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The neural dynamics of sensory focus
Stephen E. Clarke1, André Longtin1,2,3 & Leonard Maler1,3

Coordinated sensory and motor system activity leads to efficient localization behaviours; but

what neural dynamics enable object tracking and what are the underlying coding principles?

Here we show that optimized distance estimation from motion-sensitive neurons underlies

object tracking performance in weakly electric fish. First, a relationship is presented for

determining the distance that maximizes the Fisher information of a neuron’s response to

object motion. When applied to our data, the theory correctly predicts the distance chosen by

an electric fish engaged in a tracking behaviour, which is associated with a bifurcation

between tonic and burst modes of spiking. Although object distance, size and velocity alter

the neural response, the location of the Fisher information maximum remains invariant,

demonstrating that the circuitry must actively adapt to maintain ‘focus’ during relative

motion.
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N
eural systems that actively engage and track moving
objects are faced with two major challenges: determining
motion parameters and directing appropriate motor

commands to maintain informative sensory input. Behavioural
studies on tracking eye movements1, fly navigation2,
electrosensory tracking3,4 and bat echolocation5 have together
led to the hypothesis that active sensing can be directed to
optimize re-afferent sensory processing. However, the conclusion
that active sensing can be executed in a manner that directly
benefits neural coding is premature, since it has not been shown
that the sensory activity evoked by these motor outputs optimizes
neural transmission and thus the resulting behaviour. To assess
whether precise tracking performance relies on optimized
stimulus estimation, we apply Fisher Information6 (IF) to
sequences of action potentials (spikes) recorded from the
motion-sensitive responses of electrosensory ON and OFF
contrast-coding neurons. By finding where IF is maximal along
the transverse distance axis (Fig. 1a), we seek to identify where a
decoder of ON and OFF cell firing rates may, in theory, achieve
the best possible estimation of changes in object position from the
observed spiking activity.

The IF of a neuron whose spiking activity follows a Poisson
distribution, with firing rate function l, can be computed directly
as follows (Supplementary Note 2)6,

IF ¼
l0ðxÞ2

lðxÞ Dt ð1Þ

This equation illustrates that the best possible estimate of a
stimulus feature (x), over an interval of time (Dt), occurs when
the square of the derivative of the firing rate with respect to x,
divided by the firing rate, is maximal. In other words, stimulus-
induced changes in firing rate are more readily estimated against
lower levels of spiking activity. This estimation principle appears
to be reflected in natural behaviour: during echolocation, bats cast
their echo-beams off-axis from a target so that the maximum
spatial slope, not the peak intensity, of the beam is reflected back
to the animal5. Despite a weaker signal input, the benefit of this
strategy is that small changes in relative distance result in large
changes in reflected echo intensity, with putative benefits for
motion processing. In an obvious parallel with bats, gymnotiform
weakly electric fish track objects at distances that cause relatively
small perturbations to their endogenously generated electric field,
but with relatively large spatial derivatives (evoking large l0)7–10.
We propose that sensing objects at distances that cause weak
signals is not simply a consequence of where the slope in the
physical signal is maximal. To optimize estimation, a fine balance
exists between sensing an object at a distance that evokes a
relatively low firing rate in sensory neurons but where relative
changes in object distance over time cause large changes in the
neural response.

Although the Poisson case is conceptually important and a
working approximation under static conditions, we are interested
in dynamic stimuli (looming/receding motion) and the assump-
tions underlying equation (1) may no longer suffice. Therefore,
we first sought to examine the statistical nature of pyramidal cell
spiking more closely. We show that ON and OFF cell spiking is
not a Poisson process under spontaneous or stimulus-driven
conditions and then move on to more accurately investigate the
idea that optimal estimation in sensory neural networks enables
observed tracking behaviours.

Results
ON and OFF cell responses to motion. In vivo extracellular
recordings of ON and OFF contrast-coding neurons—located in
the primary electrosensory lobe (ELL) of gymnotiform electric

fish11—were obtained from immobilized Apteronotidae, while
spherical objects were moved towards (looming) and away
(receding) from the animal along the transverse body axis
(Fig. 1a). Importantly, our stimulus is a mimic of the type of
motion experienced by the electrosense during a behavioural
tracking task, the electromotor response7,8. Brass and plastic
spheres were used in our experiments to cast both positive
and negative local contrast patterns onto the cutaneous
electroreceptors (object contrast is defined by its electrical
conductivity relative to the background water). The
electroreceptor afferents (EAs) project topographically to ON
and OFF cell pairs in the ELL, forming direct excitatory contact
with ON cells and indirect contact with the OFF cells through an
inhibitory interneuron11. As a result, ON cells are selective for
increases in stimulus intensity over time and OFF cells are
selective for decreases in stimulus intensity, due to the sign
inversion. Therefore, motion reversal (switching from looming to
receding) changes the sign of the temporal derivative of input
intensity, evoking switches in the activity of downstream ON
and OFF cells, an event marked by prominent burst spiking12

(Fig. 1a). By combining ON and OFF cell outputs, a downstream
decoder achieves a bidirectionally symmetric representation of
motion. The reader should note that both ON and OFF cells
generate looming and receding responses, depending on the sign
of the stimulus contrast (only the plastic negative contrast case is
presented in Fig. 1a; ON and OFF cell role reversal is observed for
brass). In previous work12, we show that there is no significant
difference between ON and OFF cell responses for looming and
receding motion. Therefore, we pooled the data in this paper into
looming (ON cell, brass; OFF cell, plastic) and receding (OFF cell,
brass; ON cell, plastic) responses. The instantaneous firing rates
of individual cell responses were averaged to form ON/OFF cell
population firing rates as a function of distance for our eight
different stimulus conditions.

