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Abstract

Akt kinase, a member of AGC kinases, is important in many cellular functions including 

proliferation, migration, cell growth and metabolism. There are three known Akt isoforms which 

play critical and diverse roles in the cardiovascular system. Akt activity is regulated by its 

upstream regulatory pathways at transcriptional and post-translational levels. beta-catenin/Tcf-4, 

GLI1 and Stat-3 are some of few known transcriptional regulators of AKT gene. Threonine 308 

and serine 473 are the two critical phosphorylation sites of Akt1. Translocation of Akt to the cell 

membrane facilitates PDK1 phosphorylation of the threonine site. The serine site is 

phosphorylated by mTORC2. Ack1, Src, PTK6, TBK1, IKBKE and IKKε are some of the non-

canonical pathways which affect the Akt activity. Protein-protein interactions of Akt to actin and 

Hsp90 increase the Akt activity while Akt binding to other proteins such as CTMP and TRB3 

reduces the Akt activity. The action of Akt on its downstream targets determines its function in 

cardiovascular processes such as cell survival, growth, proliferation, angiogenesis, vasorelaxation, 

and cell metabolism. Akt promotes cell survival via caspase-9, YAP, Bcl-2, and Bcl-x activities. 

Inhibition of FoxO proteins by Akt also increases cell survival by transcriptional mechanisms. Akt 

stimulates cell growth and proliferation through mTORC1. Akt also increases VEGF secretion and 

mediates eNOS phosphorylation, vasorelaxation and angiogenesis. Akt can increase cellular 

metabolism through its downstream targets GSK3 and GLUT4. The alterations of Akt signaling 

play an important role in many cardiovascular pathological processes such as atherosclerosis, 

cardiac hypertrophy, and vascular remodeling. Several Akt inhibitors have been developed and 

tested as anti-tumor agents. They could be potential novel therapeutics for the cardiovascular 

diseases.
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Introduction

Akt family kinases (also known as protein kinase B /PKB) are serine/threonine kinases that 

belongs to the general class of AGC kinases (AMP/GMP kinase and PKC subfamily of 

proteins) which has 518 members in humans [1]. While there are Akt homologs from fly to 

humans, structure and function of mammalian Akt is highly conserved [2–6]. General 

pathway of Akt is called phosphoinositide-3-kinase–protein kinase B/Akt (PI3K-PKB/Akt) 

pathway or PI3k/AKT/mTOR pathway, named after upstream and downstream proteins 

involved. It was discovered by three different groups at the same time. Two of those 

discoveries were based on PKA or PKC homology based approaches and the other is 

through retroviral cloning [7–9]. The name Akt stems from the retroviral strain Akt-8 which 

was used for the cloning experiments. There are three Akt isoforms, Akt1, Akt2 and Akt3 

(also known as PKBα, PKBβ, and PKBγ, respectively). Akt1 and Akt3 are ubiquitously 

expressed while Akt2 is expressed in the insulin-responsive tissues such as brown fat, 

skeletal muscle and liver [10]. The upstream and downstream targets of these Akt isoforms 

are quite similar. But there seems to be functional differences between these isoforms in 

different cell context. They seem to be specific in their interactions with other proteins. For 

example, onco-protein TCL1b forms oligomers with Akt1, not Akt2 or Akt3 [11]. These 

differences can be observed in the cell cycle regulation. Akt2 accumulates in the cytoplasm 

during mitosis [12] and in the nucleus during muscle differentiation [13]. Differences in Akt 

isoforms are also evident in disease development. Akt2 is indicated in many different tumors 

[14,15]. Ectopic expression of Akt2 has been shown to induce metastasis and invasion in 
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human breast cancer cells and induce malignancy in mouse fibroblasts [12,16]. In human 

thoracic aortic dissection (TAD) and aortic aneurysm and dissection (AAD) Akt2 

phosphorylation level is higher while Akt1 phosphorylation levels remain the same between 

disease and healthy conditions [17]. These differences are also evident in Akt isoform 

knockout mice. Akt2 deficient mice shows a diabetic phenotype which is not observed in 

Akt-1 knockout mice [18]. Importance of Akt3 in brain development has also been shown in 

Akt3 knockout mice. This isoform specific cell development causes smaller brain sizes in 

Akt3 knockout mice, but not in Akt1 knockout mice [19]. In addition, Akt1 promotes 

endothelial neoplasms while Akt3 acts in an opposite manner [20]. The reduction of 

phosphorylation of endothelial nitric oxide synthase (eNOS) by Akt1 knockout can be 

compensated by Akt2, though phosphorylation of angiogenic substrate by Akt1 seems to be 

essential for angiogenesis [21]. Since they are involved in signal pathways related to cell 

proliferation, cell growth, survival and aspects of intermediary metabolism, Akt has been the 

center of focus for many studies attempting to therapeutically control these aspects.

