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Abstract
Understanding the mechanisms in the generation of neural stem cells from pluripotent stem

cells is a fundamental step towards successful management of neurodegenerative dis-

eases in translational medicine. Albeit all-trans retinoic acid (RA) has been associated with

axon outgrowth and nerve regeneration, the maintenance of differentiated neurons, the

association with degenerative disease like Parkinson's disease, and its regulatory molecu-

lar mechanism from pluripotent stem cells to neural stem cells remain fragmented. We have

previously reported that RA is capable of differentiation of human trophoblast stem cells to

dopamine (DA) committed progenitor cells. Intracranial implantation of such neural progeni-

tor cells into the 6-OHDA-lesioned substantia nigra pars compacta successfully regener-

ates dopaminergic neurons and integrity of the nigrostriatal pathway, ameliorating the

behavioral deficits in the Parkinson’s disease rat model. Here, we demonstrated a dynamic

molecular network in systematic analysis by addressing spatiotemporal molecular expres-

sion, intracellular protein-protein interaction and inhibition, imaging study, and genetic

expression to explore the regulatory mechanisms of RA induction in the differentiation of

human trophoblast stem cells to DA committed progenitor cells. We focused on the tyrosine

receptor kinase (Trk), G proteins, canonical Wnt2B/β-catenin, genomic and non-genomic

RA signaling transductions with Tyrosine hydroxylase (TH) gene expression as the differen-

tiation endpoint. We found that at the early stage, integration of TrkA and G protein signal-

ings aims for axonogenesis and morphogenesis, involving the novel RXRα/Gαq/11 and

RARβ/Gβ signaling pathways. While at the later stage, five distinct signaling pathways

together with epigenetic histone modifications emerged to regulate expression of TH, a pre-

cursor of dopamine. RA induction generated DA committed progenitor cells in one day. Our

results provided substantial mechanistic evidence that human trophoblast stem cell-derived
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neural stem cells can potentially be used for neurobiological study, drug discovery, and as

an alternative source of cell-based therapy in neurodegenerative diseases like Parkinson’s

disease.

Introduction
Pluripotent stem cells such as human embryonic stem (hES) cells and induced pluripotent
stem (iPS) cells contain plasticity to generate NSCs, expressing signature features of neuroe-
pithelia, neuronal morphology and functionality for disease modeling and therapeutic pur-
poses with potential capacity for clinical management of Parkinson’s disease (PD) [1–4].
Furthermore, we have previously reported that all-trans retinoic acid (RA) is capable of differ-
entiation of human trophoblast stem (hTS) cells to DA committed progenitor cells [5]. Intra-
cranial implantation of such NSCs into the 6-OHDA-induced and -lesioned substantia nigra
pars compacta successfully regenerates dopaminergic (DA) neurons and integrity of the
nigrostriatal pathway, ameliorating the behavioral deficits in the PD rat model. However, the
molecular mechanisms that drive the stem cells to NSCs remain incompletely understood and
understanding of those regulatory mechanisms is essential and required before any pluripotent
stem cells can be ultimately applied to translational medicine

RA, a derivative of vitamin A, is able to enter the nucleus to bind directly to target genes via
nuclear receptors that elicit a well-known genomic RA signaling pathway or may crosstalk
with other molecules to perform the non-genomic RA pathway in the regulation of neurodif-
ferentiation, motor axon outgrowth and neural patterning [6–7]. It has been shown that extrin-
sic signal RA and intrinsic transcription factors Neurogenin2 (Ngn2) collaboratively trigger
transcriptionally active chromatin in spinal motor neuron genes that determine specific cell
fate during development [8], suggesting that the neural progenitors can integrate both cues and
orchestrate chromatin changes for neuronal specification.

Neurotrophins belong to a family of growth factors, including nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), and neurotrophins 3 (NT3) and NT4. At the cell
membrane, NGF binds to tyrosine kinase receptor (Trk) A (TrkA), while BDNF and NT4 bind
to TrkB but NT3 binds to TrkC. Trk signaling is critical for cell survival and death events, regu-
lating neuronal proliferation and differentiation, axonal growth and synaptic modulation and
the assembly of cytoskeletal proteins into axons [9–11]. Neurotrophic factors also protect DA
neurons and enhance their regeneration in PD [12].

G protein-coupled receptors (GPCRs) constitute a large protein family of receptors, which
can transduce extracellular signals into intracellular target molecules via dissociation of Gαβγ
protein complex into subunits Gα and Gβ that give rise to a variety of signal cascades, promot-
ing survival and other functional regulation of neurons [13]. For example, Gα regulates differ-
entiation and self-renewal in the developing NSCs [14] and affects the balance of attractive
versus repulsive cues in the growth cone to regulate axonal pathfinding [15].

Here, we demonstrated that RA induced interplay between TrkA and G protein signaling
pathways to initially involve in the axonogenesis, cell adhesions, and morphogenesis. Subse-
quently, RA induced a coordination of TH gene transcriptions and epigenetic histone modifi-
cations to generate DA committed progenitor cells, providing substantial evidence of the
proof-of-concept that hTS cells can be a potential and reliable source for cell-based therapy in
translational medicine [5].
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Materials and Methods

Ethics statement
hTS cell line is a de novo cell line established in the same laboratory at KaohsiungMedical Uni-
versity Hospital (KMUH) and published in a previous study [5]. The Institutional Review Board
(IRB) on Human Subjects Research and Ethics Committees of KMUH approved this study and
tissue donor informed consent procedure (KMUH-IRB-950140). Tissue donor participants pro-
vided written informed consent. The original IRB approval and written informed consent docu-
ments are recorded and filed in KMUH IRB documentation files with copies in my office. The
National Cheng Kung University (NCKU) Institutional Animal Care and Use Committee
(IACUC) specifically approved these animal experiments (IACUC Approval No. 98010). The
NCKU IACUC guidelines aim to treat rats humanely and reduce animal suffering by use of anes-
thesia and analgesics, and provide nutritional and fluid support as described previously [9].

Cell Culture and Differentiation
hTS cells were cultured in conditioned α-MEM plus 10% FBS at 37°C in 5% CO2 as described
previously [5]. For neural differentiation, cells were treated by freshly prepared RA (10 μM,
Sigma-Aldrich).

Western Blot, Immunoprecipitation (IP), RNA Interference, and Flow
Cytometry
These methods used were aimed to identify the molecular expression, protein-protein interac-
tion and inhibition as described previously [5]. Specifically, plasmid construct used in this
study yields over 95% of transfection rate. Furthermore, small interfering RNA (siRNA) and
short hairpin RNA (shRNA) were purchased from the National RNAi Core Facility Platform,
Institute of Molecular Biology/Genomic Research Center, Academia Sinica, Taipei, Taiwan.
Data from flow cytometry were analyzed by Cell-Quest software (BD Biosciences). All reagents,
antibodies and primers used were listed in S1–S4 Tables.

