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Abstract

In reward-based learning, synaptic modifications depend on a brief stimulus and a temporally 

delayed reward, which poses the question of how synaptic activity patterns associate with a 

delayed reward. A theoretical solution to this so-called “distal reward problem” has been the 

notion of activity-generated ‘synaptic eligibility traces’, silent and transient synaptic tags that can 

be converted into long-term changes in synaptic strength by reward-linked neuromodulators. Here 

we report the first experimental demonstration of eligibility traces in cortical synapses. We 

demonstrate the Hebbian induction of distinct traces for LTP and LTD and their subsequent 

timing-dependent transformation into lasting changes by specific monoaminergic receptors 

anchored to postsynaptic proteins. Notably, the temporal properties of these transient traces allow 

stable learning in a recurrent neural network that accurately predicts the timing of the reward, 

further validating the induction/transformation of eligibility traces for LTP and LTD as a plausible 

synaptic substrate for reward-based learning.

Introduction

A central aim of learning in biological organisms is to maximize reward. To achieve this 

aim, animals must learn what stimuli and actions predict an often delayed reward, and when 

the reward is likely to arrive. This poses a fundamental question regarding the synaptic 

mechanisms of learning: how can a delayed reward gate plasticity in synapses that were 

transiently activated by the predictive stimulus? A theoretical solution proposed decades ago 

to bridge the temporal gap between stimulus and reward, the so-called “credit assignment 
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problem,” is the notion that neural activity generates silent and transient “synaptic eligibility 

traces” that can be transformed into long-term changes in synaptic strength by reward-linked 

neuromodulators (Crow, 1968; Frémaux, Sprekeler, & Gerstner, 2010; Gavornik, Shuler, 

Loewenstein, Bear, & Shouval, 2009; Hull, 1943; Izhikevich, 2007; Klopf, 1982; Sutton & 

Barto, 1998; Turner, O'Connor, Tate, & Abraham, 2003; Wörgötter & Porr, 2005).

In most theoretical models of reward-driven learning, synaptic eligibility traces are typically 

induced in a Hebbian manner by coincident pre- and post-synaptic activity, and have half 

times in the order of seconds (Frémaux et al., 2010; Izhikevich, 2007; Klopf, 1982; Sutton & 

Barto, 1998), during which they can be converted into long-term changes by the action of 

neuromodulators. Although bidirectional synaptic plasticity induced by coincident activity is 

well established, particularly in the form of spike-timing dependent plasticity (STDP) 

(Caporale & Dan, 2008; Richards, Aizenman, & Akerman, 2010), the existence of eligibility 

traces for LTP has been reported in only two studies, neither of them in cortex (Cassenaer & 

Laurent, 2012; Yagishita et al., 2014).

Recent findings in rodents and humans have implicated primary sensory cortices in 

reinforced learning (Chubykin, Roach, Bear, & Shuler, 2013; Gardner & Fontanini, 2014; 

Jaramillo & Zador, 2011; Poort et al., 2015; Seitz, Kim, & Watanabe, 2009; Shuler & Bear, 

2006), making them attractive systems to examine the existence of eligibility traces. 

Historically, neuroplasticity associated with reward has been studied primarily in the 

dopaminergic system and its projection areas, including basal ganglia and prefrontal cortex, 

which are involved in detecting reward and orchestrating the appropriate response. 

However, the process of learning to recognize the reward-predicting stimuli likely involves 

remodeling in primary sensory cortices as well. Indeed, cells in primary sensory cortices can 

predict essential attributes of the reward, including timing (Poort et al., 2015; Shuler & Bear, 

2006) and value (Gardner & Fontanini, 2014).