Akt protein structure

Akt has a characteristic pleckstrin homology (PH) domain at the amino terminal (~ 110 

amino acids), a middle kinase domain (~260 amino acids) and a carboxy-terminal regulatory 

domain (~70 amino acids) (Figure 1). Of these, pleckstrin homology domain controls the 

membrane translocation of Akt. This structure is conserved in diverse species from flies to 

man. Akt has a higher sequence identity to other AGC family member proteins which made 

therapeutic strategies and developing specific inhibitors more challenging [22]. The region 

homology varies among the isoforms. Pleckstrin domain is 80% identical between Akt 

isoforms, while this being 30% identical to pleckstrin domains of other proteins. The region 

between PH domain and the catalytic domain is called the linker (LINK). This link is poorly 

conserved amongst Akt isoforms and lacks similarities to other human proteins. The 

catalytic domain shares a higher similarity within Akt isoforms (90%) and a significant 

similarity to other AGC family proteins. Because of the difficulty of obtaining crystal 

structure of the linker region, the structures of Akt protein is speculative [23].

Upstream regulatory pathways of Akt

In cardiovascular system, Akt is activated by several stimuli such as insulin, platelet derived 

growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth factor 

(EGF) and basic fibroblast growth factor (bFGF) [24,25]. In addition, some phosphatase 

inhibitors also activate Akt [26]. Reactive oxygen species (ROS) have been shown to 

activate Akt through angiotensin II [27,28]. These growth factors regulate Akt activity 

through transcriptional or posttranslational mechanisms (Figure 2).

Transcriptional regulation of Akt

Transcriptional regulation of Akt genes remains largely unknown. It has been shown that 

upregulation of total Akt protein results in an increase in Akt activity, though the expression 

of a kinase may not be necessarily a reflection of its activity level [29]. The Akt gene 

promoters contain binding sites for several signaling molecules such as Stat3, β-catenin/
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Tcf-4, and GLI1, indicating that Akt gene transcription may be regulated by these 

molecules.

The 4.2-kb region upstream of the transcription start site of the AKT1 promoter contains five 

putative Stat3-binding motifs. However, the promoter is not induced by Stat3 and/or Src. 

Actually the major Stat3 response elements are located within exon 1 and intron 1 regions of 

the AKT1 gene, which is upstream of the AKT1 translation initiation site. Stat-3 interacts 

with this region and increases the Akt1 gene transcription [30].

The transcription of Akt1 gene is induced by β-catenin/Tcf-4 [29]. Nine putative b-

catenin/Tcf/Lef-binding sites (TBE) in the AKT1 gene have been found that show a high 

degree of homology to the core consensus sequence AGATCAAAGGG [29]. Four of these 

TBEs are located upstream of the transcriptional start, whereas five TBEs are situated in 

Exon 1. Moreover, the promoter region of the AKT2 gene contains six potential TBEs [29], 

and seven complete or partial TBEs have been identified within 1340 nucleotides of the 

promoter region of the AKT3 gene [29]. The inhibitory effect of non-steroidal anti-

inflammatory drugs (NSAIDs) such as aspirin and indomethacin downregulate Akt1 gene 

transcription through stabilization of β-catenin phosphorylation [31].

GLI1, a zinc finger transcriptional factor of the Hedgehog signaling, increases the 

transcription of of AKT1, AKT2, and AKT3 genes [32]. AKT1 promoter possesses two GLI1 

binding sites (BS1 and BS2) located upstream of the transcriptional start site of AKT1 gene. 

The homology of each GLI1 binding site to the consensus sequence was 67% for BS1 and 

78% for BS2. AKT2 and AKT3 promoters also contain three and two GLI1 binding sites, 

respectively [32].

In addition, one possible AP-1 binding site (ACTCAGT or TGAGTCA) and two potential 

nuclear factor kappa B (NFκB) binding elements have been detected in the AKT1 promoter 

region [29]. However, the functions of these binding sites are not clear yet.

Posttranslational regulation of Akt by phosphorylation

Phosphorylation is the most important posttranslational determinant in Akt activity. There 

are two major phosphorylation sites in Akt protein. Positions of these sites vary slightly 

among Akt isoforms. These phosphorylation sites are threonine residue in the kinase domain 

(Akt1 at 308, Akt2 at 309 and Akt3 at 305) and serine residue in the hydrophobic domain 

(Akt1 at 473, Akt2 at 474 and Akt3 at 472) (Figure 1). Phosphorylations of both sites 

positively increase the activity of Akt in varying degrees. For example, phosphorylation of 

threonine 308 (T308) in Akt1 increases the enzymatic activity of Akt by 100 fold and 

phosphorylation of serine 473 (S473) will increase Akt activity by 10 fold [33]. There is 

growing evidence of the diverse roles these phosphorylation sites play in Akt activation. Akt 

activation induced by T308 phosphorylation seems to be important in phosphorylation of 

substrates PRAS40, TSC2 and TBC1D4 while S473 phosphorylation doesn’t seem to have 

significant role in phosphorylating those substrates [34]. In contrast only S473 

phosphorylation shows a positive correlations with substrates like BAD while substrates like 

GSK3β can be phosphorylated by Akt phosphorylation at either critical sites [35] (Figure3). 

