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In breast cancer, lipid metabolic alterations have been recognized as potential oncogenic stimuli that may promote malignancy.
To investigate whether the oncogenic nature of lipogenesis closely depends on the overexpression of HER2 protooncogene, the
normal breast cell line, HB4a, was transfected with HER2 cDNA to obtain HER2-overexpressing HB4aC5.2 cells. Both cell lines
were treated with trastuzumab and docosahexaenoic acid. HER2 overexpression was accompanied by an increase in the expression
of lipogenic genes involved in uptake (CD36), transport (FABP4), and storage (DGAT) of exogenous fatty acids (FA), as well as
increased activation of “de novo” FA synthesis (FASN). We further investigate whether this lipogenesis reprogramming might be
regulated by mTOR/PPAR𝛾 pathway. Inhibition of the mTORC1 pathway markers, p70S6K1, SREBP1, and LIPIN1, as well as an
increase in DEPTOR expression (the main inhibitor of the mTOR) was detected in HB4aC5.2. Based on these results, a PPAR𝛾
selective antagonist, GW9662, was used to treat both cells lines, and the lipogenic genes remained overexpressed in the HB4aC5.2
but not HB4a cells. DHA treatment inhibited all lipogenic genes (except for FABP4) in both cell lines yet only induced death in the
HB4aC5.2 cells, mainly when associated with trastuzumab. Neither trastuzumab nor GW9662 alone was able to induce cell death.
In conclusion, oncogenic transformation of breast cells by HER2 overexpressionmay require a reprogramming of lipogenic genetic
that is independent of mTORC1 pathway and PPAR𝛾 activity. This reprogramming was inhibited by DHA.

1. Introduction

Cell lipogenic metabolism has traditionally been consid-
ered a minor anabolic energy-storage pathway, yet its role
in various cancers is increasingly being recognized [1–
5]. Endogenous fatty acid (FA) biogenesis may constitute
an oncogenic stimulus that drives normal epithelial cells
towards malignancy [1–5]. Moreover, emerging evidence

indicates that the oncogenic nature of human lipogen-
esis depends on the activity and/or expression of key
protooncogenes, such as human epidermal growth factor
receptor 2 (HER2) [1, 2, 5]. Amplification and overexpres-
sion of HER2 are detected in approximately 20–30% of
breast carcinomas and are associated with a poor prog-
nosis [6–10]. Hyperactivation of HER2 promotes aberrant
cell proliferation and tumorigenesis, thereby making HER2

Hindawi Publishing Corporation
BioMed Research International
Volume 2015, Article ID 838652, 13 pages
http://dx.doi.org/10.1155/2015/838652

http://dx.doi.org/10.1155/2015/838652


2 BioMed Research International

an important therapeutic target against breast cancer [6–
10].

Currently, the primary treatment for HER2-overexpress-
ing tumors is trastuzumab (Herceptin) [11–14]. Trastuzumab
is a monoclonal antibody that is designed to target the
extracellular domain of HER2 and block its function. How-
ever, response rates for trastuzumab monotherapy have been
reported to range from 12% to 34% with a median duration
of 9 months [9, 10]. Thus, it appears that the mechanism of
action of HER2 is not yet fully understood.

We previously showed that HER2 hyperactivation and
signaling in breast cancer cells depend strongly on the loca-
tion of the receptor withinmembrane lipid rafts [15]. In breast
cancer cells, HER2 overexpressionmay be accompanied by an
increase in cell membrane lipid raft microdomains, thereby
establishing a vicious cycle of aberrant cell signaling [1, 15].
Recent experimental evidence revealed that the dimerization
ofHER2 (as a homo- or heterodimerwithmembers of its own
family) is associatedwith lipid rafts [1, 16]. In addition,HER2-
mediated proliferation and survival signals depend on the
colocalization of HER2 with other membrane proteins (e.g.,
integrins and extranuclear factor of the estrogen receptor
[ER]) in lipid rafts [17, 18]. Accordingly, it is possible that an
increase in the number of lipid rafts in HER2-overexpressing
cells can enhance the activation of these oncogenic receptors
[15].

To ensure lipid raft synthesis, HER2 promotes the activa-
tion of fatty acid synthase (FASN). Its final product, palmitate,
is frequently used to synthesize membrane microdomains
[1, 15, 19]. In a previous study, when this pathway was
inhibited by omega-3 docosahexaenoic fatty acid (DHA),
lipid rafts were disrupted and cell apoptosis was induced
[15]. Thus, HER2 overexpression in breast cancer cells is
associated with constitutive upregulation of the endogenous
FASN-catalyzed biogenesis of palmitate. The upregulation of
palmitate biogenesis represents a “lipogenic benefit” for the
proliferation and survival of breast cancer cells by providing
lipid raft components for the proper localization and activa-
tion of HER2 in the cell membrane [1, 2, 15, 19]. However,
accumulation of palmitate in nonadipose tissue promptly
stimulates lipolysis and apoptosis and can act as an inhibitory
feedback signal for endogenous FA synthesis [1, 2, 20–22].