We examined the existence of eligibility traces in layer II/III pyramidal cells in slices from 

both visual and prefrontal cortices. An important motivation was the observation in the 

visual cortex, the Hebbian induction of long-term potentiation and depression (LTP and 

LTD) depends crucially on not only glutamate receptors, but also neuromodulator receptors 

coupled to Gs and Gq (Choi et al., 2005; Huang et al., 2012; Yang and Dani, 2014). In 

reinforcement learning, reward is typically delayed. We therefore tested whether 

neuromodulators could also act in a retrograde manner, to allow synaptic changes when 

applied after conditioning. We demonstrated in both visual and prefrontal cortices the 

Hebbian induction of short-lived eligibility traces that can be converted into either LTP or 

LTD by specific monoamines. We found that LTP and LTD associated traces have different 

dynamics and demonstrated the functional significance of these different dynamics by 

showing that temporal competition between these eligibility traces produces stable learning 

that allows a recurrent neural network to predict the arrival time of the reward.
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Results

Specific monoamines transform synaptic eligibility traces induced by spike-timing 
conditioning into LTP or LTD

As mentioned above, in cortex, unlike other structures such as hippocampus, the induction 

of Hebbian plasticity depends critically on the activation of G-protein coupled receptors 

(GPCRs), such that blockade of these receptors or depletion of the endogenous 

neuromodulators prevents LTP and LTD (Choi et al., 2005; Huang et al., 2012). Moreover, 

due to this GPCR-dependency, under certain experimental conditions, including ours, the 

Hebbian induction of synaptic plasticity with spike-timing (ST) dependent conditioning 

requires the addition of exogenous neuromodulators (Edelmann and Lessmann, 2013; Huang 

et al., 2014; Seol et al., 2007; Yang and Dani, 2014). We exploited this fact to directly test 

the induction of eligibility traces in cortical slices by determining whether ST conditioning 

can result in LTP or LTD if rapidly followed by an application of neuromodulator agonists. 

The neuromodulators tested were norepinephrine, serotonin, dopamine and acetylcholine, all 

of which have been implicated in cortical plasticity. We first focused on the primary visual 

cortex, where reward-based changes are well established in both primates (including 

humans) and rodents (Goltstein, Coffey, Roelfsema, & Pennartz, 2013; Poort et al., 2015; 

Seitz et al., 2009; Shuler & Bear, 2006). The recordings were done in layer II/III pyramidal 

cells and involved activation of two independent Layer IV to Layer II/III pathways, which 

were conditioned simultaneously with near coincidental pre- and postsynaptic stimulation 

(spike-timing or ST conditioning, Fig 1A, B). In one pathway, presynaptic stimulation 

preceded a burst of postsynaptic potentials by 10 ms (pre-post: to promote LTP); in the other 

one, it occurred 10 ms after the burst (post-pre: to promote LTD). Neuromodulators were 

pressure ejected from a nearby pipette beginning immediately after ST conditioning and 

continuing for 10 s. As expected, under control conditions the ST conditioning elicited no 

plasticity (Fig 1C, pre-post: p = 0.563; post-pre: p = 0.156), but plasticity was observed 

when the ST conditioning was immediately followed by pressure ejection of norepinephrine 

(NE: 50 μM, 10 s) or serotonin (5-HT: 50 μM, 10 s). NE selectively potentiated the pre-post 

pathway without affecting the post-pre pathway (Fig 1D, pre-post: p = 0.002; post-pre: p = 

0.232); conversely, 5-HT selectively depressed the post-pre pathway, but not the pre-post 

pathway (Fig 1E, pre-post: p = 0.160; post-pre: p = 0.002). Pressure ejection of the agonists 

alone in naïve (non-conditioned) pathways had no lasting effect on synaptic strength (NE 

only: 102.9 ± 5.6%, n = 6; 5-HT only: 102.8 ± 8.5%, n = 5. Data not shown), confirming 

that the monoamine agonists were converting previously induced eligibility traces into 

changes of synaptic strength.

In contrast to NE and 5HT, no effect was observed with dopamine application (DA: 50 μM; 

Fig 1F, pre-post: p = 0.843; post-pre: p = 1), which is not surprising given that dopaminergic 

transmission is minimal in visual cortex. Similarly, application of the cholinergic agonist 

carbachol (CCh: 250 μM; Fig 1G, pre-post: p = 0.742; post-pre: p = 0.547) after ST 

conditioning did not affect the EPSPs, even with a long (5 min) puff duration (Fig S1A). 