Immunocytochemistry, TissueQuest Analysis, Double Immunogold
Electron Microscopy and Live Cell Imaging and Calcium Measurements
These methods were performed for imaging studies. Briefly, cells were prepared as described
previously [5]. For immunocytochemistry, cells were incubated with specific primary antibody
in PBS at 4°C overnight, followed by adding appropriate fluorescent reagent-conjugated sec-
ondary antibody and DAPI staining to be able to observe by immunofluoresence microscope.
For TissueQuest analysis, monoclonal antibodies against TH and CREB1 were used. Samples
were observed by Zeiss AxioImager Z1 microscope and analyzed by TissueFaxs software. All
data were analyzed by two technicians independently. For double immunogold electron
microscopy, cells were incubated primary IgG antibody against RXRα, followed by probing
with a secondary anti-mouse IgG 6 nm gold particles or anti-rabbit IgG 20 nm gold particles.
Imaging was observed under Hitachi H-700 model transmission electron microscope. The
detail procedures were described in Supporting Information.

Quantitative PCR (qPCR) and ChIP-qPCR Analysis
These methods were applied to measure the expression of mRNAs and genes, performed by
commercial kits according to the instructions. Detail information was described previously [5]
and in Supplementary Materials.
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Statistics
Data obtained from qPCR, ChIP-qPCR, Western blot and flow cytometric analysis were calcu-
lated by Student’s t-test. Data express as mean ± SD. p-value< 0.05 indicate statistically signifi-
cant. The predictive ability of immunofluorescence intensity was judged by the R-square in the
immunofluorescence TissueQuest analysis.

Results

1. A Cohort of Morphogenetic Events at the Early Stage of Differentiation
Fig 1 illustrates a molecular network of RA induction at 4 hr, by which we demonstrated the
regulatory molecular mechanisms through the integration of TrkA and G protein signaling
pathways that contributed to microtubule assembly and stabilization, axonal growth, cell-cell
interaction and morphogenesis

RA induces subcellular localization of RARβ and RXRα via TrkA/Akt3/mTOR path-
way. To address the RA effect on Trk expression, we found that RA induced expression of
TrkA, but not TrkB and TrkC, to promote PI3K/Akt pathways [16] by phosphorylation of
three Akt subunits, thereby, establishing the TrkA/PI3K/Akt1, the TrkA/PI3K/Akt2, and the
TrkA/PI3K/Akt3 signaling pathways (Fig 2A and 2B). These pathways were verified by the
inhibitory action of TrkA shRNA (Fig 2A), Trk inhibitor GNF-5837 (Fig 2B), and PI3K inhibi-
tor Wortmannin (S1A Fig). Interestingly, only Akt3, not Akt1 and Akt2, interacted with and
resulted in the phosphorylation of the mammalian target of rapamycin (mTOR) (Fig 1 and
S1B–S1D Fig). Phosphorylated mTOR then interacted with the mRNA translation repressor
4E-binding protein (4EBP1) resulting in the increase of 4EBP1 (Fig 2D and S1E Fig). In turn,
4EBP1 activation resulted in the phosphorylation of eukaryotic translation initiation factor 4E
(elF4E) (Fig 2C and 2D) to prevent the assembly of elF4E into the cap-dependent translational
inhibitor eIF4F complex, thereby, initiating the global cap-dependent translation [17]. This
was supported by the rapid reduction of both RXRαmRNA and RARβmRNA by qPCR analy-
sis (Fig 2E) and knockdown of eIF4E reduced RXRα and RARβ levels, but not Gβ and Gαq/11,
(Fig 2F). Both RXRαmRNA and RARβmRNA expressions were inhibited by the transcription
inhibitor actinomycin D (ACD), but not the translation inhibitor cycloheximide (CHX) (Fig
2G). These results suggested that RA induced local translation of RARβ and RXRα via activa-
tion of the TrkA/PI3K/Akt3/mTOR signaling, representing a novel non-genomic RA effect.

Integration of TrkA and G protein signalings generates non-genomic RARβ/Gβ and
RXRα/Gαq/11 signaling pathways. Meantime, GPCR transduced RA signal to intracellular G
protein complexes, leading to the segregation of subunits Gαq/11 and Gβ at the subcellular
regions (Fig 2H). Unexpectedly, interaction between RARβ and Gβ and between RXRα and
Gαq/11 occurred (Fig 2I), evidenced by knockdown of RXRα in preventing interaction of RXRα
and Gαq/11, for example (Fig 2J). To further explore these unique events, we created the green
fluorescent protein (GFP)-tagged RXRα, the small gold particle-tagged RXRα (6 μm in size)
and the large gold particle-tagged Gαq/11 (20 μm) in order to observe the molecular behaviors
by imaging analysis. Real-time confocal immunofluoresence microscopy revealed the move-
ment of GFP-tagged RXRα to the subcellular regions in 0 min, 4.5 min, and 13 min of RA
induction (Fig 3A). Co-localization of immunoreactive RARβ and Gβ (Fig 3B), as well as
RXRα and Gαq/11 (Fig 3C), was observed at the tips of growing axon. Furthermore, double
immunogold electron microscopy demonstrated an anchorage of the small gold particle-tagged
RXRα together with the large gold particle-tagged Gαq/11 at either the endoplasmic reticulum
(ER) or the subcellular regions (Fig 3D). We concluded that RA induced the integration of

Molecular Mechanisms in Differentiation of DA Committed Progenitors

PLOS ONE | DOI:10.1371/journal.pone.0143852 November 25, 2015 4 / 24



TrkA and G protein signaling pathways to create the functional RARβ/Gβ and RXRα/Gαq/11
complexes at the axonal regions.

Functionally, these complexes initiated two non-genomic RA signaling pathways indepen-
dently. First, RARβ/Gβ signal activated its downstream effector protein kinase A (PKA) via
phosphorylation and proto-oncogene c-Src, followed by a chain of proteins known as c-Raf/
phospho(p)-MEK/p-Erk1/2 pathway (Fig 4A and 4B). Immediately, Erk1/2 activation resulted
in phosphorylation of cAMP responsive element binding protein 1 (CREB1). This pathway
was inhibited by c-Src inhibitor PP1, knockdown of Gβ (Fig 4A and 4B) and MAPK/Erk inhib-
itor PD98059 (S1F and S1G Fig). Therefore, a linkage between the RARβ/Gβ and the c-Src/c-
Raf/p-MEK/p-Erk1/2/CREB1 pathway was established.