On the other hand, these events seem to be avoided
in HER2-overexpressing breast carcinoma cells, through the
conversion and storage of FAs as triglycerides by peroxisome
proliferator-activated receptor gamma (PPAR𝛾) [1, 2]. Rather
than preventing lipotoxicity, the transcriptional activation of
PPAR𝛾 increase the expression of genes related to uptake and
transport of exogenous FA, contributing to the establishment
of lipogenic phenotype in HER2-overexpressing cells [1, 2].
Therefore, in these cells, upregulation of FASN appears to
be a downstream manifestation of an early and common
deregulation of upstream regulatory circuits that affect the
lipogenic genetic program [2]. It is believed that the regula-
tion of lipogenesis occurs through mTOR protein [1, 2]. The
HER2/mTOR pathway results in SREBP1 activation which
can increase the transcription of PPAR𝛾 endogenous ligands
and regulates the expression of FASN [1, 2]. However, the
details of this process remain unclear, since activation of

components of the mTOR pathway, as mTORC1, may limit
the survival signs by reducing Akt activity [1, 2]. Accordingly,
it remains to be determined whether HER2 overexpression-
mediated oncogenic transformation requires the activation
of a genetic switch of lipogenic cell metabolism to maintain
aberrant signaling that affects cell survival and proliferation.

From a molecular perspective, we hypothesized that the
HER2 overexpression-mediated oncogenic transformation of
breast cells involves a distinct lipogenic program that, in
addition to FA synthesis, requires the coordinated expression
of genes involved in the following: (a) the conversion and
storage of excess FAs (e.g., palmitate) to triglycerides, thereby
avoiding lipotoxicity; and (b) the uptake and transport of
other exogenous FAs, which are necessary to maintain a
constant supply of lipids/lipid precursors, membrane lipid
raft production, and lipid-based posttranslational protein
modifications in these highly proliferative cells. From a clini-
cal perspective, the dependence of cancer cells on lipogenesis
for survival and proliferation may represent the “Achilles’
heel” of HER2-driven oncogenesis. Thus, lipogenic enzyme
inhibitors,modulators of PPAR𝛾 transcriptional activity, and,
perhaps, dietary omega-3 polyunsaturated FAs (e.g., DHA)
may provide novel therapeutic strategies for the clinical
management of HER2-positive breast carcinomas and may
increase the efficacy of standard therapies [2, 20, 21].

DHA is a potent PPAR𝛾 regulator that has been shown
to suppress adiposity in rodents and block adipogenesis in
many adipocyte cell lines [23, 24]. As a modulator of cell
membrane lipid composition, DHA can disrupt lipid rafts,
thereby impairing HER2-regulated pathways and inducing
cell apoptosis [15]. Therefore, our second hypothesis was
that DHA could effectively modulate the lipogenic genetic
switch associated with HER2 overexpression. In addition, we
investigated whether DHA increases the trastuzumab action
in HER2-overexpressing breast carcinoma cells.

2. Methods and Materials

2.1. Cell Culture. Parental, nontransformed HB4a cells and
HER2-overexpressing HB4a variant cells, HB4aC5.2, were
cultured in RPMI-1640 with 10% fetal bovine serum (FBS)
(GIBCO, Invitrogen, Brazil) plus ampicillin, hydrocortisone,
and insulin (Sigma-Aldrich, Brazil) at 37∘C in a 10% CO

2

humidified incubator [25, 26]. HB4a cells were derived
from normal breast luminal cells. HB4aC5.2 cells were
generated by cotransfecting HB4a cells with pJ5E.c-erbB-2,
a plasmid containing the full-length normal human HER2
cDNA, derived from the established breast cancer line BT474,
under the control of the mouse mammary tumor virus-
long terminal repeat (MMTV-LTR) promoter and SV40
polyadenylation signals [25, 26]. Five copies of pJ5E.c-erbB-
2 were detected in the genome of the C5.2 clone, resulting
in the expression of ∼106 HER2 receptors per HB4aC5.2 cell
[25, 26]. Cells were tested periodically for mycoplasma (data
not shown) and were authenticated by real-time reverse tran-
scription polymerase chain reaction (RT-PCR) to evaluate
HER2 overexpression [15, 25, 26]. The HB4a and HB4aC5.2
cell lines were a generous gift fromMichael J. O’Hare (Ludwig
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Table 1: Primers used for RT-PCR.