However, and confirming previous findings (Kirkwood, Rozas, Kirkwood, Perez, & Bear, 

1999), the long CCh exposure did promote LTD induction if applied before the ST 

conditionings (Fig S1B). Thus, only a subset of neuromodulators can transform eligibility 
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traces into LTP and LTD. The induction of the traces, on the other hand, is a general 

phenomenon not restricted to ST conditioning, and it can also be achieved by pairing 

synaptic stimulation (10 Hz, 20 sec) with sustained postsynaptic depolarization (-10 mV for 

LTP and -40 mV for LTD). Conditioning by pairing to -10 mV depolarization produced a 

modest LTP (109.64 ± 3.59%, n = 8, p = 0.005, data not shown). Consistent with the crucial 

role of neuromodulators in cortical LTP (Choi et al., 2005; Huang et al., 2012), this LTP was 

substantially impaired (101.36 ± 4.58%, n = 8, Fig S1C) if the endogenous monoamines 

were depleted by reserpine injection 1 day prior to the experiments (Choi et al., 2005; 

Otmakhova & Lisman, 1996). In these depleted slices, however, LTP developed robustly 

when NE was puffed on after the conditioning protocol (131.28 ± 7.08%, n = 7, p = 0.006. 

Fig S1C). Similarly, 10 Hz stimulation paired to -40 mV depolarization alone was not able 

to induce LTD (106.3 ± 7.0 %, n = 9, Fig S1D) in the reserpine-injected mouse. However, it 

caused a prominent LTD when immediately followed by 5-HT puff (78.2 ± 6.8 %, n = 9, p = 

0.027, Fig S1D).

To evaluate the generality of the eligibility traces, we extended the studies to layer II/III 

synapses of the prefrontal cortex (mPFC), which is highly innervated by dopaminergic, 

noradrenergic, and serotonergic fibers, and has been implicated in multiple forms of reward-

based learning (Kahnt, Grueschow, Speck, & Haynes, 2011; Ridderinkhof, van den 

Wildenberg, Segalowitz, & Carter, 2004; Rushworth, Noonan, Boorman, Walton, & 

Behrens, 2011). As in visual cortex, NE (50 μM, 10 s) transformed the trace in the pre-post 

pathway into LTP (Fig 2A, p = 0.01) and 5-HT (50 μM, 10 s) transformed the trace in the 

post-pre pathway into LTD (Fig 2B, p = 0.008). Unlike in visual cortex, however, DA (50 

μM, 10 sec) did transform the trace in the pre-post pathway into LTP (Fig 2C, p = 0.01). On 

the other hand, CCh was ineffective in either pathway (Fig 2D, pre-post: p = 0.156; post-pre: 

p = 0.125). Altogether, these results indicate that eligibility traces for LTP and LTD can be 

induced in a Hebbian manner, and that distinct and specific monoamine neuromodulators 

can transform these invisible traces into long-term synaptic plasticity throughout many 

cortical areas.

Endogenous monoamines can transform synaptic eligibility traces

Although puffing neuromodulators at high concentration yields consistent results, this 

paradigm may not resemble conditions in vivo. Therefore, we tested a more physiological 

paradigm for the transformation of eligibility traces by releasing endogenous 

neuromodulators with optogenetics in TH-ChR2 and Tph2-ChR2 mice, which express 

channelrhodopsin- (ChR2) in adrenergic/dopaminergic (Fig S2) and serotonergic nuclei 

(Zhao et al., 2011), respectively. Similar to puffing, release of endogenous NE only 

transformed the LTP eligibility trace (Fig 3A, pre-post: p = 0.039) while endogenous 5-HT 

only transformed the LTD trace (Fig 3C, post-pre: p = 0.002) in visual cortex. Importantly, 

the transformation of the LTP/D traces only happened when the monoamines were released 

after the Hebbian conditioning but not before (Fig 3B, D). The requirement for a strict 

temporal order between the ST conditioning and the phasic release of neuromodulators 

mirrors the sequential order of stimulus-reward in reinforcement learning.
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Reinforced learning in behaving animals occurs over multiple stimulus-reward epochs 

spaced in time (Chubykin et al., 2013; Seitz et al., 2009). This differs from the protocols we 

used above, which were chosen to demonstrate unequivocally the induction and 

transformation of the eligibility traces. In this study we delivered the neuromodulators just 

