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Electrical and Optical Activation of Mesoscale Neural
Circuits with Implications for Coding
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Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific
discovery of circuit function and for engineered approaches to alleviate various disorders of the nervous system. However, evidence
suggests that neural activity generated by artificial stimuli differs dramatically from normal circuit function, in terms of both the local
neuronal population activity at the site of activation and the propagation to downstream brain structures. The precise nature of these
differences and the implications for information processing remain unknown. Here, we used voltage-sensitive dye imaging of primary
somatosensory cortex in the anesthetized rat in response to deflections of the facial vibrissae and electrical or optogenetic stimulation of
thalamic neurons that project directly to the somatosensory cortex. Although the different inputs produced responses that were similar
in terms of the average cortical activation, the variability of the cortical response was strikingly different for artificial versus sensory
inputs. Furthermore, electrical microstimulation resulted in highly unnatural spatial activation of cortex, whereas optical input resulted
in spatial cortical activation that was similar to that induced by sensory inputs. A thalamocortical network model suggested that observed
differences could be explained by differences in the way in which artificial and natural inputs modulate the magnitude and synchrony of
population activity. Finally, the variability structure in the response for each case strongly influenced the optimal inputs for driving the
pathway from the perspective of an ideal observer of cortical activation when considered in the context of information transmission.
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Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific
discovery and clinical translation. However, neural activity generated by these artificial means differs dramatically from normal circuit
function, bothlocally and in the propagation to downstream brain structures. The precise nature of these differences and the implications
for information processing remain unknown. The significance of this work is in quantifying the differences, elucidating likely mecha-
nisms underlying the differences, and determining the implications for information processing. j

ignificance Statement

the nervous system. Electrical stimulation remains the only clin-
ically viable means of artificial stimulation on fast timescales,
whereas optogenetic stimulation has revolutionized the ability to
dissect neural circuits experimentally. However, behavioral
(Masse and Cook, 2010) and electrophysiological (Logothetis et
al., 2010) evidence suggests that neural activity generated by nat-
ural and artificial stimuli differentially propagate to downstream
structures. The distinct mechanisms by which natural and artifi-
cial inputs engage the circuitry are not well understood, and the

Introduction

Artificial stimulation approaches afford the ability to interrogate
neural circuit function for basic discovery and potentially replace
function lost to trauma or disease by acting as surrogate inputs to
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ultimate coding relevance for the downstream signals remains
unknown.

Sensory and artificial stimuli activate neural populations
through distinct mechanisms, perhaps most notably in the degree
to which neurons are synchronized by artificial stimuli (Boyden
etal., 2005; Wagenaar et al., 2005). The degree of synchronization
of spiking across a neuronal population significantly affects the
faithful propagation of neural activity to downstream structures
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(Kumar et al., 2010), particularly in driving reliable cortical re-
sponses in the early sensory pathways (Bruno and Sakmann,
2006; Wang et al., 2010a). Indeed, the synchrony of early-stage
sensory neurons is modulated by the properties of the sensory
stimulus (Pinto et al., 2000; Temereanca et al., 2008; Wang et al.,
2010b). The regulation of population synchronization has thus
been proposed as a mechanism by which information flow is
gated in neural pathways (Wang et al., 2010b). In this context, the
degree to which sensory or artificial stimuli synchronize neuronal
populations may influence how information is coded. We hy-
pothesize that this population synchronization combined with
the volumetric effects of current injection or light activation on
the tissue together serve as the primary determinants of the acti-
vation of downstream structures. However, we further postulate
that principled design of artificial stimuli can overcome the dis-
tinct mechanisms of circuit engagement to produce functionally
relevant patterns of neural activation.

In this study, we measured directly the propagation of neural
activity generated by sensory and artificial stimuli, investigated
the mechanistic differences in circuit engagement through a
computational network model, and established a theoretical
framework to evaluate the downstream coding consequences of
artificial stimuli as surrogate inputs. Specifically, we used voltage-
sensitive dye imaging (VSDI) of primary somatosensory cortex
(S1) in the anesthetized rat in response to deflections of the facial
vibrissae and electrical or optogenetic stimulation of neurons in
the thalamus. For each of the input modalities, we quantified the
amplitude, variability, and spatial spread of the cortical response,
finding distinct and repeatable differences in the way sensory and
artificial inputs activated the cortex. Then, using a model of the
thalamocortical circuit, we quantified the relative roles of the
magnitude and synchrony of the activation of the input popula-
tion in predicting the experimentally observed cortical variabil-
ity. Finally, we explored the coding ramifications of the distinct
neural response statistics associated with sensory and artificial
stimulation in the context of generating maximally discriminable
neural responses in downstream structures.

Materials and Methods

Experimental preparation. All procedures were approved by the Georgia
Institute of Technology Institutional Animal Care and Use Committee
and followed guidelines established by the National Institutes of Health.
Female Sprague Dawley rats (250—300 g) were initially anesthetized with
4% isoflurane before intraperitoneal injection of Nembutal (50 mg/kg
weight) for long-term anesthesia. Subsequent doses of Nembutal were
used to maintain a surgical level of anesthesia.

Animals were mounted in a stereotactic device, and a craniotomy was
performed over the left parietal cortex (coordinates: 1-—4 mm posterior to
bregma, 4—7 mm lateral to midline) to expose the barrel representation
of the SI (Paxinos and Watson, 1998). Another craniotomy was per-
formed to allow access to the ventral posteromedial (VPm) region of the
thalamus (coordinates: 2—4 mm posterior to bregma, 1.5-2.5 mm lateral
to midline, 4.5-5.5 mm depth at a 12° angle to the brain surface).

A subset of the animals underwent an initial survival surgery, during
which the viral vector [AAV2-CaMKIla—hChR2(H134R)-mCherry;
University of North Carolina Viral Vector Core, Chapel Hill, NC] was
delivered to the thalamus using stereotactic coordinates. The injection
was delivered at 0.2 wl/min for 5 min for a total of 1 ul. The animals were
allowed to recover for 3—4 weeks, providing time for the channelrhodop-
sin 2 (ChR2) expression to reach functional levels.

VSDI. VSDI was used to monitor cortical activation in response
to thalamic microstimulation according to methods described
previously (Wang et al.,, 2012). The VSDI data were acquired at
5 ms interframe intervals beginning 200 ms preceding stimulus
presentation.
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Multiple trials of VSDI data were collected for each stimulus. For each
trial, the 40 frames (200 ms) collected before the presentation of the
stimulus were averaged to calculate the background fluorescence, against
which the activation was measured. For each frame, the background
fluorescence was subtracted to produce a differential signal AF. Addi-
tionally, each frame was divided by the background image to normalize
for uneven illumination and staining to produce the signal AF/F,. The
initial frame of activation was used for all stimuli. For visual presentation
purposes only, the individual trials were averaged together and then
filtered with a 9 X 9 pixel (~200 X ~200 um) spatial averaging filter.

The anatomical mapping, acquired through cytochrome oxidase his-
tology, was registered with the functional cortical column mapping from
VSDI by solving a linear inverse problem, the details of which have been
described previously (Wang et al., 2012). After the functional image reg-
istration, the cortical response was discretized, in which each signal cor-
responds to the average of the pixels contained within a single functional
cortical column. An example of the resulting signal is shown in Figure 1B
for individual trials (gray lines) and the mean across trials (black), in
response to the deflection of a single whisker.

Whisker stimulation. Whiskers were trimmed at ~12 mm from the face
and were inserted into a glass pipette fixed to the end of a calibrated
multilayered piezoelectric bimorph bending actuator (range of motion, 1
mm; bandwidth, 200 Hz; Physik Instrumente) positioned 10 mm from
the vibrissa pad. Vibrissae were always deflected in the rostrocaudal
plane. Punctate deflections consisted of exponential rising and falling
phases (99% rise time, 5 ms; 99% fall time, 5 ms), with varying angular
deflection velocity (75-1200°/s). In a subset of experiments (n = 2),
whiskers were stimulated with brief puffs of air as described previously
(Ollerenshaw et al., 2012).