These differences are manifested in disease development where one phosphorylation site 
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shows more correlation with certain cancer [36,37]. The activation of Akt by 

phosphorylation follows the classical AGC family kinases behavior. The catalytic region of 

Akt which is located at the central region consists of a conserved threonine residue whose 

phosphorylation partially activates Akt [38,39]. The carboxyl region has a sequence F-X-X-

F/Y-S/T-Y/F hydrophobic motif (where X is any amino acid) which is a characteristic of all 

AGC family kinases. It is known that phosphorylation of the serine and threonine residue in 

Akt2 causes a conformational change in the kinase region resulting in enzyme activation 

channel [40]. The activity of Akt is enhanced by the hydrophobic motif interaction of the N-

terminal lobe channel [40].

One of the key requirements in activation of Akt is its translocation to the plasma 

membrane. This translocation requires the PH domain and is affected by wortmannin 

treatment. PH domain is not required for the activation of serine or threonine residues of 

Akt. Affinity of PH domains to PtdIns(3,4,5)P3 explains this membrane translocation [41–

43]. Once Akt is translocated a protein kinase is capable of phosphorylating the threonine 

residue (T308). This protein kinase is named 3-phosphoinositide-dependent protein kinase-1 

(PDK1) due to its association with PtdIns (3,4,5)P3 [44–46]. Following the activation Akt 

detaches from the plasma membrane and translocates into the cytosol and nucleus [39,43]. 

This is called the canonical pathway in which Akt activation is PI3 kinase dependent. Either 

tyrosine kinase receptors or G-protein coupled receptors can activate PI3K. Based on these, 

upstream receptor types PI3K is divided in to class IA (for receptor tyrosine kinase) and 

class 1B (for G-protein coupled receptors) [47]. Either of these two types of receptors 

recruits PIP2 and then PI3 kinase acts on its remaining OH group to form PIP3. This is 

negatively regulated by phosphatases like PTEN which reverses the PI3 kinase action [48]. 

Unlike other AGC kinases co-localization of Akt with PDK1 is necessary for 

phosphorylation of the threonine residue. Once Akt is translocated to the cell membrane, 

conditions at the cell membrane help phosphorylate both T308 and S473 [39]. The exact 

mechanism of how S473 is phosphorylated is poorly known. Initially it was assumed that 

PDK1 plays a role in the phosphorylation process. However, later research revealed that 

PDK1 is not essential although it can increase the S473 phosphorylation [49–51]. More 

recent studies revealed the importance of mammalian target of rapamycin 2 (mTOR2) in the 

phosphorylation of the critical S473 residue in Akt [52].

In addition to the canonical pathways, Akt can be activated by a non-canonical pathway 

independent of PI3K. Ser/Thr/Tyr kinases can directly activate Akt in this pathway. For 

example, receptor tyrosine kinases can lead to activation of Akt (at both S473 and T308) 

through nonreceptor tyrosine kinase Ack1 (ACK/TNK2). This activity can occur even in the 

presence of PI3 kinase inhibitors [53]. Moreover, certain kinases have the ability to affect 

the activation status of Akt through phosphorylating other critical tyrosine residues. For 

example, Src can phosphorylate T315 and T326, leading to increased T308 phosphorylation 

[54]. The effect on S473 phosphorylation by Src is not known. Protein tyrosine kinase 6 

(PTK6) can phosphorylate T215 and T326 residues in low EGF concentrations in the same 

manner. This can activate both the critical S473 and T308 residues. However this activation 

is not prominent in higher EGF concentrations, suggesting that PI3K pathway to be the 

dominant pathway in high concentrations of growth factors [55]. Furthermore, IKBKE or 

IKKε (I-kappa-B kinase epsilon), TANK-binding kinase 1 (TBK1) and DNA-PKcs have 
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been shown to directly activate Akt [56–58]. The serine/threonine kinase IKBKE is a non-

canonical IKK signal transduction family member. In response to inflammatory factors like 

lipopolysaccharides (LPS) and phorbol myristate acetate (PMA), active IKBKE directly 

phosphorylate T308 and S473 as well as p65/RelA, interferon response factors 3 and 7 

(IRF3 and IRF7) and STAT1 [59–61]. IKBKE-induced Akt activation is not affected by 

inhibition of PI3K, knockdown of PDK1 or mTORC2 complex. It is also not dependent on 

the PH domain of Akt as shown by Akt inhibitor studies [56]. In addition, TANK binding 

kinase (TBK1) has been shown to phosphorylate Akt at S473 and subsequently induce 

maximal activation of interferon regulatory factor 3 (IRF3) and expression of IFN-b in the 

antiviral cellular responses [57].

