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SYNOPSIS

Since the discovery of Rapid Eye Movement (REM) sleep in the late 1950s, identification of the 

neural circuitry underlying wakefulness, sleep onset and the alternation between REM and non-

REM (NREM) sleep has been an active area of investigation. Synchronization and 

desynchronization of cortical activity as detected in the electroencephalogram (EEG) is due to a 

corticothalamocortical loop, intrinsic cortical oscillators, monoaminergic and cholinergic afferent 

input to the thalamus, and the basal forebrain cholinergic input directly to the cortex. The 

monoaminergic and cholinergic systems are largely wake-promoting; the brainstem cholinergic 

nuclei are also involved in REM sleep regulation. These wake-promoting systems receive 

excitatory input from the hypothalamic hypocretin/orexin system. Sleep-promoting nuclei are 

GABAergic in nature and found in the preoptic area, brainstem and lateral hypothalamus. 

Although the pons is critical for the expression of REM sleep, recent research has suggested that 

melanin-concentrating hormone/GABAergic cells in the lateral hypothalamus "gate" REM sleep. 

The temporal distribution of sleep and wakefulness is due to interaction between the circadian 

system and the sleep homeostatic system. Although the hypothalamic suprachiasmatic nuclei 

contain the circadian pacemaker, the neural circuitry underlying the sleep homeostat is less clear. 

Prolonged wakefulness results in the accumulation of extracellular adenosine, possibly from glial 

sources, which is an important feedback molecule for the sleep homeostatic system. Cortical 

neuronal nitric oxide (nNOS) neurons may also play a role in propagating slow waves through the 

cortex in NREM sleep. Several neuropeptides and other neurochemicals likely play important 

roles in sleep/wake control. Although the control of sleep and wakefulness seemingly involves 

multiple redundant systems, each of these systems provides a vulnerability that can result in sleep/

wake dysfunction that may predispose to physical and/or neuropsychiatric disorders.
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Our understanding of the neural control of sleep in large part parallels the history of the field 

of neuroscience. As new tools and methodologies have become available to the research 

community, sleep researchers have been quick to take advantage of such techniques. Thus, 

the description in the following sections progresses from relatively crude methods such as 

brain transections and lesion studies to the application of molecular biology and genetics to 

create transgenic models. The approach in this section will be largely historical, illustrating 

the insights and principles that have emerged as research has progressed.

The advent of inducible transgenic mouse strains and viral-mediated transfection has 

enabled the ability to target cell populations in a phenotype-, location- and time-specific 

manner. This added precision eliminates many of the caveats associated with more 

traditional lesion (impossible to isolate heterogeneous cell populations) and knockout 

methodologies (developmental confounds; lack of anatomical specificity). Recently, opto- 

and chemogenetic methods have enabled manipulation of specific cell populations with 

unprecedented precision using light or synthetic ligands, respectively. In optogenetics, 

neurons of interest are genetically engineered to express light-sensitive opsins that control 

specialized ion channels. Subsequent illumination of these cells (usually through surgically 

implanted optical fibers) by specific wavelengths of light can activate or inhibit the cells 

expressing that opsin without collateral activation of nearby cell types. For example, the 

blue light-sensitive channel rhodopsin-2 protein opens a Na+ channel and, when stimulated, 

will depolarize a cell. Conversely, the yellow/green light-sensitive halorhodopsin opens a 

Cl− channel and will thus inhibit cells when illuminated. Similarly, the DREADD (Designer 

Receptors Exclusively Activated by Designer Drugs) system relies on a modified G protein-

coupled receptor that responds only to a (otherwise biologically inert) synthetic ligand. 

Following expression of the DREADD receptor in a cell population of choice, the ligand can 

be injected systemically to activate only that population. This combination of powerful tools 

for precisely manipulating neuronal activity with the specificity of genetic targeting is 

revolutionizing the study of neural circuits and their control of behavior.

Cortical Activity During Sleep and Wakefulness

The electrical activity of the cerebral cortex has been used to distinguish sleep vs. 

wakefulness since the earliest EEG studies of sleep.1 The firing rate of cortical neurons 

generally declines during non-Rapid Eye Movement (NREM) sleep relative to wakefulness 

and REM sleep,2, 3 although a few studies have reported cortical neurons with the opposite 

firing pattern.4, 5 EEG activity reflects the aggregate firing of large neuronal ensembles, and 

is conventionally referred to by bandwidths with the following approximate frequencies: 

alpha (9-12 Hz), beta (12-30 Hz), delta (0.5-4.0 Hz), low (30-60Hz) and high (60-100 Hz) 

gamma and theta (5-9 Hz). Several neural circuits have been implicated in the 

synchronization and desynchronization of cortical activity that distinguish NREM sleep 

from wakefulness and REM sleep. For example, input from the basal forebrain (BF), likely 

from both cholinergic and non-cholinergic neurons, is critical for the desynchronized EEG 

characteristic of wakefulness and REM.6, 7

Synchronization of the EEG during NREM depends on a corticothalamocortical loop8 as 

well as intrinsic cortical oscillators,9 whose activities are modulated by a number of 
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subcortical systems. Here, our primary focus will be how interactions between these 

subcortical systems produce sleep and wake and their electrophysiological correlates at the 

cortical level.