Electrical stimulation. A glass-coated tungsten microelectrode (imped-
ance, 1-2 M() at 1 kHz) was advanced to the VPm region of the thalamus
using a precision microdrive (David Knopf Instruments). The principal
vibrissa was determined by manually deflecting individual whiskers and
confirmed using the latency and spike count of single-unit recordings in
response to controlled whisker deflection using a piezoelectric actuator.
In the event that single-unit recordings could not be achieved, multiunit
activity was used.

After electrophysiological determination of the electrode position and
its associated principal vibrissa, the electrode was used to deliver micro-
stimulation to the surrounding tissue. The stimulus waveforms were
designed using a digital stimulus generator (WPI) and delivered using a
current-controlled, optically isolated stimulator (WPI). Individual elec-
trical stimuli were charge-balanced, cathodal-first, biphasic waveforms
of 200 us duration per phase. A series of single electrical stimulation
pulses with varying amplitude between 10 and 100 uA was used to test
the static nonlinearity of the neural circuit. The current range was chosen
to elicit the full range of subthreshold to maximal cortical responses.

Optical stimulation. For optical stimulation, an “optrode” was used.
The optrode consisted of a multimode optical fiber (105 wm core diam-
eter, 125 wm coating diameter, 0.22 numerical aperture; Thorlabs) and
one or two quartz-coated platinum—tungsten microelectrodes (80 uwm
diameter; Thomas Recording). The microelectrodes were pulled and
ground to an impedance of 1-2 M) at 1 kHz. The optical fiber was also
ground to a fine point, producing a spherical, rather than conical, pattern
of light delivery.

A diode-pumped solid-state laser (Laserglow Technologies) was used
to deliver blue (473 nm) light to the VPm thalamus and stimulate the
ChR2-expressing cells. The stimuli were square pulses of 5 ms duration
and varying light intensity. The maximum light delivered during the
experiments was ~150 mW/mm ?, but typically less light was needed to
drive neural activity in ChR2-expressing neurons. According to Aravanis
et al. (2007), the light intensity at 200 um from the optical fiber tip was
~Vi0 of the calibrated light at the tip, such that the majority of neurons
were activated at <15 mW/mm? (Aravanis et al., 2007).

Thalamic data analysis. The single-unit thalamic recordings presented
here were acquired in a previous study from our laboratory (Wang et al.,
2010b) using the same experimental preparation described here. The
spiking activity from pairs of thalamic neurons residing in the same
barreloid was recorded simultaneously in response to punctate whisker
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VSDI captures the cortical response with high spatial and temporal resolution. 4, Diagram of the imaging system. The optrode was positioned in a barreloid in the thalamus, a collection

of cells that respond most vigorously to a common whisker. Imaging in the cortex captured the response of each cortical column. Histological analysis provides an anatomical map of the cortical
column structure (see Materials and Methods). B, The cortical response to whisker stimulation (1200°/s) begins ~10—15 ms after stimulation, in a focal location before growing in amplitude. C,
Trial-averaged examples of the cortical response to whisker (1200°/s), electrical (50 .A), and optical (100 mW/mm 2) stimuli delivered within a single experiment.

stimuli across multiple independently controlled quartz-insulated plati-
num-tungsten electrodes (4—6 M(), 80 um diameter, Mini Matrix Mi-
crodrive; Thomas Recording). Data were collected using a 32-channel
data acquisition system (Plexon) and analyzed using the Plexon Offline-
Sorter software. Each thalamic single-unit recording was sorted using
standard template-matching techniques with physiologically plausible
refractory periods. Each thalamic neuron pair was recorded with two
electrodes in the same barreloid while stimulating the primary whisker. A
cross-correlogram of firing between two simultaneously recorded neu-
rons was computed for spikes fired in response to the sensory stimulus.
The synchrony strength was defined as the total number of spikes within
a =5 ms window (N_.) normalized by the number of spikes from each
neuron (N;, N,) included in the analysis (Temereanca et al., 2008; Wang
et al., 2010b):

cc

strength = ————.
TN
2

The first spike latency on each trial was computed as the first spike within
the 30 ms window after the whisker or light stimulation. The jitter was
quantified as the SD of the first spike latency values for each stimulus
condition across trials.

Computational network model. A network model was used to investi-
gate the hypothesis that sensory and artificial stimuli differentially acti-
vate thalamic neurons, leading to divergent response properties in
downstream cortex. Specifically, the development of a model allowed
direct and independent manipulation of the magnitude and synchrony
of input population activity, whereas direct experimental control of these
variables was not possible. Toward this goal, a simple cortical network
model was developed, and the thalamic input activity was systematically
controlled.

The network was modeled after the thalamocortical circuit of the ro-
dent vibrissa pathway and the extensive anatomical and computational
literature for this model system (Kyriazi et al., 1993; Diamond, 2008).
The neural circuit consisted of 400 thalamic neurons that project to a
downstream cortical population of 800 excitatory neurons and 200 in-
hibitory neurons. The relative size of the thalamic and cortical popula-

tions and the balance of excitation and inhibition in cortex were based off
of previous studies (Kyriazi et al., 1993). The thalamic neurons made
direct synapses on both the excitatory and inhibitory neurons in the
cortex, allowing for feedforward inhibition.

The cortical population was modeled as a collection of quadratic
integrate-and-fire neurons (Izhikevich, 2003) according to the following
set of equations:

7 =0.04v> + 50+ 140 — u + I,
= a(bv — u),

where v is a 1000 X 1 vector of the membrane potential of the cortical
neurons, and u is a 1000 X 1 vector describing the recovery variable
instituting the nonlinear dynamics of the cortical neurons. Spiking was
determined by the membrane potential passing a fixed threshold of 30
mV, denoting the peak of depolarization, at which point v — cand u —
u + d to model repolarization of the neuron by resetting the membrane
potential, v, and the state variable, u. These parameters were set accord-
ing to previous work (Izhikevich, 2003). The input, I, delivered to each
cell was composed of a membrane noise term, I,,, and summed postsyn-
aptic potentials from the thalamocortical and intracortical activity, I,
according to the following set of equations:

I=1,+I
Ig= WS X H' + W x HC,

where W' is a 1000 X 400 matrix describing the thalamic synaptic
weights, such that Wl-T]-C is the strength of the synapse from the jth tha-
lamic neuron on the ith cortical neuron, and H™ (a 400 X 1 vector) is
the thalamic activity from the preceding time step, where H} ©is one if the
jth thalamic cell spiked in the preceding time sample and 0 otherwise. In
a similar manner, W (a 1000 X 1000 matrix) and H® (a 1000 X 1
vector) describe the intracortical synaptic activity for the excitatory (800
neurons) and inhibitory (200 neurons) population. I, is drawn from a
normal distribution with mean of 0 and covariance K, producing spa-
tially correlated membrane potential fluctuations in the cortical popula-
tion (Poulet and Petersen, 2008). The membrane potential fluctuations
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were also filtered temporally over a 10 ms window. The connectivity and
synaptic weights were extrapolated from previous modeling work and
updated according to more recent in vivo work (Kyriazi et al., 1993;
Bruno and Sakmann, 2006). This type of network has been shown pre-
viously to exhibit many of the common response features and rhythms of
in vivo cortical circuits (Izhikevich, 2003).

The thalamic input spikes were drawn from an inhomogeneous Pois-
son process with rate:

)\(t) = )\stim(t) + /\spomy
where
Aim(t) = t X exp(—/S) with [ A ()t = M,

such that M gave the average number of spikes per neuron per trial in the
stimulus window, T, and S determined the synchrony of those spikes.
Both S and M were functions of neuron location, such that neurons near
the center of the stimulus responded with the greatest synchrony and
magnitude, and neurons far from the center of the stimulus responded
with low synchrony and magnitude. The fall off of these variables with
space was dictated by the following Gaussian shaped functions:

M(x) =M

peak X exp(— (x — x0) %%,

S(x) = Spearc + 10 X [1 — exp(— (x — x0) 2o )],

where x gives the location along the linear array of thalamic cells, with x,
at the center of the stimulus. M, and S, determine the magnitude
and synchrony, respectively, at the center of the stimulus, and o deter-
mines how quickly the magnitude and synchrony fall off with distance
from the center of the stimulus. S, was systematically varied, whereas
M1 Was held constant in Figure 6A, and vice versa for Figure 6B, while
o was set at 100 thalamic neurons to simulate the activation of one
barreloid.