Fig 1. Schematic Illustration of Molecular Networks of RA Induction at the Early Stage of Differentiation in hTS Cells.

doi:10.1371/journal.pone.0143852.g001
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Second, RXRα/Gαq/11 signal, on the other side, catalyzed phosphatidylinositol 4,5-bipho-
sphate (PIP2) into two-second messengers, including inositol 1,4,5-triphosphate (IP3) to acti-
vate its receptor IP3R at the endoplasmic reticulum (ER) (Fig 4C). Therefore, the intracellular
calcium levels elevated and this action was blocked by IP3R inhibitor 2-aminoethoxydiphenyl
borate (2-APB) (S2A Fig). The increased intracellular calcium activities rapidly induced a tran-
sient activation of calcium/calmodulin-dependent protein kinase II (CaMKII) within 2 hr to
consequently phosphorylate CREB1 via interaction (Fig 4C and 4D and S2B Fig) and CREB1
expression was suppressed by CaMKII inhibitor KN93 (S1E Fig). An RXRα/Gαq/11/CaMKII/
CREB1 pathway was formed.

On the other side, RA also induced activation of the TrkA/PI3K/Akt1 cascade (Fig 2A and
2B). Akt1 selectively caused the phosphorylation of its downstream CREB1 via direct interac-
tion (S2C Fig) to form the TrkA/PI3K/Akt1/CREB1 pathway. We confirmed this pathway by
the inhibitory action of PI3K inhibitor Wortmannin (S1A Fig) and Akt inhibitor MK2206
(S1C Fig). To this end, all three pathways converged at the CREB1 molecule to increase its
nuclear localization.

CREB1 exhibits transcriptional capability to generate MEF2A and MAPT for microtu-
bule assembly. In the nucleus, ChIP-qPCR analysis revealed that CREB1 induced two tran-
scriptional effects: i) it targeted geneMAPT at 4 hr induction, but not at 24 hr, forMAPT
transcription (Fig 4E), leading the migration ofMAPT transcripts to the appropriate sites in
axonal growth cones for further local synthesis of microtubule-associated protein tau (MAPT)
and ii) it targeted geneMEF2A to produce more MEF2A to be further activated for biological
functions (Fig 4F). These results suggest that CREB1 is a critical core regulator in axonogenesis.
CREB1 is required for neuronal survival and axonal growth in neurogenesis [18–19].

MEF2A promotes axonogenesis via generation of α-Synuclein, Parkin, Pitx2, and N-
cadherin. Unlike the transient expression of CaMKII, intracellular calcium elevation also
induced expression of the calcium-dependent protein phosphatase calcineurin (CaN) and CaN
expression became prominent as differentiation proceeded to 24 hr (Fig 4D). Active CaN acti-
vated MEF2A via dephosphorylation to form the RXRα/Gαq/11/CaN/MEF2A pathway (S3A
Fig), resulting in nuclear localization of MEF2A [20]. In the nucleus, MEF2A exhibited several
transcriptional activities by targeting: i) geneMEF2A in a model of transcriptional autoregula-
tion circuitry (Fig 4F); ii) gene SNCA to produce a presynaptic neuronal protein α-Synuclein
(Fig 4G and 4C), associated with the native synaptic vesicles, microtubule cytoskeletal function,
phospholipids regulation and neurotransmitter release [21]; iii) gene PARK2 to produce pro-
tein E3 ubiquitin ligase Parkin to subsequently formMAPT/Parkin complex (Fig 4C and 4H
and S3B Fig). Mutations in PARK2 gene causes autosomal recessive juvenile Parkinsonism
[22], and iv) gene Pitx2 to produce paired-like homeodomain transcription factor 2 (Pitx2)
(Fig 4I). In turn, Pitx2 transcribed gene CHD2 (Fig 4J) to ultimately produce a calcium depen-
dent cell-cell adhesion glycoprotein N-cadherin. We concluded that an integration of TrkA
and G-protein signaling pathways is involved in the production of α-Synuclein, Parkin, Pitx2
and N-cadherin mediating MEF2A at the early neurodifferentiation.

Fig 2. Subcellular Localization of RARβ and RXRα. (A-B) Knockdown of TrkA and TrkB reduced Akt1 and Akt3 expressions at 4 hr (upper) and 24 hr
(lower panel), respectively, evidenced by inhibitory GNF-5837 by immunoblotting assays. β-actin as loading control. (C) RA activated mTOR and eIF4E at 4
hr, but not 24 hr. (D) Knockdown of mTOR resulted in reduction of phosphorylation of 4EBP1, but not eIF4E, and knockdown of 4EBP1 did not reduce eIF4E.
(E) RA reduced both RXRαmRNA (left) and RARβmRNA (right) levels at 2 min by qPCR, but did not change by using eIF4E shRNA. Data represent
mean ± SD, n = 6, $:p < 0.05. (F) RA-induced expressions of Gαq/11, Gβ, RARβ and RXRα in a timeline and their responses by knockdown of eIF4E shRNA.
shGFP as a positive control. (G) RA-reduced RXRαmRNA and RARβmRNA levels were promoted by ACD (100 μg/ml), but not CHX (100 μg/ml) at 30 min
by qPCR assay. Data represent mean ± SD, n = 4, $:p < 0.05. C: control. (H) RA induced different expression patterns of RARβ, RXRα, Gβ and Gαq/11 by
immunoblotting assay. (I) IP assay showed an interaction between Gβ and RARβ and also between Gαq/11 and RXRαwhile (J) knockdown of RXRα inhibited
the latter.

doi:10.1371/journal.pone.0143852.g002
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Fig 3. Imaging of RARβ/Gβ and RXRα/Gαq/11 Complexes. (A) Representative micrographs of real-time confocal immunofluorescence microscopy
showing RA at 0 min, 4.5 min, and 13 min. Bar scale: 30μm. (B) The distribution of Gβ (green) and RARβ (red) before RA stimulation (upper); while co-
localization of them at the extended axonal membrane after RA (white arrow) (lower) and (C) a similar expression was observed in between Gαq/11 (green)
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Intracellular calcium signals regulate axonogenesis via stage-specific CaMKII/CaN dis-
tribution. Interestingly, the transient CaMKII interacted to and activated Parkin to form the
Parkin/MAPT complexes (Fig 4C and S3B Fig), involving in the microtubule assembly and sta-
bilization. Parkin may function to protect dopaminergic neurons from death [23]. Neverthe-
less, CaMKII activities reduced gradually and became absent in the later differentiation
(between 4 and 24 hr) (Fig 4D). In contrast, CaN expressed weakly at the initial stage but its
expression gradually increased up to the later stage (24 hr) of differentiation. This fact indicates
the importance of intracellular calcium activities in the regulation of CaMKII and CaN expres-
sions at the early axonogenesis. Indeed, in addition to the intracellular ER calcium releases,
cells require the presence of other regulatory intracellular calcium mechanisms to maintain an
appropriate CaMKII/CaN ratio for axonogenesis.

