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Abstract

Pathogenic microbes must acquire essential nutrients, including iron, from the host in order to 

proliferate and cause infections. Iron sequestration is an ancient host antimicrobial strategy. Thus, 

enhancing iron sequestration is a promising, novel anti-infective strategy. Unfortunately, small 

molecule iron chelators have proven difficult to develop as anti-infective treatments, in part due to 

unacceptable toxicities. Iron sequestration in mammals is predominantly mediated by the 

transferrin family of iron-binding proteins. In this review, we explore the possibility of 

administering supraphysiological levels of exogenous transferrin as an iron sequestering therapy 

for infections, which could overcome some of the problems associated with small molecule 

chelation. Recent studies suggest that transferrin delivery may represent a promising approach to 

augment both natural resistance and traditional antibiotic therapy.
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Introduction

In recent years the critical role of iron in microbial growth and pathogenesis has garnered 

increasing attention. Virtually all microbes must obtain iron in order to survive and 

propagate [1–5], including disease-causing pathogens that establish infections in mammalian 

hosts. Many microbes have thus evolved specialized mechanisms to acquire this limited 

resource. Conversely, an evolutionarily conserved, common host strategy to control 

microbial growth is to strictly regulate levels of available free iron. The microbial 

requirement for iron suggests that strategies aimed at blocking iron acquisition by microbes 
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might form the basis for promising, novel anti-infective therapies. Unfortunately, previous 

approaches using small molecule iron chelators have not proven safe and effective for 

treating clinical infections. In this review, we examine the potential of transferrin, a 

mammalian iron-binding protein, to be developed as a novel therapeutic for bacterial and 

fungal disease.

Limitations of small molecule iron chelators as therapeutics

The simplest approach to blocking iron acquisition by pathogens is the use of small 

molecule chelating agents that sequester iron and prevent microbial uptake. Numerous 

investigators over several decades have characterized a variety of iron sequestering agents 

that inhibit the growth of microbes in vitro [6–10]. However, several critical barriers have 

limited development of small molecule chelators as therapies for infection. First is the 

production by bacteria of siderophores (e.g., S. aureus staphyloferrin A and B, and A. 

baumannii acinetobactin) that are secreted by the microbe to scavenge and acquire iron in 

environments where bioavailability is low [11,12]. Siderophores are extremely strong 

binders to ferric (Fe3+) iron, and often possess iron affinities that are 1010- to 1020-fold 

higher than small molecule or biological iron chelators [13,14]. Similarly, fungal species 

such as Candida also produce high affinity iron siderophores, and both fungi and bacteria 

(e.g., Acinetobacter) can uptake high affinity xeno-siderophores that are produced by other 

bacteria (e.g., desferoxamine) [15–21]. The extremely high iron affinities of microbial-

derived siderophores, which are far higher than affinities for small molecule chelators, has 

led to the perception that iron acquisition by high affinity siderophores cannot be overcome 

in vivo by chelation-based therapy.

An additional problem is that small molecule chelators alter metabolic disposition of iron in 

ways that may be injurious to the host. For example, chelators reduce iron availability to 

myeloid cells, which are normally the predominant recyclers of iron in the host, and increase 

its excretion into renal tubules where iron is not normally found. Thus, serious toxicity to 

bone marrow, kidneys, and other organ systems can occur during small molecule iron 

chelator therapy [22,23].

As a result of these factors, in vivo testing of iron chelation strategies has focused on 

eukaryotic pathogens (e.g., malaria and molds) [24,25]. Unfortunately, the most advanced 

effort to develop a small molecule chelator into clinical trials for infection failed, as a recent 

randomized, controlled trial of patients with mucormycosis found that small molecule iron 

chelation was not safe or effective [26]. Nevertheless, the profound requirement for iron 

acquisition of microbes continues to spur translational efforts to develop novel therapies.

Transferrin as an innate immune mediator

Given how fundamental iron acquisition is to microbial survival, it is not surprising that in 

mammals, the concentration of free iron in tissue fluids is less than 10−24 M. This 

exceedingly low concentration is maintained predominantly by the iron-binding protein 

transferrin [27]. Transferrin is an abundant serum glycoprotein that mediates transport and 

homeostasis of iron levels in the plasma and extracellular tissue fluid. The protein contains 

two homologous lobes, each with a single high-affinity iron-binding site. Average 
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transferrin levels in the serum are between 1 and 4 mg/mL, and under normal physiological 

conditions, the protein remains approximately 30% iron-saturated [28]. Normal levels of 

unsaturated transferrin help to maintain the concentration of free iron in tissue fluids at 

levels that are restrictive for uncontrolled microbial growth. Many studies have identified 

transferrin as one of the major components necessary for the antimicrobial activity of serum 

[29,30]. Conversely, increased iron stores have been reported to correlate with increased 

frequency and severity of many bacterial and fungal infections, as well as sepsis [31–34].