Historical Overview

Classical brainstem transection studies

The first investigations relevant to the neurobiology of sleep and wakefulness were 

conducted in the 1930s. Bremer transected the cat brainstem, observing that sleep/wake 

cycles remained intact after a low medullary level transection (encephale isolé), whereas 

transection between the pons and midbrain (cerveau isolé) yielded chronic drowsiness.10 

Conversely, electrical stimulation of the midbrain reticular formation caused alerting of the 

cortex.11 From these observations arose the concept that the forebrain was kept alert by 

tonic activity in the reticular formation. This ascending reticular activating system (ARAS) 

is comprised of cholinergic laterodorsal and pedunculopontine tegmentum (LDT/PPT), 

noradrenergic locus coeruleus (LC), serotonergic (5-HT) Raphe nuclei and dopaminergic 

ventral tegmental area (VTA), substantia nigra (SN) and periaqueductal gray projections that 

stimulate the cortex directly and indirectly via the thalamus, hypothalamus and BF.6, 12-18 

These aminergic and catecholaminergic populations have numerous interconnections and 

parallel projections which likely impart functional redundancy and resilience to the 

system.6, 13, 19

In contrast, transecting the pons rostral to the trigeminal nerve induced constant 

wakefulness,20 suggesting that input from a sleep "center" in the lower pons or medulla 

inhibited a wakefulness "center" in the rostral pons. This result established that sleep is an 

active state of the brain;21 however, the identity of this lower brainstem “sleep center" 

remained a mystery. Although “sleep active” neurons were reported in the nucleus tractus 

solitarius,22 their location has proven to be elusive. More recently, the medullary parafacial 

zone (PZ) adjacent to the facial nerve was identified as a sleep-promoting center on the basis 

of anatomical, electrophysiological and chemo- and optogenetic studies.23, 24 GABAergic 

PZ neurons inhibit glutamatergic parabrachial (PB) neurons that project to the BF,25 thereby 

promoting NREM sleep at the expense of wakefulness and REM sleep. As we shall see 

below, these populations exert much of their effects via projections to the BF and 

hypothalamus.

Encephalitis lethargica: Insights into sleep/wake control from neuropathology

After World War I, a worldwide influenza epidemic claimed an estimated 25-40 million 

fatalities. One variant of this disease was encephalitis lethargica, in which patients entered a 

coma that often resulted in death. The neuropathologist Constantin von Economo identified 

distinct types of brain lesions associated with equally distinct effects on sleep and waking. 

Lesions in the posterior hypothalamus extending into the mesencephalic reticular formation 

were associated with persistent coma, whereas lesions in the anterior hypothalamus and the 

adjacent BF were associated with chronic insomnia. von Economo concluded that the 

posterior hypothalamus was important for the maintenance of wakefulness and the anterior 

hypothalamic/BF region important for sleep induction.26
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Nauta subsequently demonstrated that anterior hypothalamic transections severely disrupted 

sleep and wakefulness,27 providing direct experimental evidence for von Economo’s clinical 

observations. Sterman, McGinty and others found that preoptic/basal forebrain lesions 

decreased sleep,28 whereas stimulation of this region facilitated sleep onset.29 Sleep-active 

neurons were later described in the BF, particularly the substantia innominata and the 

horizontal limb of the diagonal band of Broca.30 Subsequent electrophysiological, Fos 

activation, tract tracing and lesion studies identified the GABAergic ventrolateral preoptic 

area (VLPO) and median preoptic area (MnPO) as being sleep-active neuronal populations 

that project to and inhibit wake-active cell groups.31-38 These preoptic sleep-promoting 

groups are themselves inhibited by wake-active monoaminergic stimulation.39, 40 It should 

be noted that the BF also contains cortically-projecting cholinergic neurons distributed 

across the diagonal band of Broca, nucleus basalis and substantia innominata.41, 42 These 

neurons have been extensively studied for their role in promoting cortical activation and 

wakefulness. In addition, much research has examined the role of the BF, including the 

cholinergic neurons therein, in regulating sleep homeostasis; this work will be discussed in 

detail in a later section.

Also consistent with von Economo's earlier observations, lesions of the posterior lateral 

hypothalamus (PLH) were found to increase sleep in rats, cats and monkeys.27, 43, 44 

Histaminergic (HA) cells were subsequently identified in the tuberomammillary nuclei (TM) 

and found to be wake-promoting.45 Antihistamines have long been known to be soporific, 

and knockout mice lacking the enzyme responsible for histamine synthesis are 

hypersomnolent.46, 47 Inhibitory VLPO neurons project to HA TM neurons48, and HA 

neurons project widely throughout the brain including to wake-promoting populations in the 

brainstem and to the cortex.49 Injections of the GABAA agonist muscimol into the posterior 

hypothalamus increased NREM sleep and suppressed REM sleep, whereas injections in the 

ventral PLH increased both NREM and REM sleep.50 Together, these results supported the 

hypothesis that sleep results from functional blockade of a posterior hypothalamic waking 

center. Although the neurons inactivated by muscimol were thought to be the HA cells, the 

PLH contains another wake-active neuronal population, the hypocretin/orexin cells, that 

were yet to be described.