Although S modulates the synchrony of the input spiking activity, this
simulation parameter is related inversely to commonly used experimen-
tal measures of synchrony such that small S values correspond to large
synchrony strength values. Therefore, in all analyses, the synchrony
strength of both the experimental and simulation results was calculated
according to methods used previously in the literature and described
above to permit direct comparisons between the model and the experi-
mental data (Temereanca et al., 2008; Wang et al., 2010b). Briefly,
the cross-correlogram was computed for pairs of neurons using the
input spikes contributing to the stimulus. The area under the cross-
correlogram within a synchrony window (%5 ms), normalized for the
number of spikes used to create the cross-correlogram, was calculated for
each pairwise combination of the central 20 thalamic neurons and aver-
aged across the permutations to give the synchrony measure. The syn-
chrony strength metric is by definition non-negative, but it does not have
an upper bound. In the paradigm presented here, neurons typically fired
a maximum of one spike on any given trial in response to a punctate
whisker stimulus. With only one spike per thalamic neuron, a syn-
chrony value of 1 means that the stimulus-related spike from each
neuron in a simultaneously recorded pair occurs within the syn-
chrony window (%5 ms).

Functional coding analysis. Distinct trends in the trial-to-trial variabil-
ity were observed for sensory and artificial stimuli experimentally. In
both cases, the variability was response dependent, such that it varied as
a function of the cortical response amplitude. To assess the functional
relevance of the distinct response-dependent variability trends, we used a
theoretical analysis aimed at quantifying and optimizing the discrim-
inability of sensory inputs based on ideal observer analysis of down-
stream cortical response amplitudes. We framed the optimization of the
stimulus as a signal set design problem (Proakis, 1989). The optimization
framework involved two components: classification and maximization.

First, the classification was implemented with a standard maximum
likelihood classifier. From the perspective of an observer of cortical ac-
tivity, the discriminability between sensory inputs is a direct function of
the discriminability between the corresponding cortical responses, which
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is derived from the separation of the mean cortical response amplitudes
relative to the trial-to-trial variability (quantified here as the SD). For a
set of N different stimuli (see Fig. 7A), the distribution of the cortical
response  given a presentation of the kth stimulus is denoted as P(r]s,).
As shown in Figure 7B, within a simple maximum likelihood classifica-
tion framework, the observed response is classified as having arisen from
the stimulus for which the conditional probability P(r]s,) is maximal
for the observed cortical response r on that trial. As illustrated in Figure
7B, the performance of such a classifier depends on the overlap between
the distributions, which in turn is dictated by the means and variances for
each of these example Gaussian distributions. Taking stimulus s; as an
example, the probability of a correct classification (§ = s;) given the
presentation of stimulus s, is the area under P(rls;) over the region for
which it is larger than all other conditional distributions (Fig. 7B, gray
shaded region).

The second part of the optimization was the maximization of the
classification performance over a range of possible stimuli to design a set
of stimuli/inputs that produce cortical responses that are maximally dis-
criminable. To maximize the discriminability between a pair of stimuli,
given a fixed variability, stimuli should be chosen to best separate the
mean response amplitudes in downstream cortex. For more than two
stimuli and fixed variability, the spacing will depend only on the shape of
the nonlinear mapping between the stimulus and response. However, if
the response variability also changes as a function of the mean response
amplitude, the classification problem and optimization of the input be-
come more complex.

Within our framework based on experimental observations, a unique
set of inputs, s = {s, . . . s}, precisely defined the set of cortical response
distributions P(r]s,) for k = {1,. .., N}. We assumed that each P(r|s;) was
a Gaussian whose mean and SD were dictated by the stimulus s, as in
Figure 7A. The optimal stimulus set was then the set of stimuli for which
the minimum performance across the different classes was maximized:

Soptimal = aIg Max {min Pr(s = sk|sk)}.
s k
We performed the numerical optimization to design stimuli for two
different models of the trial-to-trial variability observed experimentally.
The variability was found to vary systematically as a function of the mean
response amplitude and exhibited distinct trends for sensory and artifi-
cial stimuli. For sensory stimuli, the variability increased linearly as a
function of the mean response amplitude [increasing variance model
(IVM)]. We modeled this as a linear function, shown in the top panel of
Figure 7C. For artificial stimuli, the variability peaked at the threshold
response amplitude. We modeled this as Gaussian-shaped function of
the mean response amplitude, with a peak in the variability at the thresh-
old response amplitude [peak variance model (PVM)], shown in the
bottom of Figure 7C. Each of these models was compared with chance
performance, given by 1/N, for a range of N. Power law curve fits, given
by y = a X N Y, were used to describe the performance as a function of
N in Figure 7D.

Results

To precisely quantify the differential effects of artificial and sen-
sory stimulation on propagation of signals in neural pathways, we
specifically compared the propagation of neural activity gener-
ated by whisker deflection sensory inputs and electrical and op-
togenetic stimuli delivered to the thalamus in the vibrissa
pathway of the anesthetized rat, in vivo.

The cortical response is highly nonlinear for whisker,
electrical, and optical stimuli

All experiments used in vivo VSDI of layer 2/3 in the whisker
representation of the S1 with whisker stimuli delivered to an
individual whisker on the face and electrical and optical stimuli
delivered to the topologically matched “barreloid” in the VPm
portion of the thalamus in the anesthetized rodent, as depicted in
Figure 1A. Post-experiment cytochrome oxidase staining re-
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Figure 2.

Whisker stimuli are more sensitive to trial-to-trial variability. 4, The response amplitude was quantified as the maximum VSDI signal, after averaging spatially within a single cortical

column and across trials, for whisker, electrical, and optical stimuli. B, Tuning curves for velocity (top, n = 12), current (middle, n = 18), and light intensity (bottom, n = 6) across all experiments.
Stimulus values from each experiment were normalized relative to the threshold stimulus. Mean response values from each experiment were normalized with respect to the amplitude of the
sigmoidal fit. C, The variability in the response amplitude was quantified as the SD of the maximum amplitude across trials, averaged spatially within a single cortical column. The response amplitude
variability for whisker stimuli (top) increases as a function of mean response amplitude (n = 12). The response amplitude variability for electrical (middle) and optical (bottom) stimuli peak at the
threshold response amplitude (n = 18 for electrical, n = 6 for optical). Inset depicts all data binned into three equally sized groups to demonstrate variability trends (* indicates p << 0.05, two-sided

t test with unequal variances).

vealed the anatomical structure of the cortical columns, which
was then registered to the VSDI recordings. An example of the
spatiotemporal VSDI response to whisker stimulation is shown
in Figure 1B with the overlaid anatomical map. In this example, a
single punctate deflection was delivered to whisker D2 (cortical
column with dot) in the rostrocaudal plane (see Materials and
Methods). The cortical response was initially constrained to the
principal cortical column, matched to the deflected whisker on
the face, before spreading spatially and growing in amplitude. For
comparison, Figure 1C shows the onset frame of the cortical re-
sponse to single-whisker, electrical, and optical stimuli, all from a
single experiment. The electrical stimulation consisted of a sym-
metric biphasic waveform, whereas the optical stimulation was a
5 ms pulse of blue light (see Materials and Methods).

First, the amplitude of the cortical response was quantified for
whisker, electrical, and optical stimuli of increasing intensity. To
do so, the cortical response was averaged across trials and then
averaged spatially within the principal cortical column. An exam-
ple of the single-trial (gray) and average (black) responses within
the principal cortical column is shown in Figure 1B. The mean

and SD of the maximum response amplitude was then calcu-
lated and plotted as a function of whisker deflection velocity,
electrical stimulation current, and optical stimulation light
intensity (Fig. 2).