once after 200 Hebbian conditionings that were massed into a single induction epoch. To 

better mirror reinforcement learning we tested whether optogenetic reinforcement of 

individual ST conditioning epochs (40 pre-post or post-pre pairings spaced by 20 seconds 

intervals) can also result in LTP/D. In slices from TH-ChR2 mice, 1 s trains of blue light 

pulses (10 ms at 10 Hz) flashed immediately after each pre-post conditioning epoch induced 

robust LTP (Fig 4A, p1, p = 0.016). Similarly, in the Tph2-ChR2 mice, the blue light flashed 

immediately after each post-pre conditioning epoch induced LTD (Fig 4B, p1, p = 0.002). In 

both cases (Fig 4A, B), synaptic responses in control pathways that were conditioned with 

the ST epochs, but out of phase with the blue light flashes (10 s gap), did not change (p2, 

pre-post only: p = 0.164, Fig 4A; p2, post-pre only: p = 0.734, Fig 4B). Altogether, these 

results indicate that the monoamine-mediated transformation of eligibility traces is a 

physiologically plausible mechanism to encode reward-based learning in vivo.

Transformation of short-lived synaptic eligibility traces requires anchoring of monoamine 
receptors

Previously we showed that stimulation of the Gs- and Gq-coupled receptors respectively 

promote LTP and LTD (Seol et al., 2007). It was surprising therefore that NE and DA, 

which stimulate both types of receptors, only affected the eligibility traces for LTP. Indeed, 

only 5-HT acted on the LTD traces. To solve this conundrum we first set out to identify the 

relevant neuromodulator receptors using receptor-specific antagonists. One attractive 

candidate among the adrenoreceptors coupled to Gs was β2ARs, which are enriched in 

spines and promote LTP (Davare et al., 2001; Qian et al., 2012). We found that the β2AR 

antagonist (ICI 118,551, 1 μM) blocked the transformation of the LTP traces by NE (Fig 

5A). Moreover, the βAR agonist isoproterenol (50 μM) was sufficient to transform the LTP 

trace, as was direct elevation of intracellular cAMP level, which is consistent with the role 

of β2AR stimulation in cAMP production (Fig S3). On the other hand, the generic 5-HT2 

antagonist ketanserin (1 μM) blocked the transformation of the LTD trace (99.97 ± 6.75%, n 

= 7, data not shown). In addition, and consistent with the absence of 5-HT2A receptors in 

layer II/III (Weber & Andrade, 2010), the specific 5-HT2CR antagonist RS 102221 (1 μM) 

was sufficient to block the transformation of the LTD traces by 5-HT (Fig 5B). Thus, 

although multiple Gs- and Gq- coupled receptors, including the noradrenergic α1 and the 

cholinergic m1, may prime the subsequent induction of synaptic plasticity in visual cortex, 

our results strongly suggest that the β2AR and 5-HT2CR are mainly responsible for 

transforming previously induced eligibility traces.

One possible determinant of the specific role of β2AR and 5-HT2CR in trace transformation 

is the subcellular location of these receptors. Both receptors can directly interact with the 

PDZ domain-containing proteins such as PSD-95 and/or MUPP1 (Becamel et al., 2001; 

Bécamel et al., 2004; Joiner et al., 2010), suggesting that they are anchored at or very close 

to the synapse. Therefore, we tested the effects of disrupting their interaction with PDZ 

proteins by adding the c-terminal peptides of β2AR (DSPL: 50 μM) or 5-HT2CR (2C-ct 
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peptide: 50 μM) to the recording electrode (Altier, Lory, Wijnholds, & Marin, 2006; Joiner 

et al., 2010)(Fig 5C-F). DSPL, but not the control peptide DAPA (with the -2 and 0 

positions changed to alanine), did block the NE-mediated transformation of the LTP trace 

(Fig 5D, p = 0.041 between DSPL and DAPA), while the 2C-ct peptide, but not its 

scrambled control CSSA, prevented the transformation of the LTD eligibility trace (Fig 5F, 

p = 0.004 between 2C-ct and CSSA). The peptides did not block synaptic plasticity induced 

by presynaptic stimulation paired with postsynaptic depolarization, which is an effective 

induction protocol that does not require added neuromodulators (Fig S4, see methods and 

Huang et al., 2012 for further details), indicating that the anchoring of receptors was only 

required for the conversion of the eligibility traces, not for the induction of plasticity. The 

results above suggest that β2AR and 5-HT2CR needs to be anchored at or close to the 

synapse in order to convert very transient eligibility traces.