GENE Forward (5󸀠-3󸀠) Reverse (5󸀠-3󸀠)
HER2/neu GGGCTGGCCCGATGTATTTGAT ATAGAGGTTGTCGAAGGCTGGGC
FAT/CD36 TGCAAAACGGCTGCAGGTCA TGGTTTGTGCTTGAGCCAGGTTTAT
FABP4 GGAGTGGGCTTTGCCACCAGG CGCCTTTCATGACGCATTCCACC
DGAT TCGCCTGCAGGATTCTTTAT GCATCACCACACACCAGTTC
DEPTOR GCGGAGCTGCCCCGAACAAA GTGCAGCCTGAGCCGTAGCTG
SREBP1 ACAGTGACTTCCCTCGCCTAT GCATGGACGGCTACATCTTCAA
FASN CCGAGACACTCGTGGGCTA CTTCAGCAGGACATTGATGCC
UBC ACCCAAGAAAAGCACAAGG AGCCCAGTGTTACCACCAAG
HMBS CAAAGATGAGAGTGATTCGC CACACTGTCCGTCTGTATGC
𝛽-actin GGGACGACATGGAGAAAATC GGGTGTTGAAGGTCTCAAAC

Institute for Cancer Research and University College London
Breast Cancer Laboratory, Department of Surgery, London,
UK).

2.2. Cell Treatments. Briefly, cells were seeded in flasks with
medium containing 10% FBS and were allowed to adhere.
After 24 h, the culture medium was replaced with fresh
medium containing 10% FBS plus treatment agent. Cells were
incubated for 72 h without changing the medium. Then, the
cells were harvested with trypsin-EDTA (Sigma-Aldrich),
and the viable cells were counted by Trypan Blue exclusion
(Sigma-Aldrich) and a hemocytometer. Only samples with
more than 95% viable cells were used.

2.2.1. Treatment with the PPAR𝛾 Inhibitor GW9662. The
HB4a and HB4aC5.2 cell lines were treated with GW9662
diluted in dimethyl sulfoxide (DMSO) to 1𝜇L/mL, on the
basis of previous experimental studies using breast cancer
cells [27]. The final concentration of DMSO did not exceed
0.1% in any case and was not cytotoxic in any of the cell lines
tested at this concentration. GW9662 was kindly provided by
ProfessorWilliam Festuccia (University of Sao Paulo, Brazil).

2.2.2. Treatment with Trastuzumab. The HB4a and
HB4aC5.2 cell lines were treated with trastuzumab diluted
in phosphate-buffered saline (PBS) to a concentration of
15 𝜇g/mL, on the basis of previous experimental and clinical
studies [11–14]. Trastuzumab (Herceptin/Genentech, EUA)
was kindly provided by Professor José Ernesto Belizário
(University of Sao Paulo, Brazil).

2.2.3. Treatment withDHA. DHA (C22:6n-3, Sigma-Aldrich)
was dissolved in ethanol prior to emulsification in medium
containing serumproteins.The final concentration of ethanol
in the culture medium did not exceed 0.05%.This concentra-
tion was previously shown to be nontoxic to cells [28, 29].
The HB4a and HB4aC5.2 cell lines were treated with 100 𝜇M
DHA for 72 h, based on previous testing of both cell lines with
varying doses of DHA (25, 50, 75, and 100 𝜇M DHA for 24,
48, and 72 h in standard medium). Standard medium plus
ethanol was used as a control.

2.3. Proliferation Experiments. To compare proliferation rates
between the HB4a and HB4aC5.2 cell lines, 103 cells were
plated in triplicate and were allowed to attach to 96-well
plates overnight in culture medium. The following day,
the cells were washed with PBS and received fresh culture
medium. After 5 d, the cells were harvested and combined
with 0.5mg/mL MTT. Four hours later, solubilization buffer
was added and the cells were incubated for an additional
15 h. Spectrophotometry of the cells was then performed at
595 nm with a 655 nm reference filter. Calibration curves
were established with a known number of cells, allowing the
absorbance values to be converted into cell numbers.

To compare proliferation rates between treatments, cells
were washed with PBS and received culturemedium contain-
ing trastuzumab or GW9662 for 72 h. At several time points
during this 72 h incubation (e.g., baseline and 12, 24, 48, and
72 h after treatment), a portion of the cells were harvested
and combined with 0.5mg/mL MTT to assess proliferation.
Detection of proliferation was performed as described above.

2.4. RT-PCR. Total RNA was extracted from cells with the
RNeasy Mini Kit (Qiagen, Brazil), in accordance with the
manufacturer’s instructions. RNA concentration and purity
were determined with a spectrophotometer (NanoDrop ND-
1000 UV-Vis Spectrophotometer, NanoDrop Technologies)
by calculating the ratio of optical density at wavelengths of
260 nm and 280 nm. The cDNA was synthesized by reverse
transcription from 2𝜇g of RNA with the Superscript III
Reverse Transcriptase Kit (Invitrogen, Brazil), according to
the manufacturer’s instructions.