A representative example of the cortical response to varying
intensity of each stimulus type is shown in Figure 2A. For each
experiment, the stimulus intensities were chosen to span the
range from no response to maximal response. The response am-
plitude increased monotonically as a function of stimulus inten-
sity for all stimulus types and was well approximated by a
sigmoidal function. From the sigmoidal fit, the threshold stimu-
lus intensity was defined as that which produced a half-maximal
cortical response amplitude (Fig. 2A, gray vertical line). The av-
erage threshold whisker deflection velocity (Vyr) was deter-
mined to be 229 = 139°/s (n = 12 animals, top row), consistent
with previous behavioral literature (Stiittgen and Schwarz, 2008;
Ollerenshaw et al., 2012). The average threshold current (Cpyz)
was 54 = 20 pA (n = 18 animals, middle row), and the threshold
light intensity (Lyyg) was 87 = 31 mW/mm? (#n = 6 animals,
bottom row). Figure 2B presents a compilation of the mean re-
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sponse amplitude across all experiments and all stimulus types.
For each experiment, the stimulus intensities are plotted relative
to the threshold stimulus, and the response amplitudes are nor-
malized with respect to the amplitude of the sigmoidal fit. The
compilation of the data illustrates the consistency and similarity
of the nonlinear relationship between cortical response ampli-
tude and the strength of sensory and artificial stimuli.

Sensory-evoked and artificially evoked cortical responses
exhibit distinctly different variability

Although the mean cortical response showed similar trends for
sensory and artificial stimuli, the trial-to-trial variability did not.
The trial-by-trial variability was quantified as the SD of the
single-trial maximum response amplitudes for each stimulus
type. Figure 2C presents the summary data for all experiments
and all stimulus types. Because there is no clear relationship be-
tween deflection velocity, microstimulation current, and light
intensity, the variability was analyzed as a function of the normal-
ized mean response amplitude. For whisker stimuli, the trial-to-
trial variability increased linearly as a function of the response
amplitude for each case. At low response amplitudes, the trial-to-
trial variability matched the variability in noise trials (trials with-
out sensory stimulation, gray band, mean of variability in the
noise =1 SD across n = 12 experiments), whereas high stimulus
intensities exhibited a marked increase in variability. The data
were split into three equally distributed bins, the lower (L), mid-
dle (M), and upper (U) response amplitudes, corresponding to
subthreshold, perithreshold, and suprathreshold responses, re-
spectively, as shown in the inset. The difference in variability for
the perithreshold and suprathreshold bins was significantly
different from the subthreshold response amplitudes (L vs M,
p = 5.0e-4; L vs U, p = 3.3e-10; two-sided ¢ test with unequal
variances).

The variability in the cortical response to thalamic micro-
stimulation and optogenetic stimulation followed a different
trend. At subthreshold and suprathreshold response amplitudes,
the trial-to-trial variability was comparable with that of noise
trials (gray band, mean of variability in the noise =1 SD across
n = 18 experiments). However, near the threshold response am-
plitude, the trial-to-trial variability was significantly higher.
When binned in the same manner as the whisker stimuli, only the
perithreshold bin was significantly different from the subthresh-
old variability, indicating that the variability returned to baseline
at strong response amplitudes for electrical (L vs M, p = 0.0061; L
vs U, p = 0.17; two-sided t test with unequal variances) and
optical (L vs M, p = 0.043; L vs U, p = 0.55; two-sided ¢ test with
unequal variances) stimuli. Importantly, the distinct trends of
trial-to-trial variability for sensory and artificial stimuli have im-
plications for the capacity to generate discriminable cortical re-
sponses (see Fig. 7) and influence behavior (see Discussion).
Together, the results here strongly suggest that one kind of input
cannot simply be “substituted” for another through a simple
“lookup table,” because one response property may be achieved
at the expense of others.

The cortical response to microstimulation exhibits the
greatest spatial spread

In addition, the VSDI modality enabled the quantification of the
spatial spread of the cortical response to whisker, electrical, and
optical stimuli. Examples of the spatial cortical response to each
stimulus type are presented in Figure 3A for varying stimulus
intensities. The initial frame of activation was used for all stimuli
(see Materials and Methods). The spatial spread was quantified as
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the length of the major axis, minor axis, and equivalent radius of
the contour at 70% of the maximum amplitude. In this way, the
spread measurement was normalized for differences in the max-
imum amplitude across variations in stimulus intensity and stim-
ulus type. Also, the contour was taken from the sum of Gaussians
fit to the raw data to provide a smooth estimate to the contour.
Qualitatively, for increasing velocity of whisker stimuli (Fig. 34,
top) and light intensity of optical stimuli (bottom), the area of
activation remains restricted to a small region of cortex. For in-
creasing current amplitude of the electrical stimuli (middle), the
area of activation is initially constrained but spreads farther
across cortex for higher current intensities.

The individual contours for all stimulus intensities are over-
laid in Figure 3B for each stimulus type (light gray is the lowest
stimulus intensity, black is the strongest). Again, it is clear that the
spatial spread grew slightly across varying whisker deflection ve-
locities and optical light intensities, whereas the spatial spread
grows more steeply for increasing current of electrical stimula-
tion. The average radius (r,,,) of the contours is plotted as a
function of the maximum response amplitude for all experiments
in Figures 3C-E, for whisker, electrical, and optical stimuli, re-
spectively, along with the linear fit of the relationship (black line).
The linear fits to the trends for the radii on the major (7,,,,i,) and
minor (7,,;,,,) axes are plotted on the same graph (dashed lines).
As in the single-experiment example, the average radius grew
weakly as a function of the response amplitude for whisker [slope,
15 wm/unit activity; 95% confidence interval (CI) = —18, 48;
n = 12 experiments] and optical (slope, 38 wm/unit activity; 95%
CI = —11, 87; n = 4 experiments) stimuli. However, electrical
microstimulation exhibited an increasingly large spatial spread as
the response amplitude increases (slope, 108 wm/unit activity;
95% CI = 68, 149; n = 18 experiments). For comparison, the
radius of a cortical column in the rodent S1 is ~200 wm. As an
example, the average radius of the 70% contour for a strong
response (AF/F, of 0.4%) to whisker (474 um) and optical (558
pm) stimuli only extends in nearest neighbor cortical columns,
whereas the 70% contour for electrical stimuli (770 wm) reaches
two cortical columns outside of the principal column, encom-
passing ~2.6 times as much cortical surface as the response to
whisker stimuli. These observations are consistent with the hy-
pothesis that activation of axons locally in the thalamus leads to
increased spatial spread in cortex given that electrical stimuli
(Histed et al., 2009), and optical stimuli to a lesser extent (Cruik-
shank et al., 2010), are known to activate axons near the site of
stimulation.

Together, whisker stimuli of increasing velocity produced a
nonlinear increase in the mean cortical response amplitude, with
high trial-to-trial variability, in a fixed, focal spatial location.
Conversely, electrical stimulation of the thalamic input to the
cortex produced a highly nonlinear modulation of the cortical
response amplitude, with little trial-to-trial variability except at
the threshold current, over an increasingly large region of the
cortical space. Optical stimulation of thalamic neurons express-
ing light-sensitive ion channels induced a mixture of the proper-
ties observed with whisker and electrical stimuli, in which the
nonlinearity of the amplitude and variability of the cortical re-
sponse closely matched that of electrical stimulation, yet the cor-
tical spatial response properties were more akin to that of whisker
stimuli. These experimental observations reinforce the general
conclusion from previous work that natural and artificial inputs
activate neural circuits in distinct ways but also further elucidate
the specific details of the distinction and identify potential mech-
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Figure 3.

Electrical stimulation activates a significantly larger region of the cortex. 4, The spatial spread was quantified as the average radius of the 70% amplitude contour. The initial frame of

activation was used, and the contour was taken from a parametrized sum of Gaussians fit to the VSDI data. B, The size of the contours is similar across whisker deflection velocities (top) and optical
light intensity (bottom) but increases dramatically for increasing electrical stimulation current (middle). C, The spatial spread increased significantly more as a function of response amplitude for

electrical stimuli (n = 17) than for whisker (n = 12) or optical (n = 4) stimuli.

anistic differences in optical stimulation compared with tradi-
tional electrical microstimulation.