LTP/D synaptic eligibility trace properties allow a network to learn to predict reward timing

Theoretical considerations suggest that synaptic eligibility traces should be transient, but 

experimentally very little is known about their duration (Yagishita et al., 2014). Moreover, 

since distinct traces for LTP and LTD have not previously been described either 

experimentally or theoretically, nothing is known about the temporal properties of LTD 

traces. We set out to study the duration of the different eligibility traces and found that they 

have different durations. We show theoretically that these different durations are sufficient 

for producing stable learning in recurrent networks that learn to predict expected reward 

times.

To experimentally study the duration of the eligibility traces, we varied the delay between 

the ST conditioning and the puff of neuromodulators (Fig 6A insert). The LTP magnitude 

was about half-reduced when the agonist puff was delayed by 5 s and it was completely 

gone if delayed by 10 s (Fig 6A, B; p = 0.007 between Δt = 10 s and Δt = 0 s). The LTD 

eligibility trace was even shorter, and by 5 s it was completely absent (Fig 6A, B; p = 0.003 

between Δt = 5 s and Δt = 0 s). Thus, the eligibility traces are short-lived, with the LTD trace 

substantially shorter than the LTP trace.

In general, learning rules must not only represent the statistics of the environment, but also 

find stable solutions in which synaptic efficacies do not saturate or fall to zero. A possible 

consequence of having two eligibility traces, one for LTP and one for LTD, is that the 

balance between LTP and LTD could produce stable learning. Synaptic eligibility traces as 

observed experimentally are Hebbian in nature, and therefore depend on network dynamics, 

which in turn depend on synaptic efficacies. Here we propose that under certain conditions, 

the difference observed in temporal dynamics of the eligibility traces can generate stable 

reinforcement learning in cortical networks.

We illustrated this process in the context of learning to predict reward timing within a 

recurrent neural network. Our example is motivated by several experiments in primary 

sensory cortex (Chubykin et al., 2013; Gavornik et al., 2009; Goltstein et al., 2013; Shuler & 

Bear, 2006), in which a stimulus paired with a delayed reward results in cortical cells that 

remain active until the expected reward time. To this end we simulated the activity of a 

recurrent network of excitatory neurons (architecture depicted in Fig 7A. Model details and 
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equations in the Mathematical Model part of the methods section which implements a 

learning-rule based on two eligibility traces, with different dynamics as observed 

experimentally (Fig 6). Such a network, as shown previously (Gavornik & Shouval, 2011; 

Gavornik et al., 2009), can generate long lasting dynamics that predict the timing of reward 

by learning the appropriate choice of lateral connection strengths, denoted by the connection 

matrix L (Fig 7A). Previously, a learning-rule based on a single eligibility trace and active 

inhibition of reward was proposed, but this rule is inconsistent with experimental results 

(Chubykin et al., 2013; Gavornik & Shouval, 2011; Gavornik et al., 2009; Liu et al., 2015). 

We replaced the previous learning-rule with a rule consistent with the experimental findings 

found here. The learning-rule proposed here is based on the following minimal set of 

assumptions: first, two eligibility traces, one for LTP and one for LTD, are activated in a 

Hebbian manner. Second, the time constant of the LTP trace is longer than that of the LTD 

trace. Third, the LTD trace saturates at higher effective values than the LTP trace. Finally, 

the change in synaptic weights depends on the difference between the LTP and LTD traces 

at the time of reward. These assumptions are implemented mathematically by equations 1-3 

in the Mathematical Model part of the methods section. The first two assumptions are 

explicitly demonstrated experimentally in this paper, and the other assumptions are 

biologically plausible. The network (Fig 7A) was trained by repeatedly pairing a brief 

feedforward stimulus (100 ms) with a reward delayed by 1000 ms. Initially, the network 

responded only to the presentation of the stimulus (Fig 7B), but over the course of many 

trials strengthening of the recurrent synaptic weights (indicated by L in Fig. 7A) 

transformed the network's activity into a sustained response, which decayed slowly, 

spanning the time between the stimulus and the expected reward (Fig 7C-D, raster plots in 