Each PCR sample included 2.5 𝜇L of cDNA, 5 𝜇L of SYBR
Green I (Molecular Probes), 1.1 𝜇L of MgCl

2
, 0.9 𝜇L of H

2
O

DEPC, and 0.5 𝜇L of primers specific for the gene of interest
(Table 1). PCR samples were amplified using a Rotor Gene
3000 System. After each run, the melting curve was analyzed
to assess the reaction specificity.

2.5. Western Blotting. The HB4a and HB4aC5.2 cell lines
(105 cells/25 cm2 flask) were treated with 5mL of medium
containing 10% FBS, with or without DHA or trastuzumab.
After 72 h, the cells were pelleted and proteins were extracted
in a lysis buffer containing 50mMTris-HCl (pH 7.4), 150mM
NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% sodium
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dodecyl sulfate (SDS), and protease inhibitors. Protein con-
centrations were determined with the Bradford assay. Cell
lysates (40 𝜇g) were boiled for 5min in Laemmli buffer before
being loaded on 10% acrylamide gels for SDS-polyacrylamide
gel electrophoresis. Separated proteins were transferred to
nitrocellulose membranes. The FASN protein was separated
on a 6% acrylamide gel. Membranes were blocked for 1 h
in Tris-buffered saline containing 0.05% Tween-20 and 5%
skim milk before being incubated with primary antibodies
(Cell Signaling Technology, USA, 1 : 1000). After 16 h at 4∘C,
membranes were incubated with anti-rabbit IgG antibodies
(1 : 5000). Bound antibodies were visualized by enhanced
chemiluminescence reagent (GE). Membranes were sub-
jected to autoradiography, and quantitative densitometric
analysis was performed with the Scion Image software pack-
age.

2.6. Flow Cytometry Analysis of Cell Death. The HB4a and
HB4aC5.2 cell lines (105 cells/25 cm2 flask) were treated
with 5mL of medium containing 10% FBS, with DHA,
trastuzumab, GW9662, or DHA plus trastuzumab, for 72 h.
Treated cells were fixed in 70% ethanol at −20∘C and stained
for 30min at room temperature with 20𝜇g/mL propid-
ium iodide (PI) (Sigma-Aldrich), Triton-X (0.1% v/v), and
200𝜇g/mL DNase-free RNase diluted in PBS. Cells from
each sample were analyzed for DNA content with a Becton
Dickinson FACS Caliber instrument. Percentages of cells in
the sub-G1, G0/G1, and S/G2/M phases of the cell cycle
were determined with the Cell Quest software package. Cell
death was measured according to the percentage of cells in
the sub-G1 region of the fluorescence scale that contained
hypodiploid DNA.

2.7. Statistical Analysis. Data are presented as mean ±
standard error of the mean (SEM) of three independent
experiments performed for each variable. For both cell
lines, relative gene expression was expressed as the ratio
between target gene expression and the mean expression
of the constituent genes (i.e., UBC, HMBS, and 𝛽-actin,
selected because they did not present significant variations
in expression between the untreated and treated cell lines).
For comparisons between cell lines, gene expression values
obtained by real-time PCR were normalized to the results
obtained from the HB4a cell line. For comparisons between
treatments, gene expression values obtained by real-timePCR
were normalized to results obtained from cell lines treated
with ethanol, DMSO, or PBS (controls [CNTs]). Data were
obtained from experiments performed in quadruplicate (or
duplicate, for real-time PCR assays). The statistical signif-
icance of differences was assessed by one-way analysis of
variance (ANOVA), followed by the Bonferroni post-test.The
significance level was set at 𝑃 ≤ 0.05.

3. Results

3.1. In HB4aC5.2 Cells, HER2 Overexpression Is Associated
with Activation of a Lipogenic Genetic Switch. To test the
hypothesis that HER2 overexpression requires activation of

a lipogenic genetic program for oncogenic transformation,
the immortalized human mammary luminal epithelial cell
line, HB4a, was transfected withHER2 cDNA to generate the
HB4aC5.2 cell line. Oncogenic transformation was assessed
by RT-PCR. The HB4aC5.2 cell line expressed HER2 mRNA
at levels equivalent to the tumor-derived cell line, SKBR3, but
should be identical to the HB4a cell line in all other aspects
(including ER mRNA levels) (Figure 1(a)). The ER-negative
SKBR3 cell line is characterized by HER2 amplification.