Posttranslational regulation by protein-protein interaction

There are several proteins that bind and modulate Akt activity. One of the emerging areas in 

the regulation of Akt activity is the subcellular movement facilitated by non-substrate 

ligands. Treatment of cells with PDGF increases Akt association with actin skeleton [62]. 

This is through direct interaction of actin with the PH domain of the Akt. Phosphorylation of 

both S473 and T308 is important in this process as mutation of those sites to alanine 

completely abrogates the Akt co-localization to actin. This co-localization of Akt with actin 

induced by PDGF is enhanced by small GTP-ases Rac1 and Cdc42 [62]. It has been shown 

that Akt is associated with heatshock protein 90 (Hsp90), which helps keep Akt active 

through preventing the dephosphorylation of Akt by protein phosphatase 2A (PP2A) [63]. 

Amino acid residues 229–309 of Akt were found to bind to the region of 327–340 of Hsp90. 

In similar manner Hsp27 interact with amino acids 117–128 of Akt and help phosphorylate 

S473 residue [64]. On the other hand, Akt association with other proteins can negatively 

regulate Akt activity. Carboxyl-terminal modulator protein (CTMP) binds to the carboxyl 

terminal regulatory domain of Akt1 at the plasma membrane. This interaction reduces 

phosphorylation of Akt at both T308 and S473 sites [65]. TRB3, a mammalian homolog of 

Drosophila tribbles, which is expressed in the liver under fasting condition, also bind to the 

central region of Akt and negatively regulate its activity [66].

Downstream signaling of Akt

Synthetic peptide substrates related to the phosphorylation site of GSK3 paved the way to 

identifying minimal conditions required for Akt downstream targets. This is given as R-X-

R-X-X-S/T-B where X can be any amino acid and B a bulky hydrophobic amino acid. The 

most effective substrate for Akt is R-P-R-T-S-S-F [67]. The action of Akt on its downstream 

targets determines its function in cardiovascular physiology [68]. Akt plays important roles 

in cell survival, growth, proliferation, angiogenesis, vasorelaxation, and cell metabolism. 

The downstream signaling of Akt is described in these physiological processes (Figure 3).

Cell survival and apoptosis

It is widely accepted that Akt mediates cell survival induced by growth factors. Cell survival 

is enhanced by blocking apoptosis. The initial event leads to apoptosis is the loss of 

mitochondrial integrity. Hallmark of loss of mitochondrial integrity is the release of 

cytochrome C to the cytoplasm. This cytochrome C can bind and activate apoptotic 
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protease-activating factor (Apaf-1). Apaf-1 and caspase-9 together create a pro-apoptotic 

signaling cascade. Akt directly phosphorylates caspase-9 and inhibits activation of 

caspase-9. This negatively regulates cytochrome-c/Apaf-1/caspase-9 pathway [69]

Akt can phosphorylate several other target proteins which regulates apoptotic or pro-

apoptotic molecules. BAD, a member of Bcl-2 family, forms a protein complex with Bcl-2 

and Bcl-X and inhibits their anti-apoptotic effects. Akt can phosphorylate BAD at Ser136 

which enables BAD to bind with 14-3-3 protein. This in turn releases Bcl-2 and Bcl-X to 

promote more anti-apoptotic behavior [70]. Moreover, Akt phosphorylates murine double 

minute 2 (MDM2) at S166 and S186, resulting in increased nuclear translocation of MDM2 

and ubiquitination and degradation of p53 and subsequently promoting cell cycle transition 

and survival [71–74]. Furthermore, Akt phosphorylates Yes-associated protein (YAP) at 

S127 in the cytosol and increases the binding of 14-3-3 protein to phosphorylated YAP. This 

helps YAP exporting from the nucleus to the cytoplasm, reducing the apoptotic activity of 

p73 [75].

In addition to directly affecting apoptotic or pro-apoptotic proteins, Akt can increase the cell 

survival by indirectly regulating the expression of these proteins. Forkhead family of 

transcriptional factors (FoxO) induces pro-apoptotic Bcl-2 family of proteins or stimulates 

expression of death receptor ligands such as Fas ligand and tumor necrosis factor-related 

apoptosis-inducing ligand (TRAIL). It can also enhance the levels of cyclin dependent 

kinase inhibitors (CDKIs). Phosphorylation of FoxO by Akt inhibits the transcriptional 

functions of FoxOs and leads to decreased Bcl-2 and increased cell survival [76].

Akt-mediated cell survival can also be through MAP kinase pathway and JNK pathway. 

These two pathways are commonly known as stress activated protein kinase pathway 

(SAPK). Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase 

kinase (MAPKKK) that activates c-jun N-terminal kinase (JNK) which activates apoptosis. 

MLK3 can interact with Akt, and insulin regulates this interaction. Akt phosphorylates 

MLK3 at S674, resulting in inhibition of MLK3-related cell death [77]. Moreover, Akt 

phosphorylates the apoptosis signalregulating kinase 1 (ASK1) at S83, leading to cell 

survival and inhibition of apoptosis [78]. Gain and loss of function of Akt has been shown to 

increase and decrease the survival of cardiomyocytes, respectively [79].