ON and OFF cell spike train statistics. The dynamical transi-
tions between quiescent, tonic and burst spiking states (Fig. 1a,
raster plot) impose statistical structure onto the inter-spike
interval (ISI) distributions (Fig. 1b). Although the pooled ISI
probability densities of ON and OFF cell populations can be
described by exponential distributions (with dead time o3 ms
for the absolute refractory period), an individual neuron’s
ISI statistics are not Poisson distributed (Fig. 1b insets;
Supplementary Note 1). In particular during motion processing
there is strong departure from a Poisson process, serving as an
immediate caveat for application of equation (1) to our data.
Below we present a generalized formula for locating IF maxima,
which is inclusive of the spiking distributions characteristic of ON
and OFF cells.

In response to looming and receding motion, the average serial
correlation of ON and OFF cell ISIs shows that the spiking
statistics are strongly non-renewal, that is, the spatiotemporal
contrast patterns caused by moving objects produce
temporal correlations between successive spikes (Fig. 1c and
Supplementary Fig. 1c). To rigorously demonstrate that
individual ON and OFF cell spiking is non-Poisson during
motion processing, we need to distinguish the intrinsic temporal
dynamics of spike generation from those induced by our
spatiotemporal stimulus. To this end, we applied the time-
rescaling theorem13, also used in Fig. 1b (insets), to effectively
remove the dependence of the ISIs on the distance of the object
(Supplementary Note 1). After removing the stimulus-induced
trend in the ISIs, no significant correlation remains, indicative of
memoryless (renewal) spiking dynamics over the course of
stimulation (see Supplementary Fig. 1b,c for receding motion).
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In other words, the motion-sensitive responses of ON and OFF
cells depend only on the current stimulus value and the timing of
the last spike, an important feature of instantaneous rate coding.
Therefore, we generalize equation (1) to locate the IF maxima of
neurons with renewal spiking statistics, free of the restrictive
assumption that the observed spiking is described by a Poisson
distribution. We expect this result will be relevant for other rate
coding systems with irregular, bursty spiking, such as retinal ON
and OFF ganglion cells14, hippocampal CA1 neurons15 and
cortical pyramidal neurons16.

Stimulus estimation and Fisher information. An instantaneous
population firing rate, which depends on object position (x), was
determined by averaging individual firing rates obtained from
both ON and OFF cells in response to 2 cm s� 1 looming motion.

This function was then substituted into the following formula,
which, although not a direct expression for IF, does locate where
IF is maximal as a function of x (see derivation in Supplementary
Note 2):

iF ¼ lxðx;tÞ2
lðx;tÞ

�
1�Dt � lðx; tÞ

�
ð2Þ

where lx � @
@xl and Dt¼ 10 ms, a short decoding time window.

After repeating this procedure for three more natural looming
speeds (1, 3 and 4 cm s� 1), the mean distance and s.d. for the
prominent IF maximum was determined to be 1.37±0.01 cm
from the fish’s body (Fig. 2a; Supplementary Fig. 2; see Methods
section for the number of repeats and replicates associated with
each case). In this vicinity, the variance associated with the
estimation of object distance from the observed spiking activity
can achieve its lowest possible value6, giving the best possible
encoding. For comparison’s sake, IF was also computed directly
using the Poisson formula (1), resulting in poor identification of a
maximum (Supplementary Fig. 2).

According to W. Heiligenberg’s classic behavioural result8, the
electromotor response (data reprinted in Fig. 2b), gymnotiform
electric fish track sinusoidally moving rods optimally (gain near 1
and phase near 0) while maintaining an average distance of
1.34 cm from the nearest rod. Given the striking agreement
between the predicted position at which IF is maximal and the
position at which the animal best tracks the object, we suggest
that the object distance that maximizes the IF of a neuron’s tuned
response is the neural basis of a sensory focal point.
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Figure 1 | Motion-sensitive ON and OFF cell spiking is not Poisson but is

memoryless. (a) Recordings were taken from ON and OFF cells during

looming and receding motion. The firing rate responses of an ON/OFF cell

pair are shown in response to 2 cm s� 1 motion of a negative contrast

stimulus (plastic sphere, diameter d¼ 1.21 cm) in their joint receptive field

(RF). Examples of the ON and OFF cell spike trains are also shown below

the firing rate curves and in the raster plots (upper right), where black lines

indicate tonic spiking (ISI 410 ms) and red lines indicate burst discharge

(3oISIr10 ms). On motion reversal, prominent bursting marks a dramatic

switch in the cells’ activity; the cell responding to looming motion ceases to

discharge, while the opposing cell class is disinhibited and encodes receding

motion. The transition from tonic to bursting (looming) and bursting to

tonic (receding) closely aligns with the special distance (x*), where IF will

be shown to be maximal. (b) ISI histograms for a population of ON and OFF

cells in the absence of a stimulus (baseline) and in response to looming.