Magnitude and synchrony of thalamic input drive cortical
response properties
Striking differences were observed in the properties of the cortical
response to whisker, electrical, and optical stimuli, which were
likely the result of the stimuli activating the thalamus in funda-
mentally different ways. Two obvious determinants of the corti-
cal response are the extent of the subpopulation of thalamic
neurons activated during the sensory and artificial stimulation
and the degree to which these projections to cortex are synchro-
nized, both of which have potentially strong influence on the
magnitude, variability, and spatial spread of the cortical response.
First, as the current and light spread through the tissue, they
recruit an increasing number of neural elements with increasing
stimulus intensity (Aravanis et al., 2007; Histed et al., 2009). It is
thus likely that increasing strength of the electrical and optical
stimulation activates increasing numbers of neurons in the bar-
reloid (functional groupings that principally relay information
from a single whisker to the cortex) within which the electrode/
fiber is positioned. Furthermore, the artificial stimulation poten-
tially extends beyond the primary barreloid, which would
simultaneously activate multiple barreloids in the thalamus. In
comparison, the sensory stimuli were delivered to a single whis-

ker on the face and thus primarily activate a single thalamic bar-
reloid. It is possible that this discrepancy in the number of
barreloids activated between sensory and artificial stimuli may
account for the variability trends described previously.

We investigated this further using an air-puff stimulus to si-
multaneously activate the entire whisker array (Fig. 4A). The
response to full whisker array stimulation spreads over a large
region in the cortex as in the response to the electrical stimulus,
yet the variability in the cortical response magnitude within a
single barrel did not peak at the threshold stimulus intensity.
Instead, the variability increased linearly with the response am-
plitude but with a lower slope than was observed with the single-
whisker deflection (dashed black line). As a control, all whiskers
except one were trimmed, and the same air-puff stimulus was
repeated (Fig. 4B). These results mimicked the spatial spread and
variability trends observed for the single-whisker deflection in
Figures 2 and 3 demonstrating that the air-puff stimuli is not
fundamentally different from the precise whisker stimulation
used in this study. Although the activation of multiple whiskers
may explain the differences in spatial activation in electrical stim-
ulation, the activation of multiple barreloids alone is insufficient
to explain the distinct variability trends observed for sensory and
artificial stimuli. However, the overall amount of thalamic spik-
ing within a given barreloid remains an important parameter in
determining the cortical activation within the corresponding bar-
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Figure4. Magnitude and synchrony of thalamic input drive cortical response properties. A, Air-puff stimulation of the full whisker array leads to a greater spatial spread of the cortical response
in the onset frame, but the variability of the response amplitude does not peak at threshold stimulus amplitudes (n = 2 animals). Inset depicts all variability data binned into three equally sized
groups to demonstrate variability trends (* indicates p << 0.05, two-sided t test with unequal variances). B, Sensory stimulation with an air puff after trimming all but one whisker shows spatial and
amplitude variability responses similar to those seen with single whisker stimulation using a piezoelectric actuator (n = 2 animals). Inset depicts all variability data binned into three equally sized
groups to demonstrate variability trends (* indicates p << 0.05, two-sided ¢ test with unequal variances). €, Activity from pairs of single neurons residing in the same barreloid were recorded
simultaneously in response to whisker deflections. The jitter, calculated as the SD of the first spike latency, was strongly correlated with the synchrony of firing between the two neurons (n = 15
pairs). D, Increasing intensity of optical stimulation of ChR-expressing VPm neurons reduced jitter. E, Beyond the optical threshold response, the jitter in response to optical stimulation was

significantly lower than the minimum jitter achieved using whisker stimulation (n = 7 cells).

rel because increasing stimulus amplitudes leads to increasing
firing in the thalamus within the aligned barreloid.

Second, the cortical response has been shown to be extremely
sensitive to the timing of thalamic inputs. Although previous
studies have shown that the timing precision and synchrony of
population activity in the thalamus are modulated by variations
in the strength of a sensory stimulus, the temporal precision of
artificially evoked neural activity suggests that electrical and op-
tical stimuli likely synchronize the neurons they activate beyond
sensory-evoked synchrony levels (Boyden et al., 2005; Wagenaar
et al., 2005). To further elucidate this issue, we used extracellular
recordings in the thalamus from a previous study (Wang et al.,
2010b) to compare the degree of synchrony produced by sensory
and artificial stimuli. First, synchronous activity was measured
across pairs of thalamic units in response to whisker stimuli using
multielectrode recordings of single-unit activity (Wang et al.,
2010b). Synchrony strength was quantified as the integrated area
under the spike cross-correlogram of simultaneously recorded
VPm single units in a 10 ms window, normalized by the total
number of spikes of each unit (see Materials and Methods). The
narrow synchrony window implemented in this metric is mod-
eled after the short cortical window of integration whereby tha-
lamic spikes summate effectively before disynaptic feedforward
inhibition prohibits additional cortical excitation (Gabernet et
al., 2005). If each neuron fires one spike, a synchrony strength of
1 corresponds to all stimulus-related spikes from one neuron
occurring within the synchrony window of the stimulus-related
spikes from the second neuron, whereas a synchrony strength of
0 corresponds to no synchronous firing activity between the two
cells. As shown in Figure 4C, the maximal synchrony strength

evoked by whisker stimulation reaches 0.61. Note that the syn-
chrony strength values described here correspond to conditions
under barbiturate anesthesia, which we reported previously
(Wang et al., 2010b). However, these synchrony strength values
are markedly lower than those presented by studies performed
under fentanyl anesthesia (Temereanca et al., 2008). The number
of elicited thalamic spikes under barbiturate anesthesia varied
between 0 and 1 spike on each trial. Although the synchrony
measure attempts to normalize between the firing rates of the
neurons, neuron pairs with no-response trials (i.e., zero spikes)
can have lower synchrony strength relative to neuron pairs that
respond on every trial. When we repeated the synchrony analysis
of thalamic neurons recorded under sodium pentobarbital with
all no-response trials removed, the synchrony strength values
(range from 0.8 to 1.0; data not shown) are on the same order of
those in the study by Temereanca et al. (2008). As such, we believe
that the quantitative difference in synchrony values could be at-
tributable to differences in the firing patterns elicited with vary-
ing anesthesia drugs. However, we expect that the relative
qualitative shifts in synchrony will be consistent regardless of the
anesthetic used.

The jitter in first spike latency for each unit in a pair of tha-
lamic neurons was highly correlated with the computed syn-
chrony strength (Fig. 4C). Although the synchrony strength
defined here is limited to pairs of neurons, there has also been
evidence that reduced jitter is correlated with greater population
synchrony in the VPm thalamus, as quantified by the amplitude
of thelocal field potential (Temereanca and Simons, 2003). Anal-
ysis of the thalamic spiking activity used to drive the computa-
tional model presented below also demonstrated the same



15710 - J. Neurosci., November 25, 2015 - 35(47):15702-15715

Millard et al. @ Propagation of Artificial and Sensory Information

A C 0.2
]“J | 20mV|m_ spk/ms
W ! ‘ | " 20ms
In (o 0 o) o) 1
CTX ]
EX0000000000000000
s wee
VPm H B BE B E B BB Spike Prob.
1 N, p0.3
o o I,
B Increasing Synchrony
t-—
i }\‘slim(t) H 01

o :!gh M High M spk/ms
o igh 8 Low S %
> ms
S | Ao [~ 1
© \ ', VPm &
= ; g E
o : .
[ 'I ' ' NT .
7 Time
© Low M Low M
o High S [\ Low S
)
E /\

Figure5.

Computational network model of activity propagation in the thalamocortical circuit. A, The population activity of the VPm thalamus is controlled as the input to the cortical population.