Cell growth and proliferation

The regulation of cell growth and proliferation by Akt requires the interplay between the 

mammalian target of rapamycin complex 1 (mTORC1) and the tuberous sclerosis complex 

1/2 (TSC1 and TSC2) or the proline-rich Akt substrate of 40 kDa (PRAS40). TSC2 is an 

inhibitor of Ras-related small G protein Rheb, an activator of mTORC1. Phosphorylation of 

TSC1 by Akt inhibits TSC2 activity, leading to activation of mTORC1 [80]. Akt 

phosphorylates PRAS40 at T246 which facilitates PRAS40 phosphorylation of S183 by 

mTORC1. PRAS40 is known to negatively regulate mTORC1 [81,82]. Phosphorylation of 

PRAS40 by Akt and by mTORC1 per se results in the dissociation of PRAS40 from 

mTORC1 and the relief of an inhibitory constraint on mTORC1 activity [83]. This leads to 

phosphorylation of various mTORC1 substrates which are involved in cell proliferation 
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including p70 s6 kinase (p70S6K1) and eukaryotic initiation factor 4E (eIF4E) binding 

protein 1 (4E-BP1) [84–86].

In addition to cell growth and survival, cell proliferation can be stimulated by Akt through 

cell-cycle regulation. Growth factors cause Akt to increase the transcription of c-Myc and 

reduce the degradation of c-Myc by Mad1 [87]. C-Myc prevents cell cycle arrest [88]. Akt 

directly inactivates GSK3β, increasing Cyclin D1 which then inhibits Forkhead family 

transcription factors and the tumor suppressor tuberin (TSC2), reducing p27Kip levels [89]. 

This positively regulates G1/S cell cycle progression.

Angiogenesis

Akt mediates angiogenesis through stimulating the secretion of vascular endothelial growth 

factor (VEGF) [90,91]. Akt acts on TSC1–TSC2/Rheb/mTORC1 pathway in endothelial 

cells and increases the protein level of hypoxia inducible factor 1α (HIF-1α) which 

stimulates VEGF release. Akt has been shown to increase HIF-1α protein translation by 

activating the translational regulatory proteins p70 S6 kinase and eIF-4E [92–94]. However, 

sustained Akt activation leads to the formation of functionally abnormal blood vessels [95].

Endothelial cell migration is another essential function in angiogenesis. VEGF-induced 

endothelial migration is through Akt-PI3K pathway [96–98]. PDK1 activity is essential for 

this migration [99]. Ephrins and their receptor tyrosine kinases play an important role in the 

migration of vascular cells. Ephrin receptors can be phosphorylated by Akt even in the 

absence of ligands, causing cell migration [100,101].

Proper attachment to extracellular matrix proteins such as integrins helps endothelial cell 

attachment. Binding to integrin αvβ3 is required for VEGF to activate Akt that blocks 

anoikis [102,103].

Akt-dependent endothelial survival pathway also promotes angiogenesis. Angiopoietin-1 

(Ang-1) acting via Tie 2 receptor has been shown to induce Akt phosphorylation which up-

regulates survivin to reduce apoptosis in endothelial cells [104]. Akt can enable endothelial 

cells to be resistant to Fas-mediated apoptosis by expressing the FLICE-inhibitory protein 

(FLIP) [105]. Constitutively active Akt has been shown to phosphorylate MEKK3 that 

reduces MKK3/6-and p38 MAPK-activated apoptosis [106].

The HMG-CoA reductase inhibitor statins seems to act with Akt pathway to bring 

pleiotropic effects. Statins have been shown to promote the proliferation and differentiation 

of endothelial progenitor cells (EPCs) through PI3K/Akt pathway [107].

Akt can directly phosphorylate eNOS [108]. eNOS plays a predominant role in angiogenesis 

and vascular permeability induced by growth factors and angiotensin II [109] [110]. Akt 

directly phosphorylates eNOS at S1197, enhancing its enzymatic activity and altering the 

sensitivity of the enzyme to Ca2+ [108,111]. Akt interacts with Hsp90, a protein that 

associates with and activates eNOS. Hsp90 serves a scaffolding function to facilitate Akt-

mediated phosphorylation of eNOS in the calveolae [112–114].
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Vasorelaxation

Akt has been shown to regulate vasomotor tone in vivo [115,116]. Since NO is an important 

regulator of vasomotor tone, effects of Akt on eNOS phosphorylation and activation can 

significantly enhance vasorelaxation. Over-expression of Akt causes a significant increase in 

resting vessel diameter and blood flow while inhibition of Akt attenuates endothelium-

dependent vasodilatation in response to acetylcholine [115]. Therefore, dysregulation of Akt 

activity can lead to development of endothelial dysfunction in hypertension [117].