In vitro Antimicrobial Effects of Transferrin

These observations have led investigators to consider a biological-based strategy for iron 

sequestration using exogenous transferrin. Numerous studies have demonstrated the ability 

of transferrin to restrict microbial growth in vitro due to its iron sequestration capacity [35–

37]. Pathogenic organisms whose growth is inhibited by transferrin include both Gram-

negative and Gram-positive bacterial pathogens such as Pseudomonas aeruginosa [38], 

Klebsiella pneumonia [39], Yersinia pseudotuberculosis [40], Acinetobacter baumannii [8], 

and Bacillus anthracis [41], as well as fungal pathogens, such as Candida species and 

Histoplasma capsulatum [42,43].

Our group has also assessed the in vitro efficacy of transferrin against diverse bacterial and 

fungal pathogens. We conducted time-kill curves and determined minimum inhibitory 

concentrations (MICs) of recombinant human transferrin (rhTransferrin) against S. aureus 

(Gram-positive bacterium), A. baumannii (Gram-negative bacterium) and C. albicans 

(fungus). Transferrin had an MIC of 6 μg/ml for the virulent strains S. aureus LAC and A. 

baumannii HUMC1, and a 60 μg/ml MIC for virulent C. albicans SC5314, demonstrating 

concentration-dependent static activity against all three pathogens [44]. At the 60 μg/ml 

concentration (10-fold above the MIC), transferrin mediated a >3 log reduction in S. aureus 

CFUs at 24 hours compared to growth control [44]. For A. baumannii, both the 6 and 60 

μg/ml concentration mediated 10–100-fold reductions in CFUs/ml at 24 hours compared to 

growth control. For C. albicans, the 60 μg/ml dose mediated minor growth inhibition at 6 

hours, and 3-fold reductions in CFUs at 24 hours. Higher concentrations (120 and 360 

μg/ml) mediated substantial inhibition of growth at all time points [44].

Because transferrin targets host iron, rather than a biochemical target on microbes, we 

hypothesized that it would exert minimal selective pressure driving resistance. We found 

that serial passage of each organism in the presence of a sub-inhibitory concentration of 

rhTransferrin for 20 generations led to no change in susceptibility. Antimicrobial activity 

was inhibited by the addition of exogenous iron or iron-loaded siderophores, as well as anti-

transferrin antibodies. In addition, intracellular iron levels in all three pathogens were 

markedly reduced following exposure to rhTransferrin in a dose-dependent manner [44]. 

Thus, transferrin acts as a static, not cidal, agent against a broad spectrum of human 

pathogens.

Iron is a critical electron acceptor in the oxidative phosphorylation cascade that leads to 

ATP generation in both prokaryotes and eukaryotes [45]. Treatment of A. baumannii, S. 

aureus, and C. albicans with rhTransferrin resulted in disrupted membrane potentials in all 
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three pathogens in a dose-dependent manner, as early as 1 hour following treatment, with 

increased effect at 6 hours [44]. Although both C. albicans and S. aureus experienced some 

degree of membrane potential recovery at 24 hours, this may have been due to the liberation 

of intracellular iron stores from dying organisms, which became available to saturate 

transferrin. Disrupted membrane potentials were maintained when the transferrin was 

separated by a filter from the microbes, and were totally reversed by the addition of 

exogenous iron. Thus, the effect of transferrin on microbial membrane potentials appeared 

to be due to iron sequestration.

Challenges to Standardizing In vitro Testing of Transferrin

When testing transferrin MICs to a variety of organisms, we noted substantial variability 

between assays that used serum from different batches, due to variability in the 

concentration of iron and iron binding proteins in the serum [44]. Thus, reproducible 

transferrin MIC testing requires conducting the assay in media without serum. Rich growth 

media that are normally used for susceptibility testing also posed challenges due to the high 

levels of free iron. Such media do not recapitulate the normal, exceedingly low free iron 

levels in human blood and tissues. When tested in RPMI in the absence of serum, human 

apo-transferrin MICs were highly reproducible. However, the apo-transferrin MICs were 

substantially lower than the physiological concentration of transferrin (a mixture of apo- and 

holo-transferrin) in human blood [28]. The amount of apo-transferrin that is required to be 

added into biological matrices to inhibit microbial growth will be difficult to predict given 

the complex dynamics of free vs. bound iron in such matrices. Thus, while in vitro 

reproducibility of MIC testing is likely to require assays run in the absence of serum, clinical 

investigation is going to be required to define how breakpoints set by such assays predict in 

vivo efficacy.