The neurons are arranged spatially in a linear array, such that neurons are more likely to be connected to their neighbors. The network promotes feedforward inhibition in that thalamic VPm neurons
synapse on both excitatory (Ex) and inhibitory (In) neurons within the cortical population. Example membrane potential traces for a single neuron across multiple trials are shown in the top. CTX,
Cortex. B, Diagram illustrating the inhomogeneous rate function used to generate the thalamic spikes. The magnitude and synchrony of the thalamic spiking activity was systematically modulated
as the input to the model. , Spatial PSTH and averaged PSTH for the excitatory (top left) and inhibitory (top right) cortical population in response to the thalamic input (bottom).

correlation between first spike latency jitter and synchrony
strength (data not shown). Together, these findings suggest that
first spike latency jitter computed for an individual thalamic neu-
ron is highly correlated with pairwise synchrony between at least
two thalamic neurons, suggesting that spike timing precision (jit-
ter) may act as a surrogate for direct measures of synchrony be-
tween two neurons in thalamus (Temereanca et al., 2008).
However, as information progresses along the sensory pathway, it
becomes integrated with additional nonsensory information
such that the evoked response is better predicted by the presyn-
aptic activity rather than the stimulus timing alone (Eldawlatly
and Oweiss, 2011). Although estimation of population syn-
chrony from single-neuron precision may be a valid method for
recordings performed early in the sensory pathway such as sen-
sory thalamus, it may not generalize across areas.

Although spike timing precision could not be measured con-
currently with electrical stimulation because of the electrical re-
cording artifact, optical stimulation allowed for quantification of
the spike timing precision of artificially evoked thalamic single-
unit activity. In agreement with previous results, we found a high
degree of spike timing precision in response to optical stimuli
(Fig. 4D) relative to whisker stimuli (Fig. 4C; note that the jitter
scale is approximately halfas large as D). For suprathreshold light
intensities, the evoked activity reached submillisecond precision
(0.70 = 0.48 ms), which corresponds to a significantly higher

degree of synchronization than the highest degree of precision/
synchrony observed for whisker inputs (Fig. 4E).

Computational model of thalamocortical circuit allows direct
control of thalamic input

The above analyses point to the possible roles of both the num-
bers of thalamic projection neurons engaged within a barreloid
and the degree to which they are synchronized, but they are best
studied in situations in which these parameters can be more di-
rectly controlled. To explicitly control the number of thalamic
neurons that were activated and the degree of synchronization,
we constructed a computational model of the thalamocortical
projection. The network connectivity is illustrated in Figure 5A
and was based off of previous anatomical and computational
studies of the thalamocortical circuit (Kyriazi et al., 1993; Bruno
and Sakmann, 2006; Diamond, 2008). The network was a canon-
ical feedforward model, similar to what has been used extensively
to explore the propagation of neural activity (Kumar et al., 2010).
A population of thalamic neurons formed the input to the net-
work, and the cortical population of interconnected excitatory
and inhibitory neurons was the output layer. The synaptic
weights and relative connectivity were drawn from previous ex-
perimental and computational work in the rodent vibrissa system
(see Materials and Methods). However, to retain generality, the
neurons in the model were arranged in a linear array, as opposed
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trial variability of the excitatory cortical units were computed for systematic variations in the number and timing of the thalamic
input spikes. The gray lines indicate alternate values of synchrony and spike magnitude. 4, The cortical response was a nonlinear
function of thalamic synchrony, whereas the variability in the response amplitude increased linearly. B, The cortical response
amplitude exhibited a similar nonlinearrelationship as the magnitude of the thalamicinput was increased and synchrony was fixed
at a high level. However, the trial-to-trial variability in the cortical response peaked at the threshold magnitude of the thalamic

input under high synchrony.

to the discrete nature of the cortical columns in the rodent barrel
cortex. In this way, neighboring thalamic neurons synapsed on
overlapping cortical populations. As the distance between tha-
lamic neurons increased, the probability of shared connections to
a single cortical neuron decreased, with the individual synaptic
weights drawn randomly. The previous modeling work, on which
this model was based, used 100 thalamic neurons to model a
barreloid. We retain this convention, such that the 400 thalamic
neurons modeled in this study corresponds to four barreloids in
sequence.

Each individual cortical neuron was modeled as a nonlinear
dynamical system (Izhikevich, 2003). Specifically, each neuron
was described by two state variables: (1) the membrane potential
of the neuron; and (2) a recovery variable. The membrane poten-
tial evolved according to a quadratic integrate-and-fire model,
whereas the recovery variable enforced the relative refractory pe-
riod of the neuron and overall excitability. Example traces of the
membrane potential of a single neuron in response to a simulated
stimulus are shown in the top portion of Figure 5A for multiple
trials. Noise was added to the membrane potential of each neuron
to mimic the in vivo high conductance state (Destexhe et al., 2003;
Ratté et al., 2013). The noise was correlated across the cortical
neurons, such that neighboring neurons experienced similar
fluctuations. The thalamic population activity acted as the input
to the cortical population and was generated by the inhomoge-
neous Poisson rate function, A(£) = Ay () + Agpone Where Ao
produced a constant rate of background activity and A;,,,(¢) was
systematically varied to control the magnitude (M) and syn-
chrony (S), as in Figure 5B. Examples of the input thalamic pop-
ulation activity (bottom) and output cortical population activity
(inhibitory, top; excitatory, middle) are shown in Figure 5C. For
each cell type, the image shows the average activity across the

tal variables on the response amplitude
and variability. For the amplitude and
variability, two different input scenarios
were used to explore the two extremes in
terms of synchrony and magnitude. In
Figure 6A, the average number of spikes
per trial per thalamic neuron was fixed,
but the synchrony of those spikes varied to modulate the intensity
of the stimulus. In this way, the average number of thalamic
neurons participating in the cortical input was systematically var-
ied independent of synchrony. Conversely, in Figure 6B, the syn-
chrony of the thalamic population spikes was held fixed at a high
level, and the average number of spikes per trial per neuron was
varied to modulate the intensity of the stimulus. The synchrony
of the thalamic input was computed as the area under the cross-
correlogram within a synchrony window (see Materials and
Methods), as done previously (Wang et al., 2010b; Stanley et al.,
2012). Note that this measure saturated for stimuli with unnatu-
rally high synchrony but allowed direct agreement with physio-
logically relevant values of thalamic synchrony in the rodent
vibrissa system.

The cortical response amplitude grew monotonically as a
function of the thalamic input synchrony (Fig. 6A, left), whereas
the trial-to-trial variability in the cortical response amplitude in-
creased linearly (Fig. 6A, right). These trends mirrored those ob-
served experimentally for whisker stimuli. We then examined the
sensitivity of this relationship to the fixed magnitude of the tha-
lamic input activity. Each of the gray curves in Figure 6A give the
relationship between the synchrony of the thalamic population
input and the amplitude of the cortical response for a fixed mag-
nitude of the thalamic input. The same trends were observed for
a range of thalamic input magnitudes, spanning half activation
(0.5 spikes/trial for each neuron) to maximal activation (1.25
spikes/trial for each neuron) of a thalamic input population cor-
responding to a single barreloid.

In comparison, Figure 6B illustrates the simulated cortical
response amplitude (left) and trial-to-trial variability (right) as a
function of the thalamic input magnitude, for fixed levels of input
synchrony. The cortical response increased monotonically with



15712 - J. Neurosci., November 25, 2015 - 35(47):15702-15715

the thalamic input magnitude before saturating for high intensity
inputs (Fig. 6B, left), similar to the effect of increasing the tha-
lamic synchrony (Fig. 6A, left). Thus, both magnitude and syn-
chrony of the thalamic input can modulate cortical response
amplitude. Unlike the fixed spike count condition presented in
Figure 6A, the trial-to-trial variability in the cortical response
amplitude for fixed synchrony demonstrated a nonlinear rela-
tionship as a function of the thalamic input magnitude (Fig. 6B,
right). The two highest levels of synchrony modeled (>0.95 and
>>(.95) saturated the synchrony strength measure derived from
previous sensory neurophysiology studies (see Materials and
Methods), consistent with the much higher degree of precision
observed for optically evoked thalamic spikes in Figure 4E. The
peak variability was observed at the threshold input magnitude
for the fixed, high input synchrony (red), whereas subthreshold
and suprathreshold inputs produced low trial-to-trial variability
in the simulated cortical response. The simulated cortical re-
sponse amplitude and variability for fixed high synchrony repro-
duced the results observed experimentally for electrical and
optical stimulation, suggesting that the extreme synchronization
generated by electrical and optical stimuli is responsible for the
quenched variability at suprathreshold stimulus intensities.