Metabolism

Akt can increase metabolism in cells by increasing either the uptake of nutrients or the 

cellular glucose and lipid metabolism. Hexose uptake and GLUT4 translocation can be 

increased by Akt2 activity [118]. Akt is also associated with sterol-regulatory element-

binding proteins (SREBPs), a transcriptional regulator in lipid metabolism, mTORC1 and 

GSK3 pathway [119]. Akt might be playing a crucial role in cholesterol import and 

synthesis, fatty acid synthesis or SREBP production [119]. Akt is one of the major signal 

molecules in insulin-related signal transduction. After tyrosine phosphorylation of insulin 

receptors, insulin receptor substrate (IRS) family members of proteins are phosphorylated. 

This activates PI3K pathway and phosphorylates Akt, which leads to inactivation of GSK3 

and phosphorylation of the Forkhead transcription factor. This signal leads to increases in 

the glucose metabolism, glycogen, lipid and protein synthesis, and other specific gene 

expressions [120,121].

Akt in cardiovascular pathologies

Atherosclerosis

Oxidized LDL has been shown to reduce Akt phosphorylation causing the inhibition of 

endothelial cell migration [122]. In atherosclerosis, instability and rupture of the plaque can 

lead to myocardial infarction, which can be caused through apoptosis of vascular smooth 

muscle cells. Akt seems to have a role in smooth muscle apoptosis via insulin-like growth 

factor 1 (IGF1) receptor signaling. Reduction of IGF1R signaling and dysregulation of 

phosphorylation of Akt, FoxO3a and GSK3 leads to apoptosis of vascular smooth muscle 

cells [123]. Inhibition of Akt in vascular smooth muscle cells can lead to significant increase 

in p-JNK and p-c-jun, pro-apoptotic proteins. This works in opposite manner in immune 

cells [124]. For example, lack of Akt2 in macrophages shows a decrease in pro-

inflammatory genes and a reduction of cell migration. Loss of Akt2 suppresses macrophages 

undergoing M1 polarization. All these events on macrophages help reduce atherosclerosis 

[125]. Peroxisome proliferator-activated receptors (PPARs) have been shown to protect 

vasculature from pathological alterations like atherosclerosis. This is achieved through 

inhibition of VEGF-induced Akt phosphorylation pathway [126].

Cardiac hypertrophy

Cardiac hypertrophy can be defined at cellular level as increased cardiomyocyte cell volume 

[127,128]. Normal growth, growth induced by physical conditioning and growth induced by 

pathologic stimuli are the three major types of cardiac hypertrophy [129]. Cardiac 

hypertrophy caused by normal growth or physical conditioning such as exercise is called 
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adaptive cardiac hypertrophy [130]. Maladaptive hypertrophy can be either caused as a 

response to excessive hemodynamic workload or by genetic mutations. This can eventually 

lead to heart failure [131–133].

Growth factors and exercise can activate a 110-kDa lipid kinase, PI3K subgroup Iα 

[134,135]. Another class of PI3K, p110γ, is activated by G-protein coupled receptors 

(GPCR) due to biomechanical stress and neuro-hormonal mediators [136,137]. Both of these 

pathways can lead to Akt phosphorylation and causing inhibition of GSK3β signaling, which 

eventually leads to protein synthesis and transcriptional activation causing cardiac 

hypertrophy [129].

Over-expression of Akt has been shown to be maladaptive for the heart. This ill-effect seems 

to be rescued by PI3K, suggesting the importance of PI3K in cardiovascular treatments 

[138]. Akt over-expression seems to enlarge the cell size and increase the contractility of 

cardiomyocytes in Akt transgenic mouse model [139].

Constitutively active Akt can increase the angiogenesis in heart. Initially this can contribute 

to adaptive cardiac hypertrophy. At a later stage this can lead to cardiac hypertrophy and 

heart failure [140]. However, this is a dilemma since exercise is known to increase the 

cardiovascular health through increased Akt activity [141]. There must be a fine balance 

between the healthy and maladaptive Akt activation levels and duration which is yet to be 

investigated.

Vascular remodeling

Vascular remodeling process consists of changes of cell growth, cell death, cell migration 

and production or degradation of extracellular matrix [142]. Akt plays a role in the 

pathogenesis of vascular remodeling. Akt substrate GSK3β is a crucial protein in smooth 

muscle proliferation where inhibition of GSK3β by Akt-induced phosphorylation increases 

smooth muscle proliferation [143]. Increased cell survival is also achieved through Akt 

signaling [144]. In restenosis and atherosclerosis, increased proliferation of vascular smooth 

muscle cells is mediated through Akt pathway [145]. Increased proliferation and survival of 

vascular smooth muscle cells contribute to medial thickening. Akt also affects the activity of 

adventitia in the vasculature. After arterial injury, Akt activity is significantly higher in the 

adventitia and contributes the increased proliferation of adventitial fibroblasts [146].