Real-time PCR analysis detected increased expression of
lipogenic genes related to FA uptake (fatty acid translocase
gene/cluster of differentiation 36, FAT/CD36), FA transport
(fatty acid binding protein 4, FABP4), and lipid storage (dia-
cylglycerol acyltransferase, DGAT) in HB4aC5.2 cells com-
pared to HB4a cells (Figure 1(b)). Interestingly, FASN expres-
sion was not altered by HER2 overexpression (Figure 1(b)).
However, according to Western blot analysis, HB4aC5.2 cells
exhibited increased activation of the FASN protein compared
to HB4a cells (Figure 1(c)).

3.2. DEPTOR, but Not mTOR/PPAR𝛾, May Be Associated
with Activation of a Lipogenic Genetic Program in HB4aC5.2
Cells. Activation of mTOR pathway components, mainly
complex 1 (mTORC1) and the p70S6K1 (p70 ribosomal S6
kinase 1) protein, and expression of SREBP1 (sterol regulatory
element-binding protein 1) and LIPIN1 may contribute to
lipogenesis by promoting the production of endogenous
ligands for PPAR𝛾 [2, 30, 31]. Unexpectedly, both RT-
PCR (Figure 2(a)) and Western blotting (Figure 2(b)) assays
showed that all of these mTORC1 pathway markers were
decreased inHB4aC5.2 cells, but not inHB4a cells (Figure 2).

When HB4a cells were treated with a PPAR𝛾 selective
antagonist (GW9662) and RT-PCR assays were performed,
all of the PPAR𝛾-target regulatory genes via mTORC1
were decreased (with the exception of FAT/CD36, which
showed increased expression) (Figure 3). Intriguingly, when
HB4aC5.2 cells were treated with GW9662, expression levels
of FAT/CD36 increased, but the expression levels of the other
genes remained unchanged (Figure 3).

Consistent with these findings, an increase in expression
of DEPTOR (the main inhibitor of the mTOR pathway)
was detected in HB4aC5.2 cells, but not in HB4a cells
(Figure 2(a)). When overexpressed, DEPTOR can inhibit the
activation of both complexes of the mTOR pathway, but
especially mTORC1 [32–35]. The observed downregulation
of SREBP1 (Figure 2(a)) and its regulatory protein p70S6K1
(Figure 2(b)) confirmed the inhibition ofmTORC1 activation
and supported the possibility that DEPTOR activity was
increased in HB4aC5.2 cells.

Although an association between activation of the
mTORC1 pathway and cell proliferation has been observed
in several cancers, this relationship was not observed in
the present study [31, 32, 36]. Instead, the hyperproliferative
phenotype induced by HER2 in HB4aC5.2 cells appeared
to be independent of this pathway. The increased rate of
proliferation of HB4aC5.2 cells compared to HB4a cells was
independent of additional mitogen stimulation (Figure 3(b)).
Treatment with GW9662 did not affect the proliferation rate
of either cell line (Figure 3(c)).
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Figure 1: HER2 overexpression and activation of a lipogenic genetic program. (a-b) Relative expression levels ofHER2 and ERmRNAs in the
HB4a, HB4aC5.2, and SKBR3 cell lines (a) and levels of FAT/CD36, FABP4, DGAT, and FASN mRNAs in the HB4a and HB4aC5.2 cell lines
(b). The experiment was performed in quadruplicate. The PCR reaction was performed in duplicate. ∗𝑃 < 0.001 versus HB4a. (c) Activation
of FASN protein in HB4a and HB4aC5.2 cells. Immunoprecipitated proteins were subjected to Western blotting for FASN and 𝛽-actin, as
controls. CNT: control cells; DHA: cells treated with 100𝜇MDHA for 72 h; TRAS: cells treated with 15 𝜇g/mL trastuzumab for 72 h.
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Figure 3: Effects of the PPAR𝛾 inhibitor GW9662 onHB4a andHb4aC5.2 cells. (a) Relative expression of FAT/CD36, FABP4,DGAT, SREBP1,
LIPIN1, and FASN in HB4a and HB4aC5.2 cells treated with GW9662 (1 𝜇L/mL) for 72 h. DMSO was used as a control (CNT). Data were
obtained from an experiment performed in quadruplicate. The real-time PCR reaction was performed in duplicate. ∗𝑃 < 0.001 versus CNT.
Proliferation rates for untreated (b) and treated (c) HB4a and HB4aC5.2 cells. Untreated cells were cultured in standard medium without
additional stimulation for 5 d. Treated cells were incubated with medium containing GW9662 (GW) or DMSO as a control (CNT) for 0, 12,
24, 48, and 72 h. (b) ∗𝑃 < 0.001 versus HB4a. ∗∗𝑃 < 0.001 versus HB4a CNT. (c) ∗𝑃 < 0.001 versus HB4aC5.2 CNT. ∗∗𝑃 < 0.001 versus
HB4aC5.2 GW.