These computational results support the hypothesis that the
nonlinear properties, including the amplitude and variability, of
the cortical response are determined by the magnitude and syn-
chrony of the input population. Specifically, the model predicts
that strong synchronization of the input increases the slope of the
nonlinear transformation in cortex, while simultaneously reduc-
ing trial-to-trial variability for suprathreshold inputs. However,
the functional ramifications of these observations on neural in-
formation processing are unclear.

Coding consequences of nonlinear properties of

activity propagation

The distinct ways in which the cortex was activated by sensory
and artificial stimuli have profound implications for the ability to
use artificial stimuli as a surrogate for sensory inputs. Certainly, it
will be difficult for artificial stimuli to exactly mimic the cortical
response to sensory inputs given the fundamental experimental
observations in Figures 2 and 3. However, it may be sufficient for
artificial stimuli to merely deliver information to downstream
cortex and rely on some degree of learning to associate the stimuli
with meaningful inputs. However, the ability to perform this
depends strongly on designing stimuli that yield different/dis-
criminable cortical responses, which is in turn strongly influ-
enced by the variability structure.

Consider an ideal observer tasked with discriminating be-
tween the strengths of different stimuli based on the observation
of the cortical response amplitude (e.g., integrated activity within
a cortical column; Fig. 7A). For a particular stimulus s, the dis-
tribution of observed responses is given by P(rs;). Within a sim-
ple maximum likelihood framework, the observer makes an
inference by selecting the stimulus for which the likelihood
P(1]s,) is maximized. This maximization is conducted across the
stimulus set, for the particular cortical response observed on that
trial (see Materials and Methods). The probability of a correct
classification is the area under the distribution over a region for
which the probability associated with the correct class is larger
than all others, as illustrated for s, in Figure 7B (shaded region).
Therefore, in this simple paradigm, the ability to discriminate
between any two inputs is dictated by the separability of the cor-
responding conditional response distributions.

Millard et al. @ Propagation of Artificial and Sensory Information

For a sigmoidal nonlinear relationship between the input
stimulus and the cortical response amplitude, and a hypotheti-
cally constant trial-to-trial variability, the ability to discriminate
between two inputs with a given absolute difference in strength
would be highest near the threshold input because of the steep
slope of the nonlinearity at this point. However, as previously
demonstrated experimentally, the variability is not constant but
is instead a function of the stimulus. As a result, the overall per-
formance of the observer in discriminating between a set of
stimuli is dependent on both the nonlinearity of the stimulus—
response relationship and the corresponding variability.

To demonstrate the functional relevance of the response-
dependent variability, we framed this as a signal set design prob-
lem (Proakis, 1989). In this framework, the goal was to find the
set of N stimuli that produced maximally discriminable cortical
response amplitudes, given identical deterministic nonlinear
stimulus—response characteristics (i.e., the sigmoid) but different
variability structures. In detail, because each stimulus can have a
different probability of being classified correctly, the overall cri-
terion here was to find the set of stimuli that maximized the
lowest (minimum) probability of correct classification among
the set (see Materials and Methods). Figure 7C shows the stimu-
lus—response relationships for the sensory stimulus case, in which
there was increasing cortical variability with stimulus strength
(IVM; top), and for the artificial stimulus case, in which there was
a peak variance for threshold levels of stimulus strength (PVM;
bottom). Both of these plots were generated from models based
on the observed cortical variability described previously (see Ma-
terials and Methods). Shown to the right on the vertical axis are
the corresponding sets of conditional response distributions for
the optimal set of four distinct stimulus strengths, along with the
corresponding set of stimuli as tick marks along the horizontal
axis. The difference in variability structure thus leads to a differ-
ent optimal set of stimuli under the discriminability criterion
described here. As expected, the optimal response sets for the
IVM are biased toward lower response amplitudes, in which the
trial-to-trial variability was lowest. In comparison, the optimal
response sets for the PVM are biased toward response amplitudes
distant from the threshold, for which the variability is lowest, at
both low and high stimulus strength.

For each of the models of variability, as the size of the response
set increased, the overlap between the neighboring response dis-
tributions obviously increased, reducing the overall perfor-
mance. Figure 7D presents the minimum probability of correct
classification as a function of N for each of the models of
response-dependent variability. Chance performance (solid gray
curve) was given by 1/N, signifying the probability of correct
classification when randomly choosing among the N stimuli. The
curve fits to the data were modeled after this relationship (see
Materials and Methods). Despite the difference in variability
structure and the corresponding optimal stimulus set, the overall
level of performance, as quantified by the minimum classification
performance among stimuli in the set, was the same when the
optimization was performed taking the appropriate variability
structure into account (solid black and red curves). The perfor-
mance was indistinguishable across the two models and well
above chance. However, for mismatched cases in which the stim-
ulus set was optimized under an assumption of IVM and evalu-
ated for the PVM case (IVM — PVM, dashed red curve) and vice
versa (PVM — IVM, dashed black curve), there was a significant
drop in performance, which became increasingly more dramatic
for larger number of stimuli. These results demonstrate that, de-
spite the difference in variability structure, the artificial stimulus
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Figure7.

Optimal stimulus set design. A, Depiction of the theoretical framework for stimulus design. The stimulus set maps to a noisy response set through a nonlinear relationship. B, The optimal

set of response distributions was identified by maximizing the minimum probability of correct classification across the stimulus set. In the diagram, the gray region indicates the range of response
values for which the response would have been correctly classified, given s,. €, The trial-to-trial cortical variability was response dependent, and two different models were compared. The IVM
modeled the variability as a linear function of the response, similar to the experimental observations for sensory stimuli. The PVM modeled the variability as a Gaussian function of the response, with
the peak variability occurring at the threshold, similar to the experimental observations for artificial stimuli. For n = 4, the optimal set of discriminable responses and stimuli are shown for both cases
on the vertical and horizontal axes, respectively. D, The performance (minimum probability of correct classification) decreased as the number of distinct stimuli increased. The performance across
the VM and PYM was identical for their optimal stimulus sets, and both were above chance (gray curve). The performance dropped to chance when the optimal stimuli were used in the mismatched

variance models (PVM — IVM, dashed black; VM — PVM, dashed red).

set could be designed such that it achieved the level of perfor-
mance of natural stimuli.

These theoretical results highlight the functional relevance of
the distinct nonlinear mappings observed experimentally and
computationally for sensory and artificial stimuli. The utility of a
surrogate inputis judged on the amount of information delivered
to downstream cortex. In this simple example of encoding infor-
mation in the cortical response amplitude, we show that the
choice of inputs significantly affects the classification perfor-
mance downstream. However, through knowledge of the input—
output nonlinear relationship and the associated trial-to-trial
variability, optimal surrogate inputs were chosen that maximized
downstream performance. Ultimately, our theoretical results
suggest that the optimal response amplitudes will not be the same
for sensory and artificial stimuli, but we may be able to design
surrogate stimulus sets to maximize performance for artificial
stimulation of neural circuits.

Discussion

Critical in the artificial stimulation of neural tissue is the consid-
eration of what cells are being activated. The VPm region of the
rodent somatosensory thalamus contains purely excitatory pro-
jection neurons organized into functional groups, termed barre-
loids, that principally relay information from a common facial

vibrissa to layer 4 of S1 (Simons and Carvell, 1989). Although an
individual barreloid was targeted during placement of the micro-
electrode and optical fiber, neurons were likely activated across
multiple barreloids because of the nonspecific spread of the cur-
rent/light within the tissue (and broad opsin expression) at the
strongest current/light levels. Because sensory stimulation was
restricted to the deflection of a single whisker (and thus activating
asingle barreloid when stimulated under barbiturate anesthesia),
itis possible that the artificial activation of multiple barreloids did
contribute to the trends observed here. However, as shown in
Figure 4, cortical responses from simultaneously deflecting the
entire whisker array (and thus activation of multiple thalamic
barreloids) suggest that merely recruiting an increased number of
neurons does not fully account for the response profiles of natu-
ral and artificial stimuli.