Fig S5). After training, the network exhibited sustained activity that terminated near the 

expected time of the reward, indicating that the network learned to represent the reward-

timing, similar to what is observed in rodent visual cortex after a similar training procedure 

(Chubykin et al., 2013; Shuler & Bear, 2006). This self-limiting sustained network activity 

results from the temporal competition between the LTP (red) and LTD (blue) eligibility 

traces (Figure 7E-G). Initially, at the time of the reward, the LTP eligibility trace (Fig 7E, 

red) is larger than the LTD-related trace (Fig 7E, blue), resulting in net LTP. The increase in 

recurrent synaptic efficacies causes reverberations in the network extend the network 

activity (Fig 7C). When network activity is still significantly shorter than the delay to 

reward, the LTP eligibility trace still dominates (Fig 7F). When the duration of activity in 

the network approaches the reward time (Fig 7D), the eligibility traces at time of reward 

cancel each other out (Fig 7G) and the network dynamics are stabilized. If the network 

dynamics overshoot the reward time, or if the reward time is modified to a shorter delay, the 

LTD related trace would dominate, and the network dynamics will become shorter and 

stabilize at the correct reward interval (Fig S5 C1-C3). This learning mechanism is robust 

and can be used to learn the timing for rewards arriving over a large range of different 

temporal delays (Fig 7H).

After training, network dynamics do not terminate exactly at time of reward, but decay just 

prior to its arrival (Fig 7, Fig S5). The time between the termination of network dynamics 

and the delivery of reward (defined as D) depends on the parameters of the learning rule 
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(Fig S5 D, E), and this can be approximately characterized by a simple formula (See 

methods section – Mathematical Model and Fig S5E).

Figure 6A shows a small potentiation when serotonin is applied with a delay of 5 seconds 

for an LTD-inducing protocol. Although this potentiation is not statistically significant, one 

might pose the question of how this will affect the behavior of the model. We find that at 

least in the context of the network trained here, this will not have a significant effect because 

at long delays the net effect is still LTP. Once the network activity approaches the reward 

time, LTD will still dominate, resulting in stable learning.

We demonstrated here that reinforcement learning that is based on the competition between 

the LTP and LTD traces, which is consistent with our experimental observations, stabilizes 

learning without the need to include additional reward inhibiting mechanisms as assumed 

previously (Gavornik et al., 2009; Rescorla & Wagner, 1972; Sutton & Barto, 1998).

Discussion

Although it is well established that Hebbian plasticity can account for the remodeling of 

cortical networks during learning, it has been less clear how Hebbian plasticity can be 

recruited/gated by reward. We have provided direct physiological support for the theoretical 

concept of “synaptic eligibility traces.” Importantly, we demonstrate that there are two 

eligibility traces, one for LTP and one for LTD, with different dynamics. The transformation 

of these transient traces into synaptic plasticity is accomplished by specific monoamine 

receptors that are anchored at the synapse. The existence of different traces for LTP and 

LTD may be a general phenomenon, as distinct traces are observable in both visual and 

prefrontal cortices. The different temporal dynamics of these two generate a self-stabilizing 

learning-rule that allows the cortical network to perform a fundamental computation, to 

learn the expected time of reward. We surmise that Hebbian induction of distinct eligibility 

traces for LTP and LTD, which can be transformed by specific monoamines, is a simple and 

attractive mechanism that would allow cortical circuits to learn what stimuli and actions 

predict reward.

The molecular details of eligibility traces remain to be determined. A plausible scenario is 

that the traces reflect residual activity of kinases and phosphatases that gate AMPA receptor 

trafficking in and out of the synapse, and that neuromodulators, by phosphorylating AMPA 

receptors, are crucial to complement or enhance this process (Huang et al., 2012; Seol et al., 

2007). Consistent with this idea, the decay of the LTP trace roughly matches the decay of 

CaMKII activity at pyramidal cell synapses (Lee, Escobedo-Lozoya, Szatmari, & Yasuda, 

2009). The present results also agree with our previous observation that G-protein coupled 

receptors act downstream of NMDA receptor activation to prime subsequent STDP 

induction in a pull-push manner, with Gs-coupled receptors promoting LTP over LTD and 

Gq-coupled receptors promoting LTD over LTP (Huang et al., 2012; Seol et al., 2007). 