The best fit exponential(s) for the range of observed ISIs is shown in black.

Insets Application of the time-rescaling theorem13 removes the stimulus-

induced trend from the spiking response, confirming that individual

pyramidal cell spiking is not Poisson distributed during stimulation. When

the cumulative density of the time-rescaled ISI distribution (ordinate) is

plotted against the cumulative density of a uniform distribution (U(0, 1);

abscissa), the data curve (blue) significantly deviates from what is expected

for a Poisson process (the result for a simulated Poisson process of the

same duration is shown in black; grey shading denotes 95% confidence

intervals; P values obtained from a 99% confidence level two-way

Kolmogorov–Smirnov test). Sequences of baseline ISIs also deviate

significantly from a Poisson process. (c) Each ISI is labelled by the

spatial position of the object during looming, which yields an averaged

non-stationary ISI sequence as a function of object distance, shown in inset

(i). Inset (ii) shows that spatiotemporal stimulus correlations are mapped

into temporal ISI serial correlations (SC; the correlation coefficient between

two ISIs as a function of the lag, or the index number of the recorded

sequence). However, after rescaling the ISI sequences, the average serial

correlation function demonstrates that spiking can be treated as a renewal

process during motion. The grey bands represent 95% confidence intervals

associated with the averaged SC function.
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ON and OFF cells are sensitive encoders of object speed,
reflected in both the peak of l(x, t) and its slope (Fig. 3a). Despite
these strong speed dependencies, the position of maximal IF was
found to be speed invariant over the range of 1–4 cm s� 1, using
equation (2). However, when applied to the even slower speed
of 0.5 cm s� 1, representative of the electromotor response
behaviour, we encountered a methodological issue: the weaker
spiking evoked by very slow changes in object position created
much more response variability, requiring far greater numbers of
trials to obtain sufficiently smooth firing rates. This experimental
roadblock to identifying a clear IF maximum from a noisy
equation (2) inspired us to investigate what aspect of ON and
OFF cell spiking activity reflects maximal IF in vivo, as well as
how the electrosensory circuits might decode the responses to
produce tracking behaviours for very slow speeds.

Neuron bursting and invariant sensory focus. Both modelling
and experimental studies of pyramidal cells have shown that
input signal intensity controls a bifurcation between tonic and
burst modes of spiking17. Since burst spiking is strongly
dependent on input signal slope18, is known to be important
for feature extraction19 and becomes prominent near the focal
point (Fig. 1a), we sought to understand how bursting directly

contributes to stimulus estimation. In particular, equation (2)
shows that the relationship 1-Dt � l(x, t) scales the Poisson IF

relationship, suggesting that high-frequency burst spiking
(large l) is important for controlling the spike-likelihood within
a small coding window (Dt). When a neuron is in the tonic
spiking mode, this scale factor, 1-Dt � l(x, t), is close to one
because the chance of observing a spike in the next Dtr10 ms is
low. However, when the cell sharply transitions to the bursting
state, there is a dramatic increase in the spike-likelihood and the
scale factor drops nearly to 0. Therefore, bursting activity is
expected to sharpen local IF maxima and enhance focal point
acuity (even for very slow motion).

To investigate this idea, the number of burst spikes
(3oISIr10 ms) divided by the total number of spikes (tonic
and burst) was determined within 30 consecutive 2 mm intervals
along the distance axis (6 cm trajectory) to compute burst fraction
(BF) as a function of object distance (Fig. 3b; Supplementary
Note 3). We found a clear increase in the relative proportion of
burst spiking in the 24th interval, 1.25–1.45 cm, for looming speeds
of 0.5–4 cm s� 1, occurring very near a data-driven BF threshold
of 0.3 (Fig. 3c). Within this interval there is a notable reduction in
BF variance. From 1.25 cm onward, dramatic, speed-dependent
increases in BF surpass this threshold (Fig. 3c). Note that the 0.3
threshold is a robust measure of burst activation as it sits more
than 3 s.d. away from the closely related burst probability of ON
and OFF cells under spontaneous conditions (previously reported
as ON: 0.25±0.014; OFF: 0.22±0.016) (ref. 20).