Several mitogens such as platelet-derived growth factor (PDGF), transforming growth 

factor-beta (TGFβ), endothelin and thrombospondin-1 stimulate Akt phosphorylation 

causing the polyubiquitination and proteasomal degradation of cAMP response element 

binding protein (CREB) in pulmonary artery smooth muscle cells and resulting in medial 

smooth muscle cell proliferation, hypertrophy and extracellular matrix production [147]. In 

addition, mTORC2 also induces the activation and phosphorylation of Akt which leads to 

mTORC1 and S6K pathway in pulmonary vascular remodeling [148–150]. Akt1 rather than 

Akt2 is the important signaling molecule for the development and progression of pulmonary 

vascular remodeling and pulmonary hypertension [151].
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Akt inhibitors

Several Akt inhibitors are currently being developed and tested as anti-tumor agents. But 

only few of them have been tested in cardiovascular diseases. There are several strategies to 

inhibit the activation of Akt by its upstream signaling. Akt upstream inhibitors, allosteric 

inhibitors, pseudo-substrates, pleckstrin homology (PH) domain inhibitors and ATP binding 

pocket inhibitors are some of the major inhibitors.

Upstream inhibitors

Many upstream molecules of Akt pathway can be inhibited to reduce their downstream 

activation of Akt. Wortamanin, PX-866, and LY294002 are well-known potent pan-PI3K 

inhibitors [152–154]. HS-173/PIK75, TGX-221, CZC24832 and CAL-101 are selective 

PI3K inhibitors for PI3K p110 catalytic subunits α, β, γ and δ respectively [155–158]. PDK 

inhibitors OS-03012, BX-795, BX-912 and PHT-427 have been used successfully to reduce 

proliferation and increase cell apoptosis in various cancer models [159–161]. Rapamycin is 

one of the first successful mTORC inhibitors discovered [162]. Rapamycin forms a complex 

with FK-binding protein 12 (FKBP12) and inhibits mTOR. Several rapamycin derivatives 

including temsirolimus, everolimus and deforolimus have been developed to be more potent 

mTORC1 inhibitors [163]. Pan-mTOR inhibitors AZD8055, KU-0063794, and PP242 can 

be more effective alternative since they inhibit both up-stream mTORC2 and the 

downstream mTORC1 [164–166].

Dehydroepiandrosterone (DHEA), a widely used steroid, is another Akt upstream inhibitor 

tested for treatment of vascular remodeling by inhibiting smooth muscle proliferation and 

activating vascular smooth muscle cell apoptosis. DHEA inhibits Akt pathway through an 

as-yet unidentified GPCR. That leads to increased GSK3 activity causing suppression of 

smooth muscle proliferation and activation of vascular smooth muscle cell apoptosis. In 

addition, DHEA directly acts on Kv (4-aminopyridine-sensitive [4-AP]) and BKCa 

(iberiotox-insensitive [IbTx]) channels, causing reduction of smooth muscle [Ca2+], cell 

proliferation, and vascular remodeling [167,168].

DNA-PK inhibitors NU7441and KU0060648 can be used to inhibit Akt activation [169–

171]. These inhibitors have been studied as anti-cancer agents.

Allosteric inhibitors

New strategies are needed to lower the toxic off-target effect of pan-kinase inhibitors. 

Allosteric inhibitors block the activity of the target kinases by altering the protein 

conformation through interacting with regions distal to the ATP binding site [172]. 

Triciribine suppresses the phosphorylation level and kinase activity of Akt. Triciribine can 

selectively inhibit all Akt isoforms without inhibiting known upstream activators, PDK1 and 

PI 3-Kinase. MK-2206 is an allosteric inhibitor of Akt, which is now in clinical trials as a 

cancer drug. However the specific mechanism of action of this is not known. MK-2206 

inhibits all isoforms of Akt. IC50 of MK-2206 is 8nM for Akt1, 12nM for Akt2, and 65nM 

for Akt3 [173,174].
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Pseudo-substrates

A 14-mer AKTide-2T peptide with a sequence of ARKRERTYSFGHHA has been identified 

to be able to bind to the substrate binding domain of Akt1 with a Ki of 12 mM. A hybrid of 

this sequence and a region of FOXO3 (sequence: VELDPEFEPRARERTYSFGH) has 

improved its affinity with a Ki of 1.1 mM. Replacing the tyrosine and serine residue to 

alanine (sequence: VELDPEFEPRARERAYSFGH and VELDPEFEPRARERTYAFGH) 

has improved their inhibitory effect to Ki of 95 nM and 110 nM, respectively [175].

Pleckstrin homology domain inhibitors

Perifosine is a new class of Akt inhibitors which target the PH domain. It is a synthetic 

alkylphospholipid which is effective in controlling Akt-mediated cell proliferation [176]. 

Tirucallic acid and PITENINs (antagonists of PIP3/PH domain binding) are novel classes of 

PH domain inhibitors [177,178]. However their inhibitory concentration is in µM range, 

making them less potent for pharmacological interventions.