REM sleep: The role of the Pons and Acetylcholine

REM sleep was first described by Aserinsky and Kleitman51-53 and was described in 

animals in 1959.54 As cellular neurophysiology entered the neurobiologist's toolbox in the 

'60s and early '70s,55-57 sleep physiologists characterized the firing rates of cells in specific 

brain regions across the arousal state continuum from wakefulness to NREM to REM sleep. 

These "arousal state profiles” showed that monoaminergic cell groups decrease their firing 

from wakefulness to REM and are thus called "REM-off" cells. In contrast, a smaller set of 

brainstem regions had maximal firing rates during REM ("REM-on” cells). Since these cell 

groups were anatomically localized, Hobson and McCarley58, 59 proposed that the 

NREM/REM cycle arises from a reciprocal interaction between these aminergic REM-off 

cell groups and cholinergic REM-on cell groups in the medial pons. More recent versions of 

this model recognize that the REM-on and REM-off cells are distributed in a variety of brain 

regions60-62 and include both glutamatergic and GABAergic populations.63, 64
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The pons is both necessary and sufficient to generate REM sleep65, 66 and the dorsolateral 

pons, in particular, is crucial for the genesis of REM sleep.67, 68 Neurons in this region have 

a “REM-on” profile with their highest discharge rate occurring during REM sleep.69, 70 

Microinjections of carbachol, a mixed cholinergic agonist, into the dorsolateral pons results 

in a prolonged REM-like state, and pontine acetylcholine levels are increased during REM 

sleep relative to NREM and wakefulness.71 Cholinergic input for REM sleep generation 

comes from the more rostral PPT and LDT, which project to the cholinoceptive 

subcoeruleus or sublaterodorsal tegmental nucleus (SLD) and the subjacent nucleus pontis 

oralis.72, 73 During REM sleep, activation of the dorsolateral pons regulates the varied 

physiological manifestations of REM sleep, e.g., EEG desynchronization and theta activity, 

ponto-geniculo-occipital (PGO) waves, rapid eye movements and atonia. More recent 

studies have implicated the melanin-concentrating hormone (MCH)/GABAergic neurons of 

the hypothalamus as providing critical input to the pontine generator of REM sleep.64, 74

Lesions of the dorsolateral pons produce REM sleep without atonia in cats: the cats orient, 

locomote, and engage in what appears to be prey-catching behavior - as if they were "acting 

out their dreams".75, 76 Cholinoceptive dorsolateral pontine neurons project to the ventral 

medulla, where they form synapses with inhibitory neuronal populations that, in turn, project 

to and inhibit spinal motorneurons, thereby preventing muscle movement during REM. This 

descending inhibition is thought to be mediated by glycinergic mechanisms;77 more recent 

work has implicated GABA78, 79 as well as local inhibition in the ventral horn.80 A similar 

condition, REM Behavior Disorder, exists in humans;81 interest in the neurophysiological 

basis of REM Behavior Disorder has been potentiated by the finding that REM Behavior 

Disorder may be a risk factor or predictor of Parkinson’s disease and other 

neurodegenerative synucleinopathies.82, 83

Narcolepsy/Cataplexy

The other sleep disorder related to the dorsolateral pons is narcolepsy. Narcoleptic patients 

suffer from excessive daytime sleepiness, abnormalities of REM sleep, and sudden attacks 

of muscle atonia during wakefulness known as cataplexy. Cataplexy is primarily triggered 

by “positive” emotional stimuli (laughter, surprise, sexual arousal) that are processed by the 

limbic system; these stimuli appear to converge on the REM atonia pathway, likely through 

the prefrontal cortex and the amygdala.84, 85 In narcoleptic dogs, cataplexy can be 

exacerbated by anticholinesterases, and the muscarinic cholinergic receptor is upregulated in 

the pons of these dogs.86, 87 Although this upregulation likely affects the same REM atonia 

pathway described above, narcoleptic dogs have been particularly valuable for the insights 

that they provided into the role of the hypocretin/orexin system in sleep/wake control and 

muscle atonia.88

The Hypocretin/orexin System

Discovery of the Hypocretins and the Orexins

Hypocretins 1 and 2 (Hcrt1 and Hcrt2), also known as orexins A and B, are excitatory 

hypothalamic neuropeptides that were independently described by two groups in 1998.89, 90 

Since Sakurai et al.91 confirmed the common identity of the Hcrts and the orexins, we will 
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use the term “Hcrt” here to refer to this system. While early studies emphasized the role of 

the Hcrt system in feeding and energy balance, subsequent research focused on sleep-wake 

regulation based, in part, on the discovery that Hcrt dysfunction underlies the sleep disorder 

narcolepsy.