The match between the BF measure, our theoretical IF

maximum and the electromotor response behaviour is remarkable,
particularly because the size of our stimulus is smaller than the
object used by Heiligenberg for the data presented in Fig. 2b
(d¼ 1.21 cm versus d¼ 2 cm). To illustrate the impact of object
size and electrical contrast, input intensity curves were generated
for our main object size (d¼ 1.21 cm), and a significantly smaller
object (d¼ 0.64 cm) using an empirical model (Fig. 4a)9. The
intensity of the contrast sensed at the receptive field (RF) of ON
and OFF cells scales with the cube of a spherical object’s radius.
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Figure 2 | Precise motion tracking aligns with optimal distance

estimation. (a) Top, in response to the 2 cm s� 1 looming stimulus

(d¼ 1.21 cm), the average firing rate of an ON/OFF cell population is plotted

against object distance (light grey). The firing rate was then smoothed with

a 250 ms moving average filter (blue) to remove small fluctuations, while

preserving the stimulus-induced trend. Middle, the nonparametric measure

(iF; equation (2)) is computed from the firing rate and plotted as a function

of distance from the leading edge of the stimulus to the skin (x(t)). For

2 cm s� 1 motion, this equation is maximal at x¼ 1.37 cm, as marked by the

dashed line, indicating that this is the point where IF is maximal. Repetition

of this procedure for speeds of 1, 3 and 4 cm s� 1, yielded highly similar

results with a mean and s.d. of 1.37±0.01 cm, denoted as x* throughout.

Bottom, the theory predicts a local IF maximum at 1.39 cm for the

receding firing rates obtained under continuous motion conditions. The star

at the origin indicates motion reversal, and the global maximum in iF
(xo0.5 cm) is due to sudden, sharp transitions from quiescence to

high-frequency bursting in the ON and OFF cells. (b) The averaged value x*

is plotted as a red dashed line over the behavioural electromotor response

data of Heiligenberg8 (reprinted with permission from the Journal of

Comparative Physiology). The average gain (1.06±0.14) and phase

(�0.68±0.26) were determined for the two data point clusters

associated with excellent tracking performance, which occurred at a

distance of 1.37±0.11 cm and 1.31±0.13 cm (see Methods section). The

composite mean and s.d. of the two clusters (1.34±0.17 cm) is presented

as grey shading, showing remarkable agreement with our predicted location

for optimal estimation. Note that the other behavioural data points

correspond to the fish resting nearly equidistant between the rods

(6 cm separation).
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Furthermore, due to their distinct electrical conductivities relative
to the surrounding water, a negative plastic stimulus produces a
contrast intensity that is half of the intensity produced by the
same-sized, positive brass stimulus9,12. These observations suggest
that the location where IF attains a local maximum is also intensity
invariant, consistent with recorded behavioural performance for
a range of object sizes8. To test this hypothesis directly, we
presented 2 cm s� 1 looming motion using the smaller stimulus
(d¼ 0.64 cm), which is a lower bound for object size and
electromotor response performance8. At the location of the IF

maximum (x*¼ 1.37 cm), the signal intensity for the smaller
sphere is 23% that of the larger sphere. Yet, when using our
BF measure we found that the focal point was still located in the
1.25–1.45 cm range (Fig. 4b, left; Supplementary Table 1).

Despite a bidirectional physical symmetry with the traces of
Fig. 4a, receding stimuli evoke a skew in the EAs firing rate
responses compared with the looming responses, which is caused

by directionally selective spike-rate adaptation12. This asymmetric
EA response causes an apparent disconnect between the
feedforward sensory input, pronounced burst spiking and
switches in ON and OFF cell coding12. Yet, the location of the IF

maximum is preserved in the population (Fig. 2a, bottom; Fig. 4b,
right), provided continuous motion occurs, as in the electromotor
response protocol. Interestingly, if long pauses (looming, 7 s pause,
receding and then 10 s pause) are inserted, there is no longer a
notable reduction of the receding burst response. These pauses
create a static object distance and are therefore unnatural for
tracking behaviours; in reality continuously varying relative motion
is experienced by the network. Under the pause circumstances the
IF maximum is now found at 1.72 cm according to the theoretical
approach. The BF measure also shifts further from the body to the
1.45–1.65 cm distance interval (Fig. 4b, right), which strongly
supports the idea that burst onset is a major determinant of the
focal point location (Supplementary Fig. 3).
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the line of best fit to the firing rate around the focal point (x*), are strongly sensitive to an object’s looming speed. (b) BF (number of burst spikes divided by

the total number of burst and tonic spikes) was used as a means of measuring how activation of bursting relates to the theoretically identified focal point.

The 6 cm distance axis was partitioned into 30 successive 2 mm bins (Dx), each from which BF could be computed. Note the 24th interval, which marks the

range of distance 1.25–1.45 cm and contains x*. Depending on the movement speed and the corresponding duration of time (DT) associated with

Dx¼ 2 mm (50–400 ms, for our range of speeds 0.5–4 cm s� 1) the BF may be underestimated, as shown in the example for ON and OFF cells (grey). For

example, the DT was 200 and 67 ms for v¼ 1 and 3 cm s� 1 data sets, respectively (black), which largely determines an offset between the two stimulus

conditions (orange). Additional variability occurs from the different composition of ON and OFF cell responses between the different stimulus condition

data sets, which is reflected in an offset of their average BF (purple; diminishing as DT-0). When comparing between stimulus conditions, we need

to be aware of this drift. First, we determined the BF from the first 2 cm of approach where the stimulus has no detectable effect. Next, when examining our