For example, hTS cells were cultured in calcium-free medium. Live cell imaging studies
revealed that the RA-induced depletion of intracellular ER calcium could be compensated and
rescued by adding extrinsic CaCl2 (S3C Fig), suggesting the presence of calcium release-acti-
vated calcium channels (CRACs). Furthermore, by adding extracellular KCl also rescued the
intracellular calcium levels after total depletion of ER calcium releases (S3C Fig). Pretreatment
of a VGCC antagonist nifedipine was able to abolish the KCl-induced intracellular calcium
increases (S3C Fig), suggesting the involvement of L-type voltage-gated calcium channels
(VGCCs). These results indicated that the maintenance of intracellular calcium balance may
require the integration of ER, VGCCs, and CRACs. Therefore, the stage-specific difference of
intracellular calcium levels would determine the CaMKII/CaN ratio that impacts on the cellu-
lar behaviors during the differentiation processes. An increased CaMKII activity, for example,
activated locally encoded VGCC activities rather than to integrate Ca2+ flux, which increases
intracellular calcium levels [24].

RXRα/Gαq/11/CaN pathway enhances NFAT1 role in regulating axonal extension. Fur-
thermore, CaN activity resulted in dephosphorylation of its downstream transcription factor
NFAT1 (Fig 4C), allowing the nuclear translocalization of NFAT1 carried by transporter
importin (S1A and S1B Fig). Whereas NFAT1 was supposed to act on its related immune
genes via interaction; however, this action was prevented by the rephosphorylation of GSK3β
(S4C Fig) [25]. Alternatively, NFAT1 bound to MEF2A to be a co-activator of MEF2A in the
nucleus (S4D Fig), expressing a co-localization immunocytochemically (Fig 4K). However,
NFAT1 can be a regulator in the proliferation and differentiation of NSCs in the neural tube,
whereas NFAT1 binds directly to Dvl that represses the canonical Wnt/β-catenin signaling
pathway in chick embryo [26]. Therefore, CaN/NFAT1 signal may perform its role in regulat-
ing axon extension [27] and is required to induce neurite outgrowth because the lack of NFAT
family causes complete loss of axonal extension [28]. The linkage of the RXRα/Gαq/11/ER cal-
cium and CaN/NFAT1 cascades was supported by the inhibitory action of IP3R inhibitor
2-APB (S2D Fig) and NFAT1 siRNA (S4E Fig).

TrkA/Akt2/GSK3β cascades are involved in regulation of morphogenesis and axonal
growth. Glycogen synthase kinase 3β (GSK3β) in response to extracellular neurotrophins is
involved in cellular morphogenesis, depending on the phosphorylation site; for example, phos-
phorylation at Ser21/9 or Tyr279/216 may express divergent responses in the regulation of axo-
nal growth [29–30]. In hTS cells, RA induced activation of the TrkA/PI3K/Akt2 cascades

and RXRα (red). Bar scale: 30μm. (D) Representative electron micrographs showing: the subcellular large gold-tagged Gαq/11 (20 μm, green arrow) and ER
areas (blank arrow) before RA stimulation (upper). Co-localization of the small gold-tagged RXRα (6 μm, red arrow) and the large gold-tagged Gαq/11 (green
arrow) at the ER areas (blank arrow) (middle) and at the subcellular regions after RA stimulation (15 min; lower). N: nucleus, Bar scale: 1 μm.

doi:10.1371/journal.pone.0143852.g003

Molecular Mechanisms in Differentiation of DA Committed Progenitors

PLOS ONE | DOI:10.1371/journal.pone.0143852 November 25, 2015 9 / 24



Fig 4. CREB1 andMAPT as Central Core Regulators in Axon Growth. (A-B) Linkage of PKA/c-Src/c-Raf pathway (A) and c-Raf/MEK/Erk1/2/CREB1
pathway (B) in a timeline by immunoblotting assays supported by PKA inhibitor PP1 and knockdown of Gβ. (C) RA activated the molecular components of
Gαq/11/CaMKII/CREB1 pathway (upper), MAPT-centered complexes (middle) and Gαq/11/CaN/NFAT1 pathway (lower) at 4 hr induction. (D) Responses of
CaMKII and CaN to RA at different time induction by immunoblotting assay. β-actin: loading control. (E-J) ChIP-qPCR analysis at different site of the
promoter of genes by RA induction showing: (E) CREB1 transcribedMAPT gene at 4 hr, but not 24 hr; (F) CREB1 transcribedMEF2A gene (left) and MEF2A
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(Fig 2A and 2B) followed by phosphorylation of GSK3β at both Ser21/9 and Tyr279/216 sites
via interaction at early 30 min of induction for different functions (Fig 5A and S5A Fig).

1) GSK3β-Ser21/9 signaling: An active GSK3β-Ser21/9 induced accumulation of β-catenin
(Fig 5B) to also exhibit two actions: i) to form the β-catenin/N-cadherin complexes at the sub-
cellular regions, showing co-localization immunocytochemically (Fig 4K), which guides the
microtubule to the gap junction plaque at the cell-cell borders for cellular interaction [31] or
involves in the initiation of myelination [32]; and ii) to enter the nucleus (S5B Fig) where it
recruited lymphoid enhancer-binding factor 1 (LEF1) by direct interaction (S5C Fig), which in
accompany with CaN/MEF2A signaled to target gene Pitx2 for transcription (Fig 4l). A co-
localization of β-catenin and Pitx2 was observed immunocytochemically (Fig 4K). In turn,
Pitx2 targeted gene CDH2 to produce N-cadherin (Fig 4J). Therefore, β-catenin, N-cadherin,
and Pitx2 constituted a regulatory circuitry in the regulation of cell-cell interconnection. Fur-
thermore, GSK3β-Ser21/9 interaction resulted in rephoshorylated NFAT1 in the nucleus (S4
Fig), preventing the binding of NFAT1 and DNA to consequently function for axonal growth
as described above. These results suggested an integration of the TrkA/Akt2/GSK3β-Ser21/9/
β-catenin and the RXRα/Gαq/11/CaN/NFAT1 pathways in the regulation of cell-cell
interaction.

2) GSK3β-Tyr279/216 signaling: An active GSK3β-Tyr279/216 occurred within 8 hr, but
not at 24 hr, resulting in the elevation of overall GSK3 protein (Fig 5A). It interacted to and
activated native MAPT, exhibiting a prime effect via phosphorylation (Figs 4C and 5C). In
turn, active MAPT bound to the microtubule component tubulins (Fig 5C), showing a co-local-
ization immunocytochemically (Fig 5D) and also interacted with α-Synuclein by IP assay (Fig
5E), making MAPT as a central core regulator on the Parkin/MAPT/α-Synuclein/tubulins
complexes. Co-localization of α-tubulin and Parkin was observed by imaging study (Fig 5D).
To this end, we demonstrated that the TrkA/Akt2/GSK3β-Tyr279/216 cascades were involved
in the initiation of MAPT function for microtubule assembly at the axonal growth cones. The
apparent downregulation of GSK3β-Tyr279/216 after 8 hr (Fig 5A) probably protected neurites
from degeneration compatible with the previous reports in Wallerian degeneration mice mod-
els [33]. Of particular clinical significance is that any abnormality of these biomarkers has been
associated to the physiopathology of neurodegenerative disorder in association with PD and
Alzheimer’s disease [34].