Hcrt neurons are found exclusively in the PLH,89, 90, 92 numbering between 4,000-5,000 in 

the rat92-94 and 50,000-80,000 in humans.95 The two Hcrt peptides are derived from a single 

precursor molecule by proteolytic processing and Hcrt1 and Hcrt2 are largely co-localized in 

the same neurons.96 Hcrt neurons are co-extensive, but not co-localized, with MCH 

neurons.92, 97, 98 The Hcrt neurons project widely throughout the brain and spinal 

cord92, 96, 99, 100 including major projections to wake-promoting cell groups such as the HA 

cells of the TM,101 the 5-HT cells of the dorsal Raphe nuclei (DRN),101 the noradrenergic 

cells of the LC,102 and cholinergic cells in the LDT, PPT, and BF.101, 103 Afferent input to 

Hcrt neurons was mapped using a combination of retrograde and anterograde tract 

tracers;104 these studies described major projections from the lateral septal nucleus, bed 

nucleus of the stria terminalis, preoptic area, dorsomedial, ventromedial and posterior 

hypothalamic nuclei, substantia nigra and VTA, and the DRN. Using transgenic mice 

expressing transneuronal retrograde tracers linked to the Hcrt promoter,105 genetic tracing 

studies revealed a more circumscribed set of afferents to the Hcrt neurons from the 

amygdala, preoptic GABAergic neurons, and 5-HT neurons in the median/paramedian 

Raphe nuclei. Thus, the anatomy of the Hcrt system strongly suggests involvement in 

numerous physiological functions including sleep-wake, feeding, thermoregulation, blood 

pressure and neuroendocrine regulation.

To date, the Hcrt peptides have uniformly been reported as excitatory either by eliciting 

depolarization and/or increased spike frequency.89 Hcrt directly excites cellular systems 

involved in waking and arousal including the LC,102, 106, 107 DRN,108, 109 TM,110-112 

LDT,113, 114 cholinergic BF,115 and both dopamine (DA) and non-DA neurons in the 

VTA.116, 117 The excitatory effects of Hcrt are mediated by multiple ionic 

mechanisms110, 118-125 which, combined with their capacity for 

neuromodulation,109, 113, 118, 126-129 suggest that Hcrt exerts potent direct and indirect 

effects on a variety of physiological systems, particularly arousal systems. Some of these 

effects appear to be mediated by colocalized transmitters and modulators including, but not 

limited to, dynorphin, galanin and glutamate.130-135 Cellular electrophysiological studies 

revealed that while Hcrt cells are excited by numerous substances,136-145 they are inhibited 

by the aminergic transmitters NE, DA, and 5-HT,136, 139, 146-148 as well as by 

GABA.136, 139, 149

Hcrt signaling is strongly associated with wakefulness. The region of the PLH containing 

the Hcrt cells has long been implicated in arousal state control.27 Hcrt neurons are wake-

active as measured by Fos expression,150 electrophysiology,151-153 or brain/CSF peptide 

content.154-156 Hcrt1 increases arousal when infused into the brain,106, 157-162 and 

optogenetic stimulation or inhibition of Hcrt signaling increases or decreases wakefulness, 

respectively.163-167 Hcrt receptor antagonists promote sleep when administered systemically 

or directly into the brain.168-171 Indeed, newly-developed dual Hcrt receptor antagonists 

exhibit promise for the effective pharmacological promotion of sleep without adverse side 
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effects such as cognitive performance deficits and dependence that are common to many 

sleep medications.172, 173

The Hcrt System and the Sleep Disorder Narcolepsy

Narcolepsy has a genetic component in both humans and dogs that has proven instrumental 

in identifying its unique pathology. In narcoleptic dogs, the canarc-1 gene that transmits 

narcolepsy was identified as a mutation in the hcrtr2 gene that results in a truncated, 

nonfunctional protein.88 In a remarkable convergence, Hcrt null mutant mice exhibited a 

narcoleptic phenotype, including cataplectic “behavioral arrests”, sleep-onset REM, and 

increased and fragmented NREM and REM sleep.101 Thus, dysfunction of either the Hcrt 

ligand or one of its receptors can result in narcolepsy. In humans, the HLA Class II antigen 

HLA DQB1*0602 is present in more than 85% of narcoleptic patients with cataplexy but 

only 12-38% of the general population.174 Such close association with the HLA system has 

led to the suggestion that narcolepsy may be an autoimmune disease.175, 176 Narcoleptic 

humans exhibit undetectable levels of Hcrt1 in cerebrospinal fluid (CSF).177 Postmortem 

studies revealed an absence of prepro-hcrt mRNA178 and an 85-95% reduction in the 

number of Hcrt-containing cells in human narcoleptic brains95 without any change in either 

MCH mRNA or the number of MCH cells. The presence of increased staining for glial 

fibrillary acid protein in the PLH of narcoleptic brains95, 178 suggests that degeneration of 

the Hcrt cells may cause human narcolepsy. Consistent with this, animal models in which 

the Hcrt neurons are ablated by selective neurotoxins179, 180 or engineered to degenerate 

postnatally181, 182 also present a narcoleptic phenotype.

Models for the Role of the Hcrt System in Arousal State Regulation

The balance between sleep and wakefulness has been proposed to be maintained by the 

relative activation of the wake-active systems found in the BF, LDT/PPT, LC, DRN and TM 

and the sleep-active systems found in the VLPO.13, 94 These relationships are summarized in 

Figure 1. In wakefulness, ascending monoaminergic projections from the ARAS nuclei 

activate wake-promoting cholinergic BF and histaminergic TM cells en route to the cerebral 

cortex, while inhibiting sleep-promoting VLPO and MnPO neurons. LDT/PPT cholinergic 

neurons ascend to the thalamus, which in turn stimulates the cortex. During NREM sleep, 

inhibitory, GABAergic output from the VLPO, MnPO and PZ inhibit these populations. 