BF measure, data sets were aligned to the mean of the entire population (that is, data from all stimulus conditions) determined for the specific time window

associated with the interval Dx¼ 2 mm (Supplementary Note 3). This allows for a fair comparison using our simple BF threshold (0.3). (c) Averaged

population BFs in response to looming stimuli are shown for the 0.5–4 cm s� 1 cases. For each condition, the interval containing the focal point, marked as a

red dot, is found where the proportion of bursting is starting to rise noticeably, but just before the rapid divergence occurring after the BF threshold

(0.3±0.005; shaded blue bar). The plot showing all speeds illustrates two interesting facts: variance in the population BF response is squashed in the 24th

bin and, from the 25th bin onwards, BF slope reflects motion speed.
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Motion direction- and size-invariance are particularly surpris-
ing features of the focal point. An additional population-coding
perspective is provided in Fig. 4c (left) for our 2-cm s� 1 velocity
cases (default-sized looming, default-sized receding and small
looming), which shows that the maximum probability for a
neuron in the population to transition to bursting occurs in the
24th interval (1.25, 1.45) cm. This peak corresponds to the
cumulative probability that approximately one half of the neurons
in the stimulated population have transitioned to bursting Fig. 4c
(right) and could be viewed as a tipping point between two
population activity states. Remarkably, these population distribu-
tions are preserved for both directions of motion and for
markedly different stimulus intensities. The close agreement
between the focal point location predicted by Fisher Information
and BF (Fig. 4d; Supplementary Table 1) is even more convincing
in light of these burst-probability distributions.

Discussion
We have demonstrated that the accuracy of the information
conveyed by ON and OFF cells about the location of a
transversely moving object is maximal between 1.3 and 1.4 cm
from the fish’s skin. This location is independent of the nature of
the object (positive or negative contrast), its direction of motion,
its speed and its size. Importantly, this location is precisely the
one chosen by an electric fish as it tracks a transversely moving

object in a classic behavioural paradigm. The methods we used to
compute the location of the IF maximum are sophisticated, and,
at first, it was not clear how a neural network could actually
implement a focal point. ON and OFF cells burst in response to
transverse motion and we discovered that a burst detector could,
in principle, accurately read out the theoretically defined optimal
location. Detailed studies have elucidated the ON/OFF cell burst
mechanism21–23 and identified numerous potential modulators of
bursting24,25. As discussed below, these may be the cellular and
network bases by which the burst mechanism is controlled to give
rise to an invariant focal point.

The fact that a stable IF maximum was maintained for both ON
and OFF cell types under many stimulus conditions implies that
the ELL network must actively adapt to the electrosensory input
to dynamically control gain and burst onset in the ON and OFF
cell population. This is a unique example of Barlow’s efficient
coding hypothesis26, which holds that sensory systems should
transmit information optimally by adapting to natural stimuli.
However, the manner by which electrosensory networks adapt to
different objects and control focal point stability is unknown. The
observed speed invariance of the IF maximum to looming motion
may follow directly from two phenomena: a special computation
performed by the EAs and the intrinsic bursting properties of ON
and OFF cells. First, a scale-free (power law) form of spike-rate
adaptation transforms EA firing rates to accurately encode
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BF measure, plotted against distance, indicates that the focal point resides in the (1.25–1.45) cm interval. Right, in agreement with the receding data in

Fig. 2a, we see a crossing of the BF threshold between the 24th and 25th interval; thus the focal point is invariant to direction for continuous motion

(no pauses; 0/0). This point is strengthened by the observation that long pauses (looming, 7 s pause, receding, 10 s pause; 7/10) result in more

pronounced bursting in the system and that the focal point shifts to 1.45–1.65 cm according to the BF measure. (c) The left panel shows the probability

distribution, conditioned on object distance, that a cell in the population will transition to bursting (BF40.3) and remain in that state. The process was

repeated for 2 cm s� 1 looming (v2), continuous receding (v2r) and the small sphere (v2s), which are pooled together in the histogram—the distribution

maximum occurs in the (1.25, 1.45) cm interval. The right panel shows the corresponding cumulative likelihoods of bursting in the population, that is, the

fraction of cells in the population that have transitioned to bursting. Despite different input intensities, approximately half of the population is activated

around the focal point for each case. (d) A summary of the two methods for identifying sensory focus. The capped tops of the grey bars denote (1.25, 1.45)

cm. Although methodological limitations prevented successful application of the theory for weaker responses, the BF measure is shown to be a predictor of

the distance at which IF is maximal.
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changes in looming object distance, regardless of the stimulus
timescales (that is, looming speed)27. Second, both modelling and
experimental studies of ELL pyramidal cells have shown that
feedforward input intensity controls a saddle-node bifurcation
between tonic and burst modes of spiking16. As such, object
distance will be directly encoded by the EA firing rates
independent of the object’s looming speed27 and could trigger a
burst bifurcation in the downstream ON and OFF cells at a
specific position, defined by the biophysical characteristics of the
network.