2. Regulation of THGene Expression at the Later Stage of
Differentiation
As differentiation proceeded to the later stage at 24 hr, cell susceptibility changed in response
to RA, eliciting five distinct signaling pathways to coordinately target TH gene for transcrip-
tion. Coincidentally, RA induced epigenetic histone modifications of H3K9ac and H3K4me3 at
the DNA of TH gene. The orchestrated molecular events activated TH gene expression, gener-
ating DA committed progenitor cells as shown in a schematic illustration (Fig 6).

The genomic RA signaling pathway. Consistent with the well-known genomic RA signal-
ing [6–7], we demonstrated that RA promoted the formation of RARβ/RXRα heterodimer by
the nuclear cytoplasmic fractionation assay at 24 hr incubation (S5B Fig). This heterodimer

performed a transcriptional autoregulation (right) at 4 hr; (G-H) MEF2A transcribed SNCA gene at 4 hr (G) and PARK2 gene at 4 hr, but not 24 hr (H); (I) β-
catenin transcribed Pitx2 gene at both 2 hr and 24 hr (left panel) and MEF2A transcribed Pitx2 gene at 2 hr and (J) Pitx2 transcribed CDH2 gene prominently
at 4 hr, but not 24 hr. Data represent mean ± SD of quadruplicates. (K) Immunofluorescence imaging (4 hr) revealed that RA induced co-expression of
NFAT1 and MEF2A (arrow; upper) and β-catenin and Pitx2 (arrow; middle) in the nucleus, while β-catenin and N-cadherin (arrow; lower) at the subcellular
regions. Bar scale: 20μm.

doi:10.1371/journal.pone.0143852.g004

Molecular Mechanisms in Differentiation of DA Committed Progenitors

PLOS ONE | DOI:10.1371/journal.pone.0143852 November 25, 2015 11 / 24



then bound to the DNA-binding domain at two sites (-0.8 kb and -2.3 kb) of the regions
known as RARE in TH gene by ChIP-qPCR analysis (Fig 7A). This action was further con-
firmed by using specific shRNAs against RARβ and RXRα that reduced THmRNA expression
(Fig 7B). We concluded that RA activated the genomic RA signaling pathway to promote TH
gene transcription in hTS cells.

The TrkB/Akt2/GSK3β/β-Catenin/Pitx3 pathway. Notably, a desensitization of TrkA in
response to RA occurred at 24 hr of induction (Fig 2A). Instead, TrkB was activated with con-
sequent downstream Akt2, but not Akt1 and Akt3 (Fig 2A and 2B). Knockdown of TrkB
reduced Akt2 expression, thereby, establishing the TrkB/PI3K/Akt2 pathway. Subsequently,
Akt2 resulted in the phosphorylation of GSK3β at Ser21/9 site (Fig 5A), resulting in the activa-
tion and nuclear translocation of β-catenin (S5B Fig). In the nucleus, β-catenin targeted at the
gene Pitx3 to produce Pitx3 (Fig 7C). In turn, Pitx3 enabled transcription of gene TH (Fig 7A).
Knockdown of Pitx3 reduced the THmRNA expression as well (Fig 7B). We concluded that
RA induced the activation of TrkB/PI3K/Akt2/GSK3β-Ser21/9/β-catenin signaling pathway to
promote TH gene transcription mediating Pitx3.

Fig 5. Multifaceted GSK3β in the Early Morphogenesis. (A-B) Dynamic expression of GSK3β by phosphorylation at Ser21/9 or Tyr279/216 sites (A) and
of β-catenin and N-cadherin (B) after RA induction by immunoblotting assay. Data represent mean ± SD, n = 3, $: p < 0.05. (C) Immunofluorescence imaging
of RA induction (4 hr) showing: co-expressions of α-tubulin and MAPT at the axonal areas (arrow; upper); Parkin and α-tubulin at the subcellular regions
(arrow; lower). (D-E) IP assays showing an interaction of MAPT to GSK3β-Tyr279/216 and α-tubulin (E) and to α-Synuclein (F). IgG as negative control, C as
control.

doi:10.1371/journal.pone.0143852.g005
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Fig 6. Schematic Illustration of a Variety of Distinct Transcriptional Pathways and Epigenetic Histone Modifications by RA Induction (24 hr) for TH
Gene Expression in hTS Cells.

doi:10.1371/journal.pone.0143852.g006
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Fig 7. Activation of THGene Expression. (A) ChIP-qPCR analysis by RA induction (24 hr) showing: RARβ (upper), RXRα (middle) and Pitx3 (lower) at left
panel as well as Pitx2 (upper), MEF2A (middle) and CREB1 (lower) at right panel to target the promoter of TH gene at different sites to produce the different
TH levels in hTS cells. (n = 4) (B) qPCR analysis showing the relative THmRNA expression and effects of knockdown of various transcription factors using
specific shRNAs in hTS cells. (n = 4), shGFP as positive control. (C) ChIP-qPCR analysis showing the transcriptional ability of MEF2A (left) and β-catenin
(right) targeting gene Pitx3 at different sites. (n = 4) (D) Flow cytometric analysis of the effect of Wnt2B knockdown on the expressions of Wnt2B, Dvl3,
FRAT1 and GSK3β at 24 hr of RA treatment. (n = 3) (E) RA activated H3K4me3 and H3K9ac at a different site of TH gene at 24 hr, but no change at 4 hr in
hTS cells (n = 4). Data represent mean ± SD,$: p < 0.05,$$: p < 0.01.

doi:10.1371/journal.pone.0143852.g007
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The canonical Wnt2B/Fzd6/β-catenin/Pitx2 pathway. Wnt/β-catenin pathway is well-
known for its pivotal impact on PD disease [35]. Among them, Wnt2 is initially expressed at
the midbrain in mice that regulates progenitor proliferation in the developing brain [36]. Based
on our previous DNA microarray analysis [5], we constructed a predictive canonical Wnt2B/
Fzd6/Dvl3/FRAT1/GSK3β-Ser21/9 signaling pathway by a series of expressions in its related
mRNAs (S6A Fig). For identification, flow cytometry revealed an upregulation of Wnt2B with
its downstream effectors, including mediator protein Dishevelled 3 (Dvl3), proto-oncogene
FRAT1 and a downregulated GSK3β-Ser21/9 (Fig 7D). Knockdown of Wnt2B reduced expres-
sions of Wnt2B, Dvl3, and FRAT1, but increased GSK3β-Ser21/9 activity (Fig 7D and 7B). Sub-
sequently, the inhibitory GSK3β-Ser21/9 led to the nuclear translocation of β-catenin. In the
nucleus, β-catenin induced transcription of genes Pitx3 (Fig 7A) and Pitx2 (Fig 4I and Fig 7A).
In turn, both of Pitx3 and Pitx2 were able to target at the similar promoter of gene TH for TH
expression. Knockdown of both Pitx3 and Pitx2 reduced expression of THmRNA (Fig 7B).
These results demonstrated that RA induced the canonical Wnt2B/Fzd6/β-catenin signaling
pathway to produce Pitx3 and Pitx2, which in turn targeted at gene TH for transcription.