ATP binding pocket inhibitors

Several small molecules which compete for the ATP binding pocket have been found as 

potent inhibitors of Akt. Analogs of H89, which are inhibitors of PKA, have been developed 

as a Akt inhibitors [179]. A-443654 is another example of indazole-pyridines used as an 

ATP binding pocket inhibitor. However, inhibition of Akt phosphorylation by this inhibitor 

can create a feedback loop where phosphorylated Akt can increase later [162].GSK690693 

is a pan Akt inhibitor which competitively inhibits all isoforms of Akt with IC50 of 2 nM for 

Akt1, 13 nM for Akt2, and 9 nM for Akt3 [180]. New isoform-selective ATP binding pocket 

inhibitors are being experimented. For example, A-674563 is a potent and selective Akt1 

inhibitor with an IC50 of 14 nM. A-674563 also inhibits activity of PKA and CDK2 with 

IC50 of 16 and 46 nM, respectively. CCT128930 inhibits Akt2 selectively with IC50 of 6 

nM, 28-fold greater selectivity for Akt2 than PKA and other Akt isoforms [181].

Future perspectives

As more evidence of complexity of Akt signal transduction pathway is discovered, it is 

important to consider these complexities in future research and retrospective analysis of Akt 

research data. The initial research on Akt with regards to cancer or cardiovascular diseases 

largely neglected isoform-specific and phosphorylation site-specific effects of Akt. It is 

important to understand the roles of these different mechanisms in disease context. As more 

and more cross-talk between Akt and other signal transduction pathways becomes evident, 

more research should focus on the system biology of these pathways [182]. Moreover, 

cardiovascular system consists of several types of tissues in a unique arrangement. 

Interactions between these cell types play an integral role in health and disease. There is 

growing evidence of Akt signaling in cardiovascular system to be influenced by the 

neighboring cell types in tissues [183]. Simulation of these conditions will be possible with 

co-culture of cells other than mono-cultures. Further, novel research areas like long-

noncoding RNAs seems to have a control in the signal transduction pathways. Akt and non-

coding RNA associations are also evident now [184]. In addition, Akt is affected by 

epigenetic control and also acts as a mediator for epigenetic control of disease [185,186]. 
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Another ignored area in Akt studies is the non-canonical pathway of its activation. 

Knowledge and research in these pathways might be able to explain phenomenon which 

cannot be explained by the classical Akt pathway. Finally, most of the research on Akt is in 

the field of cancer, though there are some similarities between certain pathological 

conditions in cardiovascular disease and the hallmarks of cancer. More studies should be 

done to understand Akt in cardiovascular diseases. There is an urgent need to develop potent 

tissue specific inhibitors and activators of Akt pathway for research and therapeutic 

purposes.
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Figure 1. 
Human Akt protein structure. Akt has a characteristic pleckstrin homology (PH) domain at 

the amino terminal (~ 110 amino acids), a middle kinase domain (~260 amino acids) and a 

carboxy-terminal regulatory domain (~70 amino acids).
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Figure 2. 
The upstream signals of Akt. Akt activity is regulated by its upstream regulatory pathways at 

transcriptional and post-translational levels. beta-catenin/Tcf-4, GLI1 and Stat-3 are known 

transcriptional regulators of AKT gene. T308 and S473 are the two critical phosphorylation 

sites of Akt1. Affinity of Akt to PtdIns (3,4,5) P3 is required for membrane translocation. 

PI3 kinase-dependent phosphorylation of T308 is through PDK1. S473 is phosphorylated by 

mTORC2. Ack1, Src, PTK6, TBK1, IKBKE and IKKε are some of the non-canonical 

pathways which affect the Akt activity. Protein-protein interactions of Akt to actin and 

Hsp90 increase the Akt activity while Akt binding to CTMP and TRB3 reduces the Akt 

activity.
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Figure 3. 
Two critical phosphorylation sites of Akt has different downstream targets in certain disease 

conditions. For example Phosphorylation of Akt at T308 significantly increases 

phosphorylation of PRAS40, TBC1D4 and TSC2 where Phosphorylation of S473 has less 

effect on these substrates. In similar manner, phosphorylation of S473 significantly increases 

phosphorylation of BAD. However GSK3 can be phosphorylated by any of the critical 

phosphorylations on Akt1.

Abeyrathna and Su Page 26

Vascul Pharmacol. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
The downstream signals of Akt. Akt stimulates cell growth and proliferation through 

mTORC1. Akt phosphorylates BAD, epherin receptor, MEKK3, eNOS and MDM2, and up-

regulates the activities of these proteins. Direct phosphorylation of caspase-9, YAP, MLK3, 

GSK3 and FoxO by Akt results in inhibitions of their enzymatic activities. The action of Akt 

on its downstream targets determines its function in cardiovascular processes such as cell 

survival, growth, proliferation, angiogenesis, vasorelaxation, and cell metabolism.
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