Although the EAs are able to remove speed-dependent effects
from their firing rates, the magnitude of their responses is
strongly sensitive to different object sizes27. Therefore, assuming
a hard-wired network response, it is reasonable to expect that the
smaller object would trigger ON or OFF cell bursting much closer
to the sensory surface, whereas larger objects would cause
bursting to occur at distances further from the skin. However, this
is not the case. The observed invariance of the IF maximum to
object size firmly demonstrates that the burst onset can’t simply
trigger off of the feedforward input. As a further example, our
analysis pooled ON cell responses to looming brass spheres with
OFF cell responses to looming plastic spheres since they are
indistinguishable12. Likewise, receding responses of ON cells to
plastic and OFF cells to brass were pooled. This simple fact is
actually surprising given the stimulus intensity of a brass object is
twice greater than the same-sized object made of plastic (Fig. 4a).
Clearly multiplicative24 and divisive28 gain control must be
implemented by the network to influence bursting and stabilize
the focal point. An understanding of such flexible gain control for
dynamic stimuli is an exciting challenge for future work. Note
that adjusting the overall gain based on object size and
conductivity would allow for effective operation of the
hypothesized speed invariance mechanism described above.

Receding motion further challenges our understanding of how
burst spiking is controlled in the network. Despite the fact that
the feedforward EA response to looming is considerably different
than the receding response, downstream ON and OFF cell
receding firing rates are nearly mirror-symmetrical versions of the
looming responses12 and the focal point is preserved for
continuous motion. In this scenario, the dynamical states are
visited in the reverse order, but with the same result, illustrating
that dynamical transitions can optimize signal estimation
regardless of their temporal sequence (burst to quiescence or
vice versa). Further modelling and experiments on balanced
excitatory and inhibitory feedback pathways will be required to
directly connect dynamic physiological control of the tonic-burst
spiking bifurcation to both the observed behavioural responses
and optimized stimulus estimation. A clue to potential
mechanisms may lie in the robustness of the spiking activity
patterns of single neurons in response to concerted changes of
multiple conductances induced by neuromodulators29. The
invariant location of the IF maximum would presumably
require coordinated changes in synaptic conductances of the
ELL network to control the location of the burst bifurcation in the
face of varying electrosensory input.

The ON and OFF cells project to the midbrain (torus
semicircularis) where there is an explosion in the number of
cell types, indicative of early feature extraction11. Previously,
directionally selective cells have been identified in the torus
semicircularis that are highly sensitive to longitudinal motion;
however, further work is required to characterize torus
semicircularis cells that are selective for the transverse looming
and receding motion. It has previously been suggested that the
burst and tonic spikes of electrosensory ON and OFF cell spike
trains can be segregated by facilitating and depressing synapses,
respectively30; both forms of plasticity have been observed in

torus semicircularis neurons31,32. Therefore, we propose that
midbrain networks can processes tonic and burst spiking in
parallel to compute BF and identify the location of optimized
distance estimation.

Extensive neuroanatomical studies11 have demonstrated that a
strong projection from torus semicircularis to the tectum is
the only route from the electrosensory periphery to the motor
system. The electromotor response behaviour presumably uses
this pathway during active sensing; where stimulation of the
EAs leads to motor outputs that simultaneously influence the
re-afferent sensory processing. We hypothesize that sensory
focus is not an open-loop, cascade-like computation but rather a
closed sensorimotor loop that arises during active sensing
behaviour—the fish finds a location that maximizes the
information from its electrosensory input and then uses this
optimal input to guide subsequent motor outputs.

The simultaneous activity of sensory and motor systems during
tracking behaviour is expected to preserve the relative distance as
follows. The animal should adjust its position such that the object
distance triggers bursting in approximately half of the stimulated
population (Fig. 4c). On the cusp of transitions between different
dynamical states, a downstream decoder can optimally estimate
object position based on the evoked spiking activity of ON and
OFF pyramidal cell populations. In this region of space, better
estimates of object distance are expected to permit more accurate
estimates of speed, which are reflected in the temporal slope of
the pyramidal cell firing rates (Fig. 3a). For a given object
contrast, increases and decreases in signal intensity indicate
changes in the relative distance and are expected to dictate
appropriate orienting behaviours. On changes in motion
direction, the prompt bursting of either the ON or OFF cell
populations appears very well suited to guide compensatory
motor commands to maintain object focus.

Methods
Surgical procedure. Surgery was performed on adult male and female
gymnotiform fish, Apteronotus leptorhynchus (imported from natural habitats in
South America), to expose the caudal cerebellum overlying the ELL. All surgical
and experimental procedures were reviewed and approved by the Animal Care
Committee at the University of Ottawa. Immediately following surgery, fish were
immobilized with an injection of the paralytic pancuronium bromide (0.2% w/v),
which has no effect on the neurogenic discharge of the electric organ that produces
the fish’s electric field (EOD)—the basis of the electrosense. The animal was then
transferred into a large tank of water (27 �C; electrical conductivity between
100–150mS cm� 1) and a custom holder was used to stabilize the head during
recordings. The tails were gently tethered in position with thread to avoid any
potential displacement of the body due to the small hydro-mechanical effects
caused by looming/receding motion. All fish were monitored for signs of
stress and allowed to acclimatize before commencing stimulation protocols.