3.3. In HB4aC5.2 Cells, Trastuzumab Treatment Was Accom-
panied by Increased FASN Gene Expression and Decreased
FASN Protein Activation, While the Cell Proliferation Rate
Remained Unchanged. Real-time PCR analyses of FAT/
CD36, FABP4, DGAT, FASN, SREBP1, and LIPIN1 revealed
that trastuzumab treatment was associated with a decrease
in DGAT mRNA and increases in SREBP1 and FASN mRNA
levels in HB4aC5.2 cells (Figure 4(b)). However, these results
were not observed in HB4a cells (Figure 4(a)). Moreover,
despite the significant increase in FASN transcription that
was induced by trastuzumab treatment in HB4aC5.2 cells,
activation of the FASN protein was inhibited in this cell line
(Figure 1(c)).

In HB4aC5.2 cells, trastuzumab treatment did not
influence cell proliferation, as detected by MTT assays
(Figure 4(b)).

3.4. In HB4aC5.2 Cells, DHA Treatment Affected the Acti-
vation of a Lipogenic Genetic Program to Induce Cell Death
and Improve Trastuzumab Action in Parallel with a Decrease

in DEPTOR Transcription. Previous studies have shown
that DHA exhibits a triacylglycerol-lowering effect in vitro
and in vivo and reduces the expression levels of lipogenic
genes [37, 38]. However, the mechanisms responsible for
these effects remain unknown. Real-time PCR analyses of
FAT/CD36, FABP4, DGAT, FASN, SREBP1, and LIPIN1 were
performed for HB4aC5.2 and HB4a cells, with or without
DHA treatment. DHA reduced the expression levels of all of
the genes assayed, except FABP4, and inhibited the activation
of FASN in HB4aC5.2 cells (Figure 5). Although both cell
lines achieved very similar expression levels for the genes
(except FABP4), DHA treatment induced cell death only
in HB4aC5.2 cells (Figure 6(a)). Neither trastuzumab nor
GW9662 alone affected the rate of cell death for either cell line
(Figure 6(a)); however, combined treatment with DHA and
trastuzumab increased cell death in the HB4aC5.2 cells when
compared with DHA and trastuzumab alone (Figure 6(a)).

Finally, the relative expression of DEPTOR in the HB4a
and HB4aC5.2 cells treated with DHA, trastuzumab, DHA
plus trastuzumab, GW9662, or culture medium (as a control)
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Figure 6: Percentage of cell death induced by different treatments and relative expression ofDEPTOR. (a) Percentage of cell death induced by
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was detected by real-time PCR. In HB4aC5.2 cells, DHA-
induced toxicity was accompanied by a decrease in DEPTOR
transcription. A greater decrease in DEPTOR transcription
was induced by DHA plus trastuzumab treatment compared
to treatment with DHA alone (Figure 6(b)).

4. Discussion

We hypothesized that the HER2 overexpression-mediated
oncogenic transformation of breast cells involves a distinct
lipogenic program that, in addition to FA synthesis, requires
the coordinated expression of genes involved in the following:
(a) the conversion and storage of excess FAs to triglycerides,
thereby avoiding lipotoxicity; and (b) the uptake and trans-
port of other exogenous FAs, which are necessary tomaintain
a constant supply of lipids/lipid precursors, in these highly
proliferative cells.

For a model, we chose a transformed, immortalized
cell line with a strictly luminal phenotype that has been
specifically engineered to overexpress HER2 (HB4aC5.2) but
is identical to its parental strain (HB4a) in all other aspects.
This permits a cleaner analysis of the specific effects of

enhanced HER2 levels on luminal epithelial cell function and
phenotype, unlike most tumor cell lines already established
and described in in vitro studies, which showmultiple genetic
aberrations other than overexpression of HER2 receptors. By
using HB4aC5.2 and HB4a cells, we were able to analyze
the specific effects that enhancing HER2 levels had on the
lipogenic phenotype [25, 26].

Elevated levels of HER2 expression have been observed
in human breast cancers, with levels of HER2 amplification
ranging from 2-fold to greater than 20-fold [25, 26, 39, 40].
One consequence of HER2 overexpression in epithelial cells
is hyperproliferation [25, 26], which requires an increase
in FA synthesis in order to provide building materials for
new membranes and lipid rafts [1–3, 15]. This requirement
to lipogenesis for survival and proliferation may repre-
sent a target treatment in HER2-driven oncogenesis [1–
3, 15]. Experimental and clinical studies have shown that
the early stages of tumorigenesis in HER2-overexpressing
breast cancer cells are associated with increased activation of
the FASN-mediated synthesis of palmitic acid, which is often
used to form lipid rafts [1–3, 5, 15, 19, 41, 42]. In the present
study, HER2 overexpression was accompanied by an increase
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in FASN protein activation, in parallel with the increased
expression ofDGAT, a gene that encodes an enzyme involved
in the final step of triglyceride synthesis [43]. Thus, breast
cancer cells that overexpress HER2 and have increased FASN
activity may sustain their proliferation and avoid lipotoxicity
by converting and storing excess palmitate as triglycerides.