The Gαq/11/CaN/MEF2A pathway. Unlike transient CaMKII, CaN activities were able to
sustain up to 24 hr during the differentiation (Fig 4D), suggesting a capacity in continuous
dephosphorylation of MEF2A for biological function. A nuclear cytoplasmic fractionation
analysis revealed the nuclear entrance of MEF2A at 24 hr induction, which action was sup-
ported by using CaN inhibitor cyclosporine (CsA) (S6B Fig). In the nucleus, MEF2A targeted
at gene TH (Fig 7A). Nevertheless, knockdown of MEF2A did not show reduction of TH
mRNA expression (Fig 7B). These results implicated that though MEF2A was not a direct tran-
scription factor for TH gene, MEF2A was a co-activator of Pitx2 for TH gene transcription.

The Gβ/PKA/MEK/Erk1/2/CREB1 pathway. Given a linkage between GPCRs and mito-
gen-activated protein kinases (MAPK) by multiple pathways described previously [37], we
demonstrated that the RA-activated Gβ promoted the expression of protein kinase A (PKA) at
24 hr induction. This consequently activated a series of protein-protein interactions with adap-
tor molecules, including proto-oncogene proteins c-Src, c-Raf, MEK, and Erk1/2 to establish
the PKA/c-Src/c-Raf/p-MEK/p-Erk1/2 pathway (Fig 4A and 4B). This pathway was further
supported by the inhibitory action of Src-selective kinase inhibitor PP1 (Fig 4A), Gβ shRNAs
(Fig 4B), and MAPK/Erk kinase inhibitor PD98059 (S1G Fig). Subsequently, Erk1/2 activation
resulted in the phosphorylation of CREB1, leading to the nuclear translocation of CREB1. In
the nucleus, CREB1 targeted to the TH promoter at -2.3 kb site, but not -0.8 kb site, to activate
TH transcription (Fig 7A) to produce TH (S6C Fig). Knockdown of CREB1 reduced the
expression of THmRNA by qPCR and immunoblotting assays (Fig 7B and S6D Fig). Together,
we demonstrated that RA induced activation of the Gβ/PKA/Erk1/2/CREB1 pathway for TH
gene transcription. To this end, we concluded that RA induced DA committed progenitor cells
in hTS cells via coordination of Wnt2B/Fzd6, TrkB/Akt2, G proteins, and genomic RA signal-
ing pathways.

Epigenetic histone modifications of H3K4me3 and H3K9ac. Epigenetic histone modifi-
cations play critical roles on chromatin remodeling and provide insights to further understand
the molecular mechanisms in genetic regulation. Much foci have been on the effects of tail acet-
ylation of histone H3 (H3K9ac) and trimethylation of H3 lysine 4 (H3K4me3) by ChIP-qPCR
analysis in TH gene due to enrichments in the promoter regions and the elevated levels sur-
rounding transcription sites (TSS) of active genes by large-scale and genome-wide analyses
[38–39].

Constitutively, we found that H3K4me3 expressed a relatively silent level at both -0.8 kb
and -2.3 kb sites of the promoter of TH, but H3K9ac expressed a relatively higher level
(>2-fold) at -0.8 kb site than -2.3 kb site in hTS cells (Fig 6E). At 4 hr induction, RA did not
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change both H3K4me3 and H3K9ac levels, suggesting a condensed chromatin status. This may
explain why RA did not activate TH gene at the early differentiation. However, H3K4me3 sig-
nificantly elevated at both -0.8 kb and -2.3 kb sites at 24 hr induction; while H3K9ac elevated
significantly only at -2.3 kb site (Fig 6E). Consequently, the chromatins of TH gene relaxed,
which facilitated the binding of transcription factors to DNA. Taken all together, we concluded
that the epigenetic histone modifications (i.e., H3K4me3 and H3K9ac) and the TH gene tran-
scription factors (i.e., Pitx2, Pitx3, MEF2A, CREB1, RAR and RXR) orchestrated the differenti-
ation of DA committed progenitor cells, exhibiting stage-specific and cell-type dependent
characteristics in hTS cells.

Postimplantation co-expression of TH and CREB1 in the lesioned SNC of PD rat
model. To validate the expression of RA-induced TH in vivo, we examined the 6-OHDA-
lesioned substantia nigra compacta (SNC) of PD rats that received intracranial implantation of
the hTS cell-derived NSCs generated by RA [5]. By immunocytochemistry, we found co-
expressions of CREB1 and TH in the DA neurons of both therapeutic SNC and normal SNC at
12 weeks postimplantation (Fig 8A). Quantitative analysis revealed a correlative intensity of
immunoreactive CREB1 and TH in both therapeutic and normal side (Fig 8B). Both CREB1
and TH intensities were higher in the newly generated DA neurons of the therapeutic SNC
than the normal side (Fig 8C). The ratio of TH to CREB1, however, was lower in the therapeu-
tic side than the normal side (Fig 8D). These results suggested that the in vitro expressions of
CREB1 and TH were similar to that of the in vivo regenerated DA neurons after implantation.
This suggests that hTS cell-derived NSCs can continuously differentiate and contain the capac-
ity to generate DA neurons in the lesioned SNC. To further characterize the DA committed
progenitor cells, we demonstrated the transcriptional expressions of functional A9 midbrain
dopaminergic neurons in the substantia nigra and ventral tegmental areas [40–43]. We showed
expressions of GIRK2, ALDH1, and Nurr1 mRNAs by qPCR assays (Fig 8E) and the co-expres-
sion of Pitx3 and TH as well as Foxa2 and TH by immunofluoresence imaging studies (Fig 8F).

Discussion
Transition of pluripotent stem cells to NSCs requires two cellular processes: i) morphologic
changes via axonogenesis and ii) NSC-associated gene expression, by which NSCs integrate
into the microenvironments of the brain after implantation to generate specific types of neural
cells, ultimately developing functional neuronal connections. Several signaling pathways are
involved in the regulation of neural stem cell transition, including fibroblast growth factor
(FGF) pathway [44], Notch pathway [45], sonic hedgehog (SHH) pathway [46], Wnt pathway
[47], BMP [48], and NFκB pathway [49]. Here, we report a robust molecular network of RA
induction in the differentiation of hTS cells to DA committed progenitor cells, exhibiting spa-
tiotemporal and stage-specific characteristics. At the early stage, RA induced the interplay of
TrkA and G protein signaling pathways to neural fate by activating molecules in association
with microtubule assembly and stabilization, axonal growth, and morphogenesis. At the later
stage, in addition to TrkB and G protein signaling, RA further induced the Wnt2B and geno-
mic signaling pathways, along with epigenetic histone modifications for TH gene specification.