In vivo Validation of Transferrin Efficacy Against Infection

In contrast to the numerous reports on the in vitro inhibitory effects of transferrin on 

microbial growth, there have been fewer investigations into the potential for exogenous 

transferrin to effectively treat infections in vivo. One early study demonstrated decreased 

mortality rates in mice with experimental candidiasis that were preadministered transferrin 

[46]. More recently, our group infected mice intravenously with various pathogens to test 

the ability of rhTransferrin to confer survival against distinct, lethal bloodstream infections. 

Separate groups of mice were administered S. aureus, A. baumannii, and C. albicans, and 

treated with human transferrin or placebo. Four doses of 90 and 270 mg/kg/d of 

rhTransferrin substantially improved survival against all three infections compared to 

placebo-treated mice [44]. Transferrin treatment significantly reduced tissue bacterial/fungal 

burden for all three pathogens, as well. Protection mediated by rhTransferrin was reversed 

by administration of exogenous free iron, or by treatment with transferrin saturated with iron 

before injection into the mice.

We also sought to determine the potential for transferrin to synergize with antimicrobial 

therapy, as well as help prevent the emergence of resistance to antimicrobial therapy. We 

selected rifampin as a representative antibiotic to test against S. aureus, because emergence 
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of bacterial resistance occurs rapidly during rifampin monotherapy due to a single step 

mutation that results in high level resistance [47]. In vitro, a sub-MIC concentration of 

rhTransferrin (3 μg/ml) synergized with antibiotic treatment, decreasing the S. aureus MIC 

of rifampin from 0.15 μg/ml to 0.019 μg/ml (8-fold decrease) [44]. In vivo, when 

rhTransferrin was combined with rifampin treatment to treat S. aureus bacteremia, the 

emergence of rifampin-resistance escape mutants was markedly reduced [44]. Prevention of 

resistance could be due to synergy with antibiotics or geometric mass action (antibiotic 

escape mutant rate * transferrin escape mutant rate = much lower frequency of viable, 

resistant escape mutants).

Evidence of safety profile from clinical trials

One potential advantage of administering a naturally occurring biologic molecule, as 

opposed to small molecule chelators, is that supraphysiological levels of transferrin would 

presumably not alter the normal pathways of iron sequestration and trafficking, but would 

rather enhance these pathways. Transferrin has already been extensively studied in clinical 

trials for patients with iron overload, providing important insights into its safety profile [36]. 

In a series of studies over 10 years ago, stem cell transplant patients undergoing 

myeloablative chemotherapy were administered intravenous transferrin, in order to counter 

their high levels of non-transferrin-bound iron (NTBI). A single dose of apo-transferrin (100 

mg/kg) was well-tolerated by six stem cell transplant patients following myeloablation, and 

correlated with a reduction in transferrin saturation, as well as a reduction of NTBI to 

undetectable levels [48]. Serum samples taken directly after apo-transferrin administration 

inhibited the growth of S. epidermidis [49]. Later studies showed that repeated 

administration of divided daily doses of 1040 mg/kg total of apo-transferrin were well-

tolerated by stem cell transplant patients, with no observable toxicities, and marked 

decreases in transferrin saturation and unbound iron [50]. An ongoing phase II/III dose 

escalation study is reported on clinicaltrials.gov [NCT01797055]. Thus, although transferrin 

is not yet FDA-approved, no substantial toxicity signals have yet been revealed in these 

trials [36]. Therefore, adjunctive transferrin therapy to treat infections or to reduce resistance 

emergence may therefore be rapidly translatable.

Conclusions and Future Needs

The impending crisis of antibiotic resistance has created a need for alternative therapies to 

treat bacterial infections, and strategies that treat the host rather than the bacteria are 

attractive because they are theoretically less likely to induce resistance. We and others have 

demonstrated that transferrin has broad, cross-kingdom efficacy both in vitro and in vivo, 

and likely represents a superior approach to sequestering iron by using small molecule 

chelating agents. Multiple clinical trials treating patients with iron overload have already 

demonstrated acceptable safety profiles, which would thus enable rapid clinical translation 

of transferrin as a viable antimicrobial therapy. Delivery of supraphysiological levels of 

recombinant transferrin may also inhibit or slow the development of intrinsic antibiotic 

resistance. For these reasons, transferrin represents a potentially promising clinical 

alternative or adjunct to traditional antibiotic treatment, and is worthy of continued study.
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Highlights

• Mammalian transferrin maintains iron homeostasis in serum and extracellular 

tissue fluid.

• Sequestration of iron is an innate host strategy to prevent pathogenic microbial 

growth.

• Addition of transferrin limits growth of numerous diverse pathogens in the 

bloodstream.

• Delivery of exogenous transferrin may offer an attractive antimicrobial 

approach.
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