Table 1.
Input: Data D = {x}, desired layers K and nodes number for each layer Ni |
---|
Output: The structure and learned initialization parameters of the DNN. |
1. Learn parameters θ1 for the 1st layer RBM from data. |
For k = 2:K |
2. Initialize the k-th layer RBM by unroll the k-1th layer RBM to the kth layer, of which parameters |
3. Refine the parameters of kth layer RBM from data vectors generated from k-1th layer. |
Return: Structure and parameters of the stacked RBMs. |
Greedy training process for deep belief network