REM sleep is driven by a combination of increased brainstem cholinergic (“REM-on”) 

activity and inhibition of “REM-off” populations; MCH neurons in the LH are proposed to 

be a part of the REM control mechanism as well. Hcrt signaling promotes waking by 

activating brainstem and forebrain wake-active populations and is, in turn, inhibited by 

ascending 5-HT and NE inputs. Hcrt has also been proposed to consolidate waking and sleep 

states by stabilizing transitions between sleep and wakefulness in the “flip-flop switch” 

model.13 When the Hcrt system is dysfunctional as occurs in human narcolepsy and 

transgenic mouse models, behavioral state instability results so that the affected individual 

cannot maintain extended periods of wakefulness of sleep and, instead, shifts rapidly 

between these states.183 This “flip-flop switch” concept was subsequently extended to 

account for the alternation between NREM and REM sleep.63
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Sleep Homeostasis and the Timing of Sleep and Wakefulness

Common knowledge, as well as scientific observations, suggest that sleep is a 

homeostatically regulated physiological response. The longer one is awake, the more likely 

one is to sleep or, at least, be sleepy. Sleep deprivation impairs cognition and prolonged 

sleep deprivation results in impaired physiological function, ultimately resulting in death.184 

This homeostatic property has been incorporated into the "two-process model" of sleep 

regulation185, 186 which posits that the homeostatic sleep-related "Process S" integrates input 

from the circadian system ("Process C") to gate the occurrence of sleep and wakefulness 

across the day. Process S is proposed to be a neurochemical process(es) that begins to build 

up at the onset of wakefulness; once a threshold value is reached, sleep will ensue only if 

Process C is in the appropriate circadian phase. This seemingly simplistic model accounts 

remarkably well for the timing of sleep in humans and rodents.

EEG slow waves in the delta bandwidth (0.5-4.0 Hz) generated by thalamocortical 

interactions during NREM sleep increase in proportion to prior wake duration. The level of 

NREM delta power (NRD; also called EEG slow wave activity or EEG SWA) is highly 

dependent on the prior history of sleep and wakefulness: prolonged wakefulness dose-

dependently increases NRD while both daytime naps and nighttime sleep decrease NRD, 

reflecting a diminution of Process S. Conversely, NRD itself is highly resistant to circadian 

modulation.187, 188 Thus, EEG NRD has been suggested to reflect the cortical manifestation 

of the recovery from prior waking activities185 and is commonly used as a quantitative 

measurement of Process S.

Anatomical substrates of the Two-Process model

The Suprachiasmatic Nuclei as the Basis for Process C

The hypothalamic suprachiasmatic nuclei (SCN) contain a master circadian pacemaker (or 

biological clock) in mammals,189-192 and are commonly recognized as the source of Process 

C.193-195 However, it remains unclear how SCN activity temporally organizes daily sleep-

wake rhythms. Early studies relied on SCN lesions to functionally dissect circadian versus 

homeostatic regulation. The homeostatic response to sleep loss was intact in SCN-lesioned 

rats with no change in total sleep time per 24 h,196, 197 whereas similar studies in SCN-

lesioned squirrel monkeys and mice and in behaviorally arrhythmic Siberian hamsters 

reported increased sleep time per 24 h.198-200 These results fueled ongoing debate over 

whether the SCN specifically promotes wakefulness (as in the “opponent process model”), 

sleep, or both.199, 201 More recently, Hcrt was proposed as a point of integration between 

circadian and homeostatic mechanisms based on CSF Hcrt1 levels assayed across the day 

and in conjunction with sleep deprivation. However, it is unclear to what extent changing 

Hcrt1 levels in the CSF result from active (e.g., circadian or homeostatic) 

regulation156, 202, 203 or are passively driven by increased locomotor activity.204 Integration 

of circadian and homeostatic signaling may also occur within the SCN. Indeed, SCN 

neuronal firing rates are modulated by sleep-wake state and by sleep deprivation,205, 206 and 

certain sleep-wake states (e.g., REM sleep)207-209 and EEG spectral signatures188 may be 

under stronger circadian control than others.
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Circadian rhythms arise from interactions between a well-characterized set of dedicated 

“clock genes” found throughout the body and CNS.210, 211 Genetic disruption of the clock 

via knockout yields increased waking, increased sleep or no change of daily sleep-wake 

amounts depending on the particular gene targeted.212-216 Sleep deprivation can modulate 

extra-SCN clock gene expression and binding activity.217-221 Together, these findings 

suggest that different clock genes may play distinct roles in regulating or integrating 

circadian and homeostatic aspects of sleep.