Neurophysiology. Extracellular recordings were taken from pyramidal cells of the
centrolateral map of the ELL11. This map was chosen because its neurons respond
strongly to object motion and have fairly large, easy-to-locate RFs33. Recordings
were obtained from cells whose RFs were located 30–65% along the rostral-caudal
body axis of the animal, as this region provides the flattest body surface and EOD
isopotentials with low curvature that lay perpendicular to the looming/receding
stimulus trajectories. Likewise, since the body curves away from the ‘sensory plane’
on the belly and back, distance is harder to control for and only cells whose RFs
were in the 25–75% range on the dorsal ventral axis were used. These restrictions
were to ensure a consistent electric image that was not warped by body geometry or
the field boundary effects occurring at the interface of tank water and air.
Importantly, this range of the body surface includes the location where the
gymnotiform fish Eigenmannia virescens align themselves during the electromotor
response behaviour7,8. After finding a cell’s RF centre using a local stimulus dipole,
we classified it as ON or OFF based on its response to step increases and decreases
in the local field potential. We then mapped out the RF centres, which yielded
spatial spreads consistent with anatomical estimates for the centrolateral map33.
The baseline firing rates of the recorded ON and OFF pyramidal cells (5.4–25.9 Hz;
NE¼ 15, NI¼ 16) demonstrate that they are the superficial and intermediate
types11. In some cases, we were able to simultaneously record from ON/OFF cell
pairs and directly compare their differential responses to object motion.
A particularly nice example of one such pair is displayed in Fig. 1a.
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Using our total population of 31 cells (Supplementary Fig. 1a), we computed a
representative s.d. as s¼ 17.06� 0.95¼ 16.21 Hz, to determine a sample size (n) as

n � z� � s
W

� �2

¼ 2:58 � 16:21
5

� �2

¼69:94

for a 99% confidence level (z*¼ 2.58) on a confidence interval width (W) of
±5 Hz. From this simple calculation, we see that we need at least 70 trials.
However, when choosing a sample size for estimating mean firing rates in a
population of neurons by averaging repeated trials, we need to consider the
following. It is not clear that the use of the Z-statistic, which is related to the
normal distribution, is correct since we are sampling different classes of ON and
OFF cells whose spiking statistics are inhomogeneous and whose sampling cannot
be treated as independent and identically distributed. There are a number of other
complicating factors in determining our sample size, including the statistically non-
stationary responses of ELL pyramidal cells to motion and the fact that there are
two sources of variance: the variance of single cell’s response to repeated trials, as
well as the variance in the population spiking statistics. In the above calculation, we
chose to use spike train statistics in the absence of a stimulus—although the
variance grows larger when the stimulus is present, there are also more spikes
present, which, when averaged, yield smoother firing rate estimates compared with
baseline levels. The degree of smoothing is further influenced by the length of the
smoothing kernel (although it was chosen to be a minimal 10 ms in the work
presented here). Without a well-defined formula to compute an exact required
sample size, we turned to practicality, averaging enough trials to get sufficiently
smooth firing rates to readily discern the stimulus-induced response and address
our hypotheses. We well exceeded the calculated population size for all of our data
conditions, with the exception of 0.5 cm s� 1, which takes 24 s to do a single trial,
greatly diminishing the amount of data that can be collected. Our largest sample,
N¼ 463, yields 99% confidence on an interval of ±1.94 Hz. The number of
replicates (N1) and repeats (N2) for each of our stimulus conditions are listed here
and were used for both the theory approach in Fig. 2 and the BF measures of Figs 3
and 4. For the large looming sphere: 0.5 cm s� 1, N1¼ 9, N2¼ 73; 1 cm s� 1,
N1¼ 23, N2¼ 255; 2 cm s� 1, N1¼ 31, N2¼ 463; 3 cm s� 1, N1¼ 13, N2¼ 120;
4 cm s� 1, N1¼ 15, N2¼ 166. For the large receding sphere (2 cm s� 1): continuous
(0/0), N1¼ 14, N2¼ 168; discontinuous (7/10), N1¼ 13, N2¼ 147. Finally, the
small looming sphere (2 cm s� 1): N1¼ 8, N2¼ 104.