RA activates many receptors including TrkA and TrkB via neurotrophin/Trk signaling to
promote differentiation of neuronal precursors [50]. In hTS cells, RA activated TrkA/Akt3/
mTOR pathway to trigger subcellular localization of RARβ and RXRα, which immediately
recruited Gβ and Gαq/11 to form the RARβ/Gβ and RXRα/Gαq/11 complexes, respectively. This
highlights a novel functional link between Trk nuclear receptors and G proteins. These com-
plexes initiated novel non-genomic RA signaling pathways, which may feasibly support the
association of RARβ and RXRα with growth cone guidance for chemoattraction by eliciting
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Fig 8. TissueQuest Analysis of TH and CREB1 Expressions in vivo. (A) Left panel: Expression of immunoreactive CREB1 (red) and TH (green) in DA
neurons in normal SNC (upper) and therapeutic SNC (lower). Right panel: Colocalization of TH and CREB1 in the regenerated DA neurons (arrow) of
therapeutic SNC at 12-week postimplantation of the hTS cell-derived NSCs in PD rat brain. (B) A distributive correlation of CREB1 and TH intensity in DA
neurons counted from the normal SNC and the therapeutic SNC after 12-week implantation. R2 = 0.856. (C-D) Comparison of relative expression of TH and
CREB1 between the normal DA neurons (left, n = 86 cells counted) and the regenerated DA neurons (right, n = 114 cells counted) in a brain section at
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turning in neurite outgrowth [51] and the fast formation of RARα/Gαq complexes in lipid
rafts as a requirement for the activation of p38MAPK in response to RA [46]. The interaction
of RXRα and Gαq/11 is most likely attributed to human Gαq/11 containing a single LXXLL
motif (where L is leucine; and X is any amino acid) in the N-terminal region, which is required
for its ligand-dependent interaction with nuclear receptors [52–53]. The interaction of RARβ
and Gβ remains unclear.

Local translation of mRNA in axon guidance has been challenging, partly because of the
technical barrier of inhibiting protein synthesis exclusively in the axonal compartment [54].
NGF/TrkA signaling induces local translation of CREB mRNA at axonal growth cones [55]. In
hTS cells, the synchronization of TrkA/PI3K/Akt1 and the RXRα/Gαq/11/CaMKII pathways
enhanced CREB1 signal strength by the auto-phosphorylation of CaMKII at the cell surface
[24]. Consequently, CREB1 activatedMAPT gene transcription in the nucleus, leading to the
transport ofMAPT transcripts towards the growth cones and/or along the axon, where local
translation may occur [56]. However, functions of MAPT regulated a site-specific phosphory-
lation event where phosphorylation of GSK3β-Tyr279/216 primed the native MAPT to initiate
the binding to MAPT and tubulins in the microtubules assembly. This suggests that GSK3β
regulates the microtubule-binding domain on MAPT molecule, making MAPT a core regulator
in growth cones under normal physiological conditions. Furthermore, the RXRα/Gαq/11/CaN
signaling resulted in the dephosphorylation of MEF2A for nuclear translocation to activate the
transcriptional expression of α-Synuclein and Parkin. As a result, the regulatory MAPT-cen-
tered protein complexes were formed, including MAPT, α-Synuclein, Parkin, α- and β-tubu-
lins, for microtubule organization and stabilization during axonal growth.

In neurons, intracellular calcium levels are crucial guidance cues in the growth cones,
depending on the stage-specific balance among the ER, VGCCs, and CRACs activities [57].
Intracellular calcium levels determine the distribution of its responsive effectors CaMKII and
CaN. Since attraction primarily is mediated by CaMKII and repulsion by CaN, the axon will
grow towards the side of the compartment with a greater CaMKII to CaN ratio [58]. In hTS
cells, RXRα/Gαq/11 signaling initially induced a higher CaMKII/CaN ratio at 30 min, but this
ratio downregulated after 4 hr (Fig 4D). These temporal changes in the CaMKII/CaN ratios
during neurodifferentiation may guide axonal movements to the appropriate spatial destina-
tions in a developing brain.

In addition, the linkage of TrkA/PI3K/Akt signaling and axonal characteristics is based on
the experiments by William D. Snider’s lab [59–60]. For example, both PI3K/Akt and Ras/Raf/
MEK pathways activate NGF-induced axon elongation, wherein PI3K increases axon calibers
and cell bodies with little effect on axon length while Akt causes axon thickening and distal
branching, but not significant elongation. Moreover, Raf-1 produces extensive growth of rela-
tively thin axonal processes and the enlarged cell body. Interestingly, PI3K/Akt signaling path-
way also controls the synaptogenesis and spinogenesis in hippocampal neurons [61]. In hTS
cells, we found that TrkA/Akt2/GSK3β signaling regulated cell adhesions via activation of sub-
cellular β-catenin and/or β-catenin/N-cadherin complex at the cell border. This suggests that
TrkA and G protein signaling were involved in the activation of effector genes, towards a neu-
ral morphology.

As differentiation progressed, cellular susceptibility to RA switched from TrkA to TrkB at
the cell membrane. This is compatible with reports that RA suppresses TrkA mRNA but

postimplantation (C) and the mean intensity of TH to CREB1 ratio in DA neurons is significantly lower in therapeutic SNC than normal SNC (D). (E) RA
increases levels of GIRK2, ALDH1, and Nurr1 mRNAs after one-day incubation by qPCR assay. (F) Immunofluorescence imaging reveals co-expression of
TH with Foxa2 and Pitx3. n = 4. Data represent mean ± SD,$: p < 0.05, $$: p<0.01,$$$: p < 0.001.

doi:10.1371/journal.pone.0143852.g008
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induces TrkB mRNA expression in the sympathetic neurons [62]; thereby, no trophic action
with NGF/TrkA on DA neurons is observed in SNC, but TrkB signaling is associated with
dopamine release in the early mesencephalic neurons [63]. The mechanism of how such desen-
sitization occurs is not understood. However, desensitization of receptor signaling may deter-
mine physiological fate during differentiation.

Notably, both Pitx2 and Pitx3 were required for the TH gene expression in hTS cell-derived
DA committed progenitor cells. However, very little or no evidence has been reported for the
presence of Pitx2 in SNC. Pitx2 is required for the midbrain development and loss of Pitx2 dis-
rupts differentiation of subthalamic nucleus neurons and axonal outgrowth [64]. While func-
tionally associated with GABA synthesis, Pitx2 is also necessary for tract formation for both
DA and GABA neuron migration in the mesencephalon of a developing brain [65]. Interest-
ingly, we found that MEF2A is an essential co-activator of Pitx2 in activating TH gene expres-
sion. Furthermore, Pitx3 is selectively expressed in the mesencephalic dopaminergic SNC for
the survival of DA neurons [66]. In mice, the absence of Pitx3 impairs the DA neuronal migra-
tion in the SNC [67]. A further study to compare the interaction of Pitx2 and Pitx3 on DA and
GABA neurodifferentiation is suggested to clarify this observation.

