed rank test, BRCA: lnc + clinical: P< 1.5e-2;
LUSC: lnc + clinical: P< 3.4e-2), which suggested the two types of molecular approaches can
be regarded as higher-level assemblies and act as more robust prognosis factors independent of
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Fig 5. Survival analysis on IDFO predictors of four types of molecular data in five cancers. The Kaplan-Meier overall survival curves of two outcome
groups classified by MCPHRmodels using IDFO-identified predictors of each molecular data of each cancer. (a) the BRCA lncRNA cohort; (b) the BRCA
DNAmethylation cohort; (c) the BRCAmicroRNA cohort; (d) the BRCAmRNA cohort; (e) the COAD lncRNA cohort; (f) the COADDNAmethylation cohort;
(g) the COADmicroRNA cohort; (h) the COADmRNA cohort; (i) the LUSC lncRNA cohort; (j) the LUSC DNAmethylation cohort; (k) the LUSCmicroRNA
cohort; (l) the LUSCmRNA cohort;(m) the OV lncRNA cohort; (n) the OV DNAmethylation cohort; (o) the OVmicroRNA cohort; (p) the OVmRNA cohort;(q)
the UCEC lncRNA cohort; (r) the UCEC DNAmethylation cohort; (s) the UCECmicroRNA cohort; (t) the UCECmRNA cohort. The difference in outcome of
two outcome groups was tested using Kaplan-Meier survival analysis. Likelihood ratio = the likelihood ratio test.

doi:10.1371/journal.pone.0142433.g005
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clinical variables. In addition, we examined the effects of clinical variables on double and triple
combination molecular groups in clinical models (Supplementary Methods in S1 File).

Discussion
In this study, we proposed an IDFO approach to systematically evaluate the prognostic power
of diverse molecular data and compared their relative importance across five TCGA cancer
types. Importantly, we achieved good stratification of the IDFO approach in most profiling
models. Across the five TCGA cancer cohorts, lncRNA illustrated as the best prognostic pre-
dictor (‘test sets’) in four cancer types, followed by DNA methylation, then jointly by mRNA
and microRNA, the results suggested that the lncRNAs and DNAmethylation may potentially
play considerable roles in prognosis process. Notably, some of the optimal lncRNA predictors
have been well verified in literature suggesting the effectiveness of our analyses in identifying
prognosis-relevant markers. Through integrated modeling of multi-type molecular data, we
found 80% of the multi-type molecular data showed similar predictive performance to the sin-
gle-type molecular data, except for lncRNA + DNAmethylation in two cancer types of OV and
UCEC, suggesting the information content of integrated multi-type molecular data might
largely be redundant in terms of survival risk stratification. Moreover, our external validation
of IDFO predictors associated with clinical variables in traditional survival analysis not only
confirmed the reliability of most IDFO predictors on both dichotomized and censored survival
prediction, but also showed a high robustness of lncRNA and DNAmethylation signatures as
prognosis factors independent of traditional clinical variables. Importantly, similar results had
previously been observed in other biomarker identification approaches using Cox models [3,
45]. These results and methods may have specific reference to subsequent related studies.

Currently, only few molecular based markers have been established in clinical practice, as
strategies to identify optimal candidate signatures remain a challenge. Although our efforts pro-
vided a basis for evaluating patient survival prediction with a systematic model framework,
some informative markers may be inevitably missed owing to the multi-co-linearity of high-
throughput data and the intra-tumor heterogeneities. Therefore, one important future direction
is to develop data-specific approaches to screen out feature panels with more complementary
information among diverse high-throughput platforms. Besides, it should be noted that the
accuracies of prediction model in microRNA testing cohorts are still limited. For example, only
limited microRNAs were available for models owing to tissue-specificity and low dimensional-
ity. On the other hand, recent studies have suggested a nonlinear relationship between micro-
RNA expression and clinical outcomes [46–48], which imply that further studies could assess
some nonparametric algorithms on microRNA prognostic analysis.

As is well known, cancer prognosis is likely caused by a series of factors, for example, clinical
variables, genetic mutations, and aberrant gene expression. At present, research on the transla-
tion of biological data into clinical utility is still limited; therefore, our study has attempted to
start the process of bridging this gap. However, as high-throughput technology continues to
improve and therapies become increasingly target-specific, more potential markers will inevita-
bly be identified in tandem and will play greater roles in prognostic utility. The integration
analysis of diverse molecular profiles provides opportunities to more incorporated practice of
clinical oncology.

Conclusion
In conclusion, we present a prognostic modeling pipeline to specifically evaluate the prognostic
power of the lncRNA, mRNA, DNAmethylation, and microRNA across five TCGA cancers.
Our study determined that lncRNA illustrated the best prognostic performance compared to
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the three molecular data analysis in four cancer types, followed by DNA methylation, mRNA,
and microRNA. Moreover, through integrated modeling of these diverse molecular data, we
found 80% of the combined molecular models showed redundancy except for lncRNA + DNA
methylation group in two cancers (OV and UCEC). Survival analysis on the IDFO-predictors
confirmed the efficacy of our method in identifying prognosis-related markers which may have
clinical utility that could be applied to other related studies.
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