The increase in DGAT expression was accompanied
by an increase in expression levels of FAT/CD36 and
FABP4, which encode proteins involved in the uptake and
transport of FAs. These processes facilitate the synthesis
of cellular membranes during cell proliferation suggesting
that HER2-overexpressing breast cancer cells alter their
metabolism to improve triglyceride synthesis and lipid
uptake/incorporation for cell proliferation [1–3]. These find-
ings suggest that a lipogenic phenotype is required and
possibly induced by HER2 overexpression and the observed
increase in FASN activation comprises only one part of a
much larger lipogenic program in such cells.

Although the exact mechanism linking HER2 signaling
with lipogenesis remains unknown, accumulating evidence
indicates that activation of PPAR𝛾 via the mTOR pathway
may regulate this process [1, 2, 31, 33–35]. According to
our results, the mTORC1 activity (component of the mTOR
pathway) in HB4aC5.2 cells was low suggesting that PPAR𝛾
may be regulated through a pathway other than mTOR.
Indeed, this lipogenic program required for oncogenic trans-
formation inHB4aC5.2 cells was not found to be coordinated
by PPAR𝛾 activity because the blockage of its activity did
not alter the expression of the lipogenic genes assayed in
these cells. This finding raises the possibility that HER2
overexpression may employ another mechanism to maintain
or generate the lipogenic phenotype [33, 34]. Based on the
present findings, DEPTORmay be a potential mediator.

DEPTOR is the main inhibitor of the mTOR pathway and
may regulate the lipogenesis process [33, 34]. In adipocytes,
DEPTOR expression promotes adipogenesis, whereas inhibi-
tion of DEPTOR blocks this process [33]. In animal models,
DEPTOR overexpression is responsible for the accumulation
of white adipose tissue, and in humans, it is associated with
some degree of obesity [33].

Experimental evidence suggests thatDEPTOR is a potent
activator of Akt-mediated survival pathways [33, 34]. For
example, when DEPTOR is overexpressed, mTORC1 activity
is reduced and the PI3K/mTORC2/Akt pathway is activated
via release of the inhibitory feedback that mTORC1 imposes
on mTORC2 [32]. Interestingly, this indirect mode of Akt
protein activation appears to be important for the viability of
thyroid carcinoma andmultiplemyeloma cells [35].DEPTOR
overexpression and reduced mTORC1 complex activity have
been detected in approximately 28% of patients with multiple
myeloma, and these patients had lower survival rates [35].
Experimentally, DEPTOR overexpression has been shown to
reduce protein synthesis and cell growth inmultiplemyeloma
cells, while activating survival signals from PI3K/Akt pro-
teins. DEPTOR downregulation has also been shown to
promote cell death [35].

We previously reported that HER2 overexpression in
HB4aC5.2 cells is accompanied by hyperactivation of Akt
[15]. In the present study, a significant increase in DEPTOR

expression and decreases in the expression levels of mTORC1
pathway members (i.e., p70S6K and SREBP1) were observed
in HB4aC5.2 cells. It may be that the increase in DEPTOR
expression provides an important oncogenic advantage for
HB4aC5.2 cells. DEPTOR may help regulate lipogenesis to
facilitate proliferation and may enhance Akt activation in
favor of cell survival. Akt can promote cell survival by
various mechanisms, including regulation of transcription
factors other than PPAR𝛾 [44, 45]. As an Akt activator [35],
DEPTOR may enhance the expression of lipogenic genes
that are targeted not only by PPAR𝛾 but also by other
transcription factors. This explanation would account for the
observed increase in lipogenic gene expression in HER2-
overexpressing cells while PPAR𝛾 activity was not detected.

Overall, the present results show that the oncogenic trans-
formation ofHB4aC5.2 cells byHER2 overexpression appears
to promote a lipogenic environment conducive to cell pro-
liferation and cell survival. Furthermore, this environment
may be potentially dependent on DEPTOR overexpression.
Accordingly, inhibitors of lipogenic enzymes, modulators
of DEPTOR gene expression, and FA supply could impair
HER2-mediated oncogenesis.