Histone modification is associated with transcriptionally repressive or active conformation
of gene expression. Methylation of lysine at the fourth residue of histone 3 (H3K4me) pro-
motes active conformation, but at the ninth residue (H3K9me) promotes repressive conforma-
tion; thereby, affecting the chromatin by recruiting protein complexes to regulate transcription
[68]. In the chromatin of TH-positive cells, a correlation exists between TH activity and H3
and H4 expressions [69]. Relevantly, H3K4me3 has been expressed in the undifferentiated pro-
genitors within the subventricular zone of the brain, where postnatal neurogenesis occurs [70].
In hTS cells, RA increased levels of both H3K4me3 and H3K9ac, which consequently contrib-
uted to chromatin relaxation that facilitated TH gene activation at 24 hr induction. However,
no such histone modifications were observed at the early 4 hr induction, suggesting in a con-
densed chromatin structure that prevented the binding of Pitx2, Pitx3, MEF2A, and CREB1 to
TH gene. These active molecules may serve for axonal assembly and growth in morphological
changes. Ultimately, an evaluation of both the genetic transcriptions and the epigenetic modifi-
cations may provide a more accurate prediction in the gene regulation for biological functions.
Nevertheless, despite what regulatory mechanisms have been achieved in the understanding of
differentiation of pluripotent stem cells to NSCs in vitro, without further advancements in
technology, clinical limitations will exist because we cannot observe cellular behavior and fate
after implantation in vivo.

Supporting Information
S1 Fig. Downstream effectors of RA-induced TrkA signaling. (A) RA (10 μM, 4 hr) activated
all Akt subunits and these actions were inhibited by Wortmannin (100 nM) by flow cytometry.
(B) Only Akt3, not Akt1 and Akt2, interacted with mTOR by IP. (C) RA enhanced the interac-
tion of Akt3 and mTOR (Ser2448) by IP assay. (D) Knockdown of Akt3 reduced the expression
of mTOR. Scramble: positive control, β-actin: loading control. (E) RA enhanced the interaction
of mTOR and 4EBP1 by IP assay. (F) RA induced phosphorylation of CREB1 was inhibited by
Akt inhibitor MK2206, MAPK/Erk kinase inhibitor PD98059, and CaMKII inhibitor KN93 at
4 hr induction. C as control. (G) RA induced phosphorylation of c-Raf, Mek, Erk1/2, and
CREB1 by immunoblotting assay. MAPK/Erk kinase inhibitor PD98059 decreased the phos-
phorylation of Erk1/2 and CREB1 at both 4 and 24 hr incubation. β-actin as loading control.
(TIF)
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S2 Fig. RARβ/Gβ/ER calcium signaling and its downstream effectors. (A) RA increased
intracellular calcium levels (n = 13 cells counted), which was inhibited by pre-incubation of
IP3 receptor antagonist 2-APB in a dose-dependent manner (R2 = 0.8984; n = 10) analyzed by
real-time cell imaging microscopy. (B) RA (4 hr) induced interaction of CaMKII and CREB1
by IP assay. C as control. IgG as negative control. (C) RA (4 hr) promoted expressions of CaM-
KII, CaN, NFAT1 and MEF2A, which were inhibited by (50 μM, 2 hr). β-actin as loading con-
trol.
(TIF)

S3 Fig. Regulation of intracellular calcium levels. (A-B) IP assays showed that RA (10 μM,
4 hr) enhanced the interaction of MEF2A and NFAT1, (A) and interaction between CaMKII
and Parkin as well as Parkin and MAPT (B). C as control. IgG as negative control. (C) RA
(10 μM) induced [Ca++] signal in hTS cells cultivated in calcium free medium. After total cal-
cium releases, the intracellular calcium levels elevated by adding extrinsic CaCl2 (2 mM,
n = 124 cells counted, 30 min; upper panel) and by adding extrinsic KCl (60 mM; n = 45 cells
counted; 30 min; middle panel). The KCl-induced calcium elevation was attenuated by pre-
treatment of nifedipine (5 μM; n = 72 cells counted; 30 min; lower panel). Cells were stained
with a Ca2+-specific dye Fura-2 in HBSS buffer for 20 min at room temperature to measure the
calcium responses by real-time cell imaging microscopy (Olympus, Cell-R) and Olympus Cell-
R imaging software. The Ca2+-free medium contains EGTA (1.2 mM/L, Applichem) and Thap-
sigargin (10 mM/L, Calbiochem).
(TIF)

S4 Fig. Effects of GSK3β on the CaN/NFAT1 pathway. (A) RA (10 μM, 4 hr) enhanced the
interaction of importin and NFAT1 by IP assay. C as control. IgG as negative control. (B) RA
increased nuclear translocalization of NFAT1 by nucleocytoplasmic fractionation assay. Lamin
A/C as marker of the nuclear extract. α-tubulin as marker of the cytoplasmic extract. (C-D) RA
(10 μM, 4 hr) enhanced the interaction of GSK3β -Ser21/6) and NFAT1, (C) as well as MEF2A
interacted to both NFAT1 and Pitx2 bi IP assay (D). (E) Knockdown of NFAT1 reduced the
expression of MEF2A by immunoblotting assay. Scramble as positive control. β-actin as load-
ing control.
(TIF)

S5 Fig. Activation of Akt2/GSK3β/β-catenin/N-cadherin pathway. (A) RA (10 μM, 4 hr)
enhanced the interaction of Akt2 and GSK3β. C as control. IgG as negative control. (B) RA
induced nuclear translocalization of β-catenin by nucleocytoplasmic fractionation assay.
Lamin A/C as marker of the nuclear extract. α-tubulin as marker of the cytoplasmic extract.
C as control. (C) RA (10 μM, 4 hr) enhanced the interaction of β-catenin and LEF1 by IP assay.
C as control. IgG as negative control.
(TIF)

S6 Fig. Activation of TH expression. (A) Relative expressions of components in the Wnt2B/
Fzd6/Dvdl3/FRAT1/GSK3β signaling pathway assessed by DNAmicroarray assessment in
hTS cell after treatment with RA (10 μM) for 24 hr. (B) Nuclear cytoplasmic fractionation anal-
ysis revealed the entrance of MEF2A into nucleus at 24 hr of RA induction, which was inhib-
ited by CaN inhibitor cyclosporine (CsA, 5 μM). (C-D) RA induced expressions of CREB1,
Pitx2 and TH at 24 hr induction by immunoblotting assay (C) and this action was inhibited by
using siRNA against CREB1 (D). Scramble as positive control, β-actin as loading control.
(TIF)
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