In Search of Substrates for Process S

Whereas the anatomical substrate for Process C had been identified prior to the development 

of the two-process model, a similar substrate for Process S has proven more difficult to 

identify. GABAergic neurons in the MnPO are sleep-active,34, 222 project to wake-active 

brain regions including the LC, DRN, vlPAG and the Hcrt neurons,38 and Fos 

immunohistochemical studies indicate that MnPO activation occurs during sleep deprivation 

prior to sleep onset,223 suggesting that this region is responsive to homeostatic sleep 

pressure. MnPO neurons also exhibit increased Fos activation during REM sleep 

deprivation.224

A cortical neuronal population that expresses neuronal nitric oxide synthase (nNOS) has 

recently emerged as a candidate for involvement in Process S. Whereas the majority of 

cortical neurons express the immediate early gene product Fos during waking, cortical 

nNOS neurons express Fos during sleep, but not during wakefulness.225 Cortical nNOS 

neurons, which also coexpress the Substance P receptor NK1, represent the rarest subset of 

GABAergic interneurons and are anatomically and functionally quite distinctive: they are 

the only nNOS-synthesizing neuronal population reported to be sleep-active,226 they receive 

subcortical inputs from sleep-related cholinergic227 and serotonergic228 neurons, and send 

long-range rather than local circuit projections.229-232 Functionally, nNOS cortical neuron 

activation is positively correlated with NR bout duration and NRD energy233 and critically 

depends on elevated sleep pressure.234 Furthermore, loss of nNOS signaling in nNOS null 

mutant mice fragments NR sleep, attenuates NRD power while increasing delta power in 

wake, and increases sleepiness while attenuating response to sleep deprivation. Cortical 

nNOS neurons thus appear to be critical integrators in the neuronal network linking state-

dependent afferent inputs, homeostatic sleep drive and EEG SWA.235

Other Neurochemicals Involved in Sleep/Wake Control

Although functional neuroanatomical approaches, especially when combined with 

electrophysiology, have led to many fundamental insights into the control of sleep and 

waking, there is an equally impressive literature on sleep substances and their contributions 

to behavioral state. These “sparks vs. soup” approaches are highly complementary and 

valuable insights into the control of sleep and wakefulness have arisen from both 

approaches.
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Cytokines and Sleep

A number of lymphokines (e.g., interleukin-1, tumor necrosis factor alpha), inflammatory 

molecules and growth factors promote NREM sleep.236, 237 Interleukin-1 and tumor 

necrosis factor may regulate physiological sleep through direct, receptor-mediated 

modulation of the hypothalamus and serotonergic raphe nuclei. Other immune molecules, 

such as interleukin-6, promote NREM sleep and are elevated in sleep disorders with 

excessive daytime sleepiness as a symptom.

Peptides and Sleep

As indicated above, Hcrt has wake-promoting activity.106, 160 A number of other 

neuropeptides have also been found to promote wakefulness. Corticotrophin-releasing factor 

(CRF)238, 239 and adrenocorticotrophic hormone,240 two core components of the 

hypothalamo-pituitary adrenal axis, promote wakefulness, possibly mediated by CRF 

activation of CRF receptor-1 on Hcrt cells.141 Thyrotropin-releasing hormone (TRH) and 

TRH analogs are wake-promoting in rodents241, 242 but, in a clinical study, TRH only 

exerted a “weak” effect on sleep efficiency.243 Neuropeptide Y, a potent inducer of feeding 

behavior, exerts varied effects on rodent sleep ranging from sleep suppression to alterations 

in EEG spectral power.244-246 In humans, intravenous NPY reduced sleep latency in young 

men247 and older men and women.248 Neuropeptide S249 and urotensin250 are also reported 

to promote wakefulness in rodents.

Among sleep-promoting peptides, growth hormone releasing hormone (GHRH) has been 

extensively studied,238, 251, 252 in part because pharmacological stimulation of slow wave 

sleep (SWS) results in increased GH release.253 However, studies of peptides related to the 

GH system have produced varying results.246, 254-256 Intraperitoneal cholecystokinin-8 

(CCK) reduced sleep latency and increased NREM sleep in rats and rabbits257-259 and 

centrally-administered CCK restored sleep in cats rendered insomniac by serotonin 

depletion.259, 260 α-melanocyte stimulating hormone is sleep-promoting as is corticotropin-

like intermediate lobe peptide.240 Both peripheral261 and icv262 infusion of insulin increases 

SWS in rats. These effects could be related to postprandial sleepiness. Insulin also stimulates 

insulin-like growth factor-1 (IGF-1) receptors, although the molar doses of IGF-1 needed to 

promote sleep are much lower than that of insulin.263

As indicated above, the hypothalamic neuropeptide MCH is coextensive, but not co-

localized, with Hcrt cells.92, 97, 98 MCH has profound effects on both SWS and REM sleep, 

in particular, when administered icv.264 Fos is activated in MCH neurons during recovery 

from REM sleep deprivation.264, 265 MCH neurons are inhibited directly by HA and 

indirectly by Hcrt via local GABA interneurons.266, 267 Optogenetic studies have implicated 

MCH neurons in the control of REM sleep268, 269 as well as sleep onset.270 Other peptides 

with REM-promoting activity include prolactin,271, 272 vasoactive intestinal 

polypeptide 272, 273 and pituitary adenylate cyclase-activating polypeptide.274-277

Extracellular Adenosine as an Indicator of Sleep Loss

Interest in adenosine (AD) as a potential modulator of sleep and wakefulness arose when the 

adenosine receptors were cloned and it was recognized that methylxanthines such as 
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caffeine, a potent wake-promoting substance, were antagonists at AD receptors.278 AD is 

the ultimate breakdown product of ATP and, as such, there has also been great interest in a 

role for AD as a potential link between sleep and restoration of intracellular energy 

stores.279, 280 Injections of AD or AD analogs typically promote sleep and NREM EEG 

delta power;281-284 interestingly, such injections increase delta power even in sleep-satiated 

animals285. AD signaling regulates sleep and waking at targets including the BF, VLPO, 