Several reports have indicated that omega-3 polyunsatu-
rated FAs, such as DHA, can act as efficient anti-HER2 ther-
apeutics [2, 15, 46]. Previous studies have largely attributed
the DHA sensitivity of HER2-positive cells to the ability of
this FA to suppress HER2 expression or HER2-mediated
pathways by differentmechanisms (e.g., lipid raft disruption).
However, it is possible that the supplementation of highly
lipogenic HER2-positive cells with FAs other than palmitate
could trigger the generation of reactive oxygen species and
cell death [1, 2, 15, 46]. In the present study, DHA treatment
of the HB4aC5.2 cells led to a decrease in DGAT expression
and an induction of apoptosis. These findings indicate the
diminished ability of these cells to mediate the nontoxic
accumulation of lipids in their triglyceride form.

Interestingly, the increased expression levels of FAT/
CD36 and FABP4 that were observed in HB4aC5.2 cells
were maintained after DHA treatment of these cells. It is
possible that these cells were able to capture and transport
DHA for cell membrane formation. Such preferential use
of DHA would inhibit cell survival and proliferation, due
to alterations in the formation of cell membrane lipid rafts
[47–49]. Previously, we reported that DHA treatment of
HB4aC5.2 cells increased DHA and decreased palmitic acid
percentages in cell membranes [15]. These changes were
observed concomitantly with a decrease in the number
of lipid rafts, which, in turn, may have impaired HER2-
mediated signaling [15]. This possibility was supported by
the simultaneous decrease in activation of the Akt and
ERK1/2 proteins [15]. In the present study, DHA treatment
led to decreased activity of the FASN protein and lower
expression levels of DGAT and DEPTOR. Besides, the DHA
treatment plus trastuzumab was able to increase cell death
percentage, in HB4aC5.2 cells, when compared with DHA
and trastuzumab alone.

Taken together, these data support the possibility that
the mechanism responsible for DHA-related toxicity in
HB4aC5.2 cells includes a disturbance of the lipogenic genetic



BioMed Research International 11

program. This disturbance may be mediated, at least in part,
byDEPTOR and is distinct from trastuzumab, which seems to
disturb FASN activity by differentmechanisms.The cytotoxic
pathways that are involved seem to be complementary, to
improve cell death only in HER2-overexpressing HB4aC5.2
cells. Moreover, DHA appears to increase the sensitivity
of cells to death by modulating a HER2-driven lipogenic
genetic program. These findings support the use of DHA
as a candidate therapeutic agent for minimizing HER2-
mediated oncogenesis in breast cancer cells by disturbing
a PPAR𝛾-independent lipogenic phenotype associated with
HER2 overexpression.

One limitation of the present study design is its specificity.
For example, the HB4aC5.2 cell line was designed to overex-
press HER2. These cells exhibited noninvasive and prolifera-
tive characteristics and expressed luminal epithelial markers.
Consequently, the present results should be analyzed with
caution when extrapolated to more complex models or other
types of cells representing different breast cancer tumor
stages. Additionally, the results provided in this study are
valid only for DHA, which may have distinct or different
antitumoral effects than other omega-3 fatty acids, such as
eicosapentaenoic acid (EPA), and omega-6 fatty acids, such
as arachidonic acid (AA) [50]. Indeed, it is widely recognized
that DHA reduce and AA increase the risk of breast cancer
in experimental and clinical studies [50–53]. However, it is
noteworthy that the opposite effects between these FA also
seem to extend to the cellular lipogenesis [23, 24, 54, 55].
Some authors have shown that DHA suppress adiposity in
rodents and block adipogenesis in many adipocyte cell lines
[23, 24], while AA is associated with increase of adipogenesis
[54, 55]. According to our results, the DHA antitumoral effect
was accompanied by cellular lipogenesis decrease. In this
scenario, an important question emerges: Is it possible that
AA effect toward tumorigenesis [50–53] might be associated
with its capacity to increase cellular lipogenesis [54, 55]?
Moreover, are tumor lipogenic phenotype and FA (DHA and
AA) effects associated? From a clinical perspective, consider-
ing that dietary fat is part of modifiable risk of breast cancer,
further studies should be conducted to evaluate the role of
different FA in lipogenesis and breast cancer progression.

Together, our data demonstrate that an oncogenic trans-
formation of HER2-expressing breast cancer cells super-
charges cell lipogenesis via coexpression of various genes
involved in the synthesis, uptake, transport, and storage of
FAs. DHA treatment disturbs this lipogenic state by inducing
cell death and increasing the action of trastuzumab. There-
fore, DHA may represent a useful tool for controlling the
aberrant signaling triggered by HER2. Nutritional interven-
tions may constitute a new approach for improving conven-
tional therapies, without adversely affecting patient quality
of life. In particular, DHA supplementation in combination
with other drugs, such as inhibitors of HER2 (trastuzumab),
should be explored as a treatment strategy for breast cancer.
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