Itis also the case that the current/light spread could go beyond
the neuronal cell bodies in VPm thalamus and reach inhibitory
neurons within the nearby nucleus reticularis thalami (nRT), af-
ferent axonal “fibers of passage” projecting from other barreloids
within the VPm thalamus to the cortex and even terminals of
descending corticothalamic projections. Indeed, electrical mi-
crostimulation is indiscriminate and could activate any or all of
the above. Electrical stimulation with symmetric, charged-
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balanced current pulses such as those used here may preferen-
tially activate nearby axons of passage instead of local cell bodies
and thus could also engage the circuit through activation of or-
thodromic and/or antidromic fibers of passage (Wang et al.,
2012). However, optical stimulation engages principally cell bod-
ies and, because of the viral transduction methods used, is not
capable of antidromically activating the cortex (Cruikshank et al.,
2010). Therefore, the increased spatial spread of the cortical re-
sponse to electrical stimuli, and not whisker or optical stimuli, is
consistent with the activation of local fibers of passage by electri-
cal stimulation (Wang et al., 2012) and provides additional sup-
port that optical stimuli principally activate cell bodies, and not
axons, nearby the light source. Furthermore, opsin expression is
cell-type specific to limit functional opsin expression to excit-
atory neurons. Therefore, although the electrical microstimula-
tion could in principle activate cell bodies within the inhibitory
nRT, it would not be activated by the optical stimulus even if
sufficient light reached the nucleus. Given the similarity of the
nonlinear variability trends between electrical and optical stim-
uli, neither antidromic activation nor nRT activation likely play a
role in the distinct trends for natural and artificial stimuli.

Given that simply activating larger regions of subcortical
tissue appears insufficient to account for differences in the rela-
tionship between variability and response magnitudes, we hy-
pothesize that the distinct response profiles elicited by sensory
and artificial stimulation are driven by differences in the coordi-
nation of spiking across neurons. Thalamic neurons are known to
make weak, noisy synapses onto downstream cortical neurons
(Bruno and Sakmann, 2006), and these connections comprise a
relatively small percentage of the incoming synapses compared
with intracortical connections (Benshalom and White, 1986; da
Costa and Martin, 2009). This anatomical wiring alone has led
many to suggest that synchronization of the thalamic neurons be
necessary for the reliable activation of downstream cortical neu-
rons (Wang et al., 2010a; Bruno, 2011; Stanley, 2013), whereas
experimental and computational work indicates a role for syn-
chrony in driving cortical feature selectivity (Alonso et al., 1996;
Temereanca et al., 2008; Wang et al., 2010b; Stanley et al., 2012;
Kelly et al., 2014). We believe the degree to which natural and
artificial stimuli synchronize the thalamic input to the cortex is
responsible for the variability trends observed experimentally.
We hypothesize that the relative influence of a thalamic input
spike increases with synchrony and may eventually engage the
cortex at the level of variability in the cortical baseline membrane
potential. In this way, very subtle changes in the thalamic input
near threshold may cause large variations in the cortical response,
whereas inputs significantly above reliably produce a maximal
response regardless of cortical state. Indeed, we found that the
temporal precision of thalamic spiking in response to threshold-
level optical stimuli was significantly greater than that of even the
strongest whisker stimuli, providing support for the hypothesis
that the high degree of synchrony generated by artificial inputs is
responsible for the distinct variability trends observed experi-
mentally, as confirmed by the computational model.

The agreement in the computational and experimental results
supports a conceptual model for the distinct ways in which nat-
ural and artificial inputs activate neural circuits. Sensory stimuli
modulate thalamic synchrony to drive downstream cortical ac-
tivity, whereas electrical and optical stimuli activate a population
of neurons at a fixed, high synchrony. This dichotomy has direct
relevance to the use of electrical and optical stimuli as surrogates
for sensory stimuli. As surrogate stimuli, we aim for electrical and
optical inputs to reproduce natural patterns of activity in down-
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stream structures when possible. However, if completely natural
circuit activation is not achievable, the delivery of inputs that are
discriminable is imperative. Previous work has modeled the non-
linear mappings from electrical stimuli to downstream response
to control patterns of neural activity (Daly et al., 2012; Millard et
al., 2013). Our results here specifically suggest that the variability
structure induced by the different types of inputs is a critical
component of stimulus design within this context. Importantly,
the variability in evoked responses is not only a function of the
type of input but is also a function of brain state. Cortical record-
ings during whisker stimulation from the study by Petersen et al.
(2003) found that much of the variability in sensory-evoked re-
sponses could be accounted for by interactions with ongoing
brain state, specifically in the context of up/down states. Whisker
deflections administered during a down state elicit reliable large-
amplitude responses, whereas whisker stimulation during an up
state results in greater spike timing variability (Petersen et al.,
2003; Hasenstaub et al., 2007). This becomes fundamentally im-
portant when comparing the variability trends observed in the
anesthetized animal, in which the cortex oscillates between up
and down states with a significant amount of time spent in down
states, to the awake animal, in which up states dominate (McCor-
mick et al., 2015). Furthermore, whisker-evoked responses in the
awake mouse have been shown to be significantly more variable
than in the isoflurane-anesthetized mouse (Ferezou et al., 2006).
Although the increased prevalence of up states in the awake ani-
mal will likely have quantitatively distinct effects on the variabil-
ity trends described here, the fundamentally different patterns of
network activation by sensory and artificial stimulation will likely
maintain the qualitative nonlinear mappings identified here.
From the perspective of an ideal observer, knowledge of these
distinct nonlinear mappings from sensory and artificial stimuli to
the downstream cortical response can be leveraged to identify
optimal stimuli that maximize discriminability. This simple ex-
ample opens up a class of problems that needs to be more exten-
sively addressed for the optimal design of spatiotemporal
patterns of surrogate stimuli.

Implicit in the analysis of cortical activation in this study is the
desire to link the cortical response to sensory percepts. The de-
tection of whisker inputs through a Go-No-go paradigm has
been investigated, and the sigmoidal cortical activation curves
observed here for both sensory and artificial inputs mirror the
performance of highly trained animals (Butovas and Schwarz,
2007; Sttittgen and Schwarz, 2008; Ollerenshaw et al., 2012; Bari
et al., 2013), despite the fact that the electrophysiological data
were obtained in acute, anesthetized settings. For behavioral rel-
evance, surrogate sensory signals must match, if not mimic, in-
formation content delivered to the cortex. Sensory and artificial
signals activate regions in distinct combinations of size and
synchrony, leading to fundamentally different neural responses,
and yet, knowledge of the specific mappings from stimulus to
response enabled the design of optimal artificial stimuli that
matched the theoretical information capacity of sensory stimuli.
Behaviorally, this would correspond to an animal that was
equally capable of discriminating between two intensities of
whisker stimulation on a single whisker or two intensities of ar-
tificial stimulation administered in the same spatial location. This
simple example points toward extension of these concepts to the
design of stimulation profiles and parameters for artificial stimuli
and the consideration of spatiotemporal nonlinearities in the
mapping from stimulus to response. Optogenetic stimuli afford
an expanded parameter space for the design of stimuli compared
with electrical stimulation (Wang et al., 2012), in which design of
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the specific opsin properties or freedom from traditional stimu-
lus constraints (i.e., charge-balancing) may enable more natural-
istic mechanisms of neural circuit activation. Meanwhile, the
static mappings here are a reduced view of a more complicated
nonlinear system (Millard et al., 2013), such that additional iden-
tification and control of artificial circuit activation is needed to
produce ethologically useful surrogate sensory signals. Ulti-
mately, it is knowledge of the mechanisms by which sensory and
artificial stimuli engage neural circuits that will inform these en-
gineering approaches to optimizing the design and implementa-
tion of sensory surrogate signals in vivo.
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