Hcrt neurons, cortex and brainstem,280 primarily via inhibitory A1 receptors and excitatory 

A2A receptors.286-289

Levels of extracellular AD accumulate with time spent awake and decline during recovery 

sleep in the BF and cortex but weakly, if at all, in other brain regions.290, 291 In the BF, 

wake-related AD release appears to depend on cholinergic neurons, as cell-specific lesions 

of these neurons abolish AD increases induced by sleep deprivation.292, 293 Together, these 

data suggest that AD is an important endogenous regulator of sleep and waking in the brain, 

and that the BF, in particular, is important for adenosinergic influences on sleep 

homeostasis.294 While the source of AD in the BF has proven elusive, expression of 

inducible NOS (iNOS) in the cholinergic BF neurons appears to be important for the wake-

related upregulation of AD.295-297 Astrocytes may be an important source for AD induced 

by waking, as abolishing vesicular release specifically in astrocytes attenuated the 

homeostatic sleep response and blocked the sleep-suppressing effect of an adenosine A1 

receptor antagonist.298, 299 Given the important role played by astrocytes in regulating 

neuronal energy stores, it is tempting to speculate that glial-neuronal interactions may be a 

critical component of regulating sleep need.300-302

Melatonin

Melatonin is produced by the pineal gland during the night in both diurnal and nocturnal 

species. Specific receptors for melatonin are found in the cortex, SCN, and hypothalamic 

regions involved in thermoregulation. Exogenous melatonin is a popular hypnotic available 

in both physiological (0.03 mg) and pharmacological (1-10 mg) doses. Physiologic doses 

can help in sleep onset processes when sleep initiation is attempted at abnormal times, such 

as occurs following travel across time zones. Melatonin helps to synchronize circadian 

rhythms in totally blind individuals.303 Pharmacologic doses may work through non-

melatonin receptors.

Prostaglandin D2 and Sleep/Wake Regulation

Intra-cerebral administration of prostaglandin D2 (PGD2) induces sleep, especially SWS, in 

rats and monkeys.304 Inhibition of the enzyme responsible for PGD2 synthesis, PGD 

synthase (PGDS),305, 306 markedly suppresses sleep and blockade of PGD2 receptors 

inhibits physiological sleep.307 CSF levels of PGD2 undergo significant modulation by time 

of day in rats, with a daytime peak and a nighttime trough.308 CSF levels of PGD2 in rats 

increase during sleep deprivation and tend to increase along with an increasing propensity 

toward sleep under normal conditions.309 The site of action for PGD2 has been identified as 

a sleep-promoting zone (PGD2-SZ) located on ventral surface of the rostral basal forebrain 

outside the brain parenchyma.310, 311 Administration of a selective adenosine A2a-R agonist 

(CGS21680), but not the selective adenosine A1-R agonist cyclohexyladenosine, markedly 
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induces sleep when administered to the PGD2-SZ.312 The SWS-promoting effect of PGD2 is 

inhibited by pretreatment with KF17837, a highly selective A2a-R antagonist312 and is 

blunted in adenosine A2a-R-deficient mice.289 It is therefore hypothesized that PGD2 is 

coupled to A2a-R adenosinergic signaling via the brain parenchyma and that the PGD2-SZ 

plays an important role as an interface between these two systems.

Gonadal steroids and sleep

Sex and sex hormones have long been reported to modulate sleep and biological timing, but 

only recently have these phenomena begun to be studied on a more mechanistic level.313 

Women exhibit increased subjective sleep disturbance, particularly insomnia,314 and 

increased spindle activity and SWA compared to men.315-318 Sex differences in SWA are 

amplified by sleep deprivation, aging and major depression.315, 319 Sleep spindle activity 

and REM sleep, but not SWA, also vary across the menstrual cycle.320-322 Female rodents 

exhibit increased wakefulness in the dark (active) phase compared to males,323-328 with the 

estrus cycle further modulating sleep in female rats,329-331 but not mice.325 Like humans, 

female mice exhibit increased spindle frequency activity and NRD compared to 

males.324, 326 Circulating ovarian steroids, particularly estradiol and progesterone, are 

important for maintaining many of these effects.327, 330, 332-334 Studies exploiting genetic 

tools to dissociate genetic and gonadal sex, along with use of classical neuroendocrine 

paradigms, recently showed that sex differences in sleep appear to be developmentally 

determined by a combination of genetic sex and gonadal hormone exposure.335, 336 Estradiol 

downregulates the synthetic enzyme for PGD2,337 increases Hcrt and Hcrt receptor 

expression levels,338, 339 and modulates Fos expression in the VLPO and TM.331

SUMMARY

Sleep is a regulated physiological state with clear implications for cognition, performance 

and overall well-being. Although beyond the scope of this review, numerous sleep disorders 

have been described that negatively impact these functions. Other chapters in this volume 

address the involvement of sleep disturbances in a number of psychiatric disorders. The 