According to cell type, a plastic or brass sphere was connected to an
electromechanical positioner, which was pre-programmed for the appropriate
motion sequence and initiated by outputs from our data acquisition software
(Spike2 v7.03; Cambridge Electronic Designs). The selected sphere was aligned
with the cell’s RF centre along the transverse (lateral) body axis and placed at the
initial position, x0¼ 0.25 cm from the skin. Note that mal-alignment with a degree
of ±0.05 cm error was unavoidable when setting x0 by using 0.1 cm gradations to
measure the position of the sphere’s leading edge relative to the fish’s body. Slight
mal-alignment of the sphere’s centre with the RF center is another small, but
unavoidable source of error. For our large sphere, d¼ 1.21 cm, the effect of
mal-alignment on the electric image is negligible since the sphere easily saturated
the RF. The sphere was then withdrawn and motion was initiated a few moments
later. Stimulation consisted of consecutive repetitions of looming and receding
sequences at a speed of 2 cm s� 1, chosen as an intermediate value from studies of
gymnotiform locomotion7,8,10. This stimulation protocol was then repeated with a
sphere creating an electric image with the opposite contrast, as well as for varying
speeds (0.5–4 cm s� 1). Acceleration at the beginning and end of constant velocity
looming/receding motion profiles was set to 150 cm s� 2, so periods of non-
uniform velocity were negligible (o0.05 cm in all cases). For 13 of the 31 pyramidal
cells used in this study, the same loom/recede sequence was repeated with a 7 s
pause at the skin before receding to the initial position and a 10 s pause before the
next trial (as performed in a previous study12). Typically 10 trials were obtained per
cell, but for a few cells it was as many as 25. Population-averaged firing rates were
computed by convolving the individually recorded spike trains with a minimal,
10 ms exponential kernel and then averaging across all trials and all cells to obtain
smooth response curves for each stimulus condition. The example firing rate curves
displayed in Fig. 1a were generated using a smoothing technique employed in
previous work12 (see reference within), however, this technique was not used for
the analysis since the algorithm assumes that spiking can be treated as a Poisson
process. Note that convolution of the spike train with a smoothing kernel results
in a sharp rounding down of the firing rate at the very ends of the file, where
the recorded spiking abruptly stops. As can be seen in Fig. 2, as well as in
Supplementary Figs 2 and 3, we routinely clip 0.25 cm from one (receding) or both
(looming) edges of the recordings to avoid this false curvature that causes large
spurious jumps in equations (1) and (2). The firing rates were then further
smoothed with a short-duration moving average filter of 250 ms, as shown in
Fig. 2a (top). Notice that the smooth curve (blue) is still a very strong
representation of the underlying firing rate. The curves resulting from equations (1)
and (2) were then smoothed once more with a 100 ms moving average filter,
enabling us to identify very clear maxima.

We collected data with two conventional sphere sizes, used previously by Chen
et al.9 in detailed models of the electrosensory image: our default sphere, an
intermediate size from Heiligenberg’s studies with a diameter (d) of 1.21 cm, and a
substantially smaller sphere (d¼ 0.64 cm), which was used as an object size control.
Heiligenberg8 (Fig. 10 within) showed that strong gain in the electromotor
response performance begins to deteriorate for dE0.8 cm and significantly so for
the object diameters o0.6 cm, thus the small stimulus is expected to represent a
meaningful lower bound for network processing during motion tracking. The
smaller sphere creates very localized changes in the electric potential; in many cases
it seemed we were on the edge of the RF, partially stimulating the surround as
evidenced by the occasional total lack of response, only to see it appear again. For
this reason, we only used data in which a clear, strong response was observed,
omitting cases in which the firing rate was inconsistent from trial-to-trial and
dropped dramatically on some trials.

In general, data trials were only excluded when external noise was present
in a recording or if a cell showed pathological signs of activity, such as hyper-
excitability or lack of response to the stimulus. This may occur due to cell fatigue,
damage or anoxic stress.

All data analyses were performed using custom Matlab scripts, which can be
made available to those interested on request to the corresponding author.
Application of the time-rescaling theorem in particular is the most relevant; the
remaining code is straight forward or intended to interact with our specific
recording software.

Estimation of tracking distance from behavioural data. Heiligenberg’s original
electromotor response data8, presented in Fig. 2b of the main text, was imported
into Matlab to identify the positions of the individual data points in the image
relative to the axes; this allowed us to compute sample statistics for the obvious
clusters, which were not provided explicitly in his paper. This was accomplished
with open source code that can be found on the Matlab Central website
(ReversePlot 2009, Jordi Palacin. All rights reserved.) For the top half of the plot
(gain versus distance), this method yielded a mean and s.d. of 1.06±0.14 cm for the
gain, occurring at distance of 1.37±0.11 cm. Repeating the analysis for the bottom
half of the plot, we found a phase of � 0.68±0.26 radians, occurring at a distance
of 1.31±0.13 cm. The average of these two mean distances and their corresponding
composite s.d. is 1.34±0.17 cm, which is overlaid as grey shading onto the
behavioural data.

It is important to note that the electromotor response data sets were obtained
using the weakly electric gymnotiform fish E. virescens. Like the closely related
gymnotiform A. leptorhynchus, they produce a continuous, high-frequency EOD
and have nearly identical electrosensory afferents and hindbrain circuitry34.
Unfortunately, their electric organ is myogenic and the pancuronium bromide
injections used for immobilization blocks the electric organ discharge. A mimic
EOD can be generated by mounting an electric dipole onto the animal, with one
end in the mouth and the other looped around the tail. Although this is suitable for
studying broad global stimuli relating to social interactions with conspecifics, the
resulting EODs are highly artificial and do not reflect the local spatial aspects of the
field in vivo. Despite being useful as a behavioural species, Eigenmannia is not well
suited to our neurophysiology protocols.
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