neural substrates of sleep and wakefulness appear to be highly distributed and, to some 

extent, redundant systems distributed throughout the brain with monoaminergic and 

cholinergic systems largely promoting wakefulness and GABAergic systems in the preoptic 

area and brainstem promoting sleep. The hypocretin/orexin system appears to play a special 

role in the promotion of wakefulness and suppression of REM sleep by providing excitatory 

input to the monoaminergic and cholinergic systems. Sleep is not a unitary state but involves 

a cyclic alternation between NREM and REM sleep; the pons is critical for generating the 

multiple components (i.e., EEG synchronization, eye movements, muscle atonia, etc.) that 

characterize REM sleep. The timing of sleep and wakefulness is regulated by an interaction 

between the circadian pacemaker located in the hypothalamic SCN and a sleep homeostatic 

system whose anatomical location is yet to be convincingly identified. Among various 

neurochemicals, extracellular AD accumulates in the BF as wakefulness is extended and 

inhibits cortically-projecting cholinergic neurons, thereby influencing cortical activity. A 

corticothalamocortical loop plays a major role in generating SWA measured in the EEG; 

cortical nNOS/NK1 neurons may be important in coordinating and/or propagating SWA 
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within the cortex. Since the control of sleep and wakefulness involves a complex 

orchestration of the activity of many neural systems, it is readily apparent that many nodes 

for dysfunction exist that can have implications for both physical and mental health.
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LIST OF ABBREVIATIONS

5-HT 5-hydroxytrytamine (serotonin)

AD Adenosine

ARAS Ascending reticular activating system

BF Basal forebrain

CRF Corticotrophin releasing factor

CSF Cerebrospinal fluid

DA Dopamine

DRN Dorsal raphe nuclei

EEG Electroencephalogram

GABA Gamma-aminobutyric acid

GH Growth hormone

GHRH Growth hormone-releasing hormone

HA Histaminergic

Hcrt Hypocretin (orexin)

IGF-1 Insulin-like growth factor-1

iNOS Inducible Nitric Oxide Synthase

LC Locus coeruleus

LDT Laterodorsal tegmental nucleus

LH Lateral hypothalamus

MCH Melanin-concentrating hormone

MnPO Median preoptic area

nNOS Neuronal Nitric Oxide Synthase

NREM Non-rapid eye movement sleep

NRD NREM delta power

PB Parabrachial nucleus
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PGD2 Prostaglandin D2

PGD2-SZ Prostaglandin D2-sensitive zone

PGO Ponto-geniculo-occipital

PLH Posterolateral hypothalamus

PPT Pedunculopontine nuclei

PZ Parafacial zone

REM Rapid eye movement sleep

SCN Suprachiasmatic nuclei

SLD Sublaterodorsal tegmental nucleus

SN Substantia nigra

SWA Slow wave activity

TM Tuberomammillary nuclei

TRH Thyrotropin-releasing hormone

VLPO Ventrolateral preoptic area

VTA Ventral tegmental area
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KEY POINTS

• Sleep is not a unitary state; Rapid Eye Movement (REM) and non-REM 

(NREM) sleep recur with a 90 min cyclicity in humans and more rapidly in 

other mammals.

• The monoaminergic systems of the brainstem, the cholinergic neuronal groups 

found in the brainstem and basal forebrain and the hypocretin/orexin cells of the 

hypothalamus are critical for the maintenance of wakefulness.

• Sleep is regulated by GABAergic populations in both the preoptic area and the 

brainstem; increasing evidence suggests a role for the melanin-concentrating 

hormone cells of the lateral hypothalamus.

• The pons has historically been viewed as critical for the production of REM 

sleep; recent research implicates descending projections from the hypothalamus 

and the periaqueductal gray as important for control of pontine REM generators.

• The hypocretin/orexin cells of the posterior and lateral hypothalamus provide 

excitatory input to all wake-promoting monoaminergic and cholinergic brain 

nuclei and both promote wakefulness and suppress REM sleep; loss of these 

cells results in the sleep disorder narcolepsy.

• The timing of sleep and wakefulness across the 24 h day/night cycle is due to 

the interaction between the circadian pacemaker located in the suprachiasmatic 

nuclei of the hypothalamus and a sleep homeostatic mechanism whose 

anatomical locus is yet to be conclusively defined.

• Sleep is a homeostatically-regulated process in which adenosine plays an 

important feedback role; the underlying neural circuitry is incompletely 

understood but may involve cortical nNOS/NK1 neurons.

• Synchonization of cortical activity as measured in the electroencephalogram 

(EEG) involves a corticothalamocortical loop and oscillators intrinsic to the 

cortex; EEG desynchronization results from monoaminergic and/or cholinergic 

input to the thalamus and cholinergic projections from the basal forebrain.
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Figure 1. 
Schematic depiction of major subcortical sleep-wake regulatory populations. Wake-

promoting cell groups are green, NREM sleep-promoting cell groups are blue and REM 

sleep-related cell groups are red. Green boxes with red outlines indicated wake/REM-active 

populations. Gray boxes indicate local GABA interneurons. Excitatory connections are 

marked with arrowheads, and inhibitory connections are indicated by blunted terminals. 

Dotted lines indicate pathways that are inhibited during REM sleep.
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