Consistent with this pull-push model, β2 and 5HT2c receptors in the visual cortex, which 

specifically transform the traces for LTP and LTD, are coupled to Gs and Gq, respectively. 

Notably, however, while prolonged stimulation of multiple G-protein coupled receptors can 

prime LTP and LTD, their corresponding traces are transformed only by β2 and 5HT2c 
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receptors, which are anchored to the synapse. Moreover, brief stimulation of these two 

receptors can transform previously induced traces, but does not promote subsequent 

plasticity. Thus, our present findings extend the pull-push model, as the anterograde and 

retrograde actions of the neuromodulators both follow the Gs/Gq rule for LTP/LTD 

induction. At the same time, the present results reveal that the spatiotemporal profile of 

neuromodulator activation dictates whether they can support priming or transformation of 

plasticity.

The principles uncovered in visual cortex were confirmed in the prefrontal cortex, 

suggesting that transformation of LTP and LTD traces occurs throughout the cortex, 

although the specific supporting Gs- and Gq-coupled receptors may vary between cortical 

regions and layers. For example, DA can convert LTP traces in frontal but not visual cortex, 

and in visual cortex, acetylcholine puffs can reward input activity in layer V (Chubykin et 

al., 2013) but not layer II/III cells (Fig 1). These discrepancies can be simply explained by 

the synaptic anchoring of different GCPRs in these cells, although we cannot rule out more 

complex scenarios related to different mechanisms of synaptic plasticity (Wang & Daw, 

2003). A general mechanism of trace transformation is also consistent with the retrograde 

action of octopamine on STDP in insect olfactory learning (Cassenaer & Laurent, 2012), and 

with the recent report that in the striatum, Gs-coupled D1 receptors promote structural 

plasticity akin to LTP in synapses previously conditioned in a Hebbian manner (Yagishita et 

al., 2014). These previous studies only showed a single eligibility trace, and it remains 

unclear whether two independent traces are a general phenomenon that also applies to these 

specific systems.

In contrast to previous theories focusing on a single plasticity trace, we uncover distinct and 

independent traces for LTP and LTD. The observation that the decay of the LTD eligibility 

trace is about twice as fast as the decay of the LTP trace was initially surprising because 

theoretical considerations of unsupervised STDP in neural networks indicate that a larger 

window for LTD induction confers stability to learning in neural networks (Kempter, 

Gerstner, & van Hemmen, 2001; Song, Miller, & Abbott, 2000). In order to obtain stability, 

theories of reinforcement learning typically require an additional stopping rule (Gavornik et 

al., 2009; Rescorla & Wagner, 1972; Sutton & Barto, 1998), which at the physiological level 

is usually interpreted as inhibition of a reward nucleus. We demonstrated that due to the 

competition between the two eligibility traces, neural firing in cells within the network 

naturally stop prior to reward time without the need for inhibition of reward. This stability is 

not obtained due to competition between the different neuromodulators (Boureau & Dayan, 

2011), but due to temporal competition between synaptic eligibility traces with different 

dynamics, and could in principle be accomplished even if the same neuromodulator was 

responsible for converting both traces. Such neural dynamics, as observed in vivo (Shuler & 

Bear, 2006), can enable a cortical network to perform the behaviorally important task of 

predicting reward times. It would be of interest to explore whether the properties of the two 

independent eligibility traces, besides predicting timing, can also enable learning about other 

attributes of the reward, like quality and quantity, which are essential for decision making.
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Experimental Procedures

Animals—All procedures were approved by the Institutional Animal Care and Use 

Committee at Johns Hopkins University. TH-ChR2 mice were produced by crossing THicre 

homozygote (generously provided by Dr. Jeremy Nathan) with Floxed-ChR2 (B6;129S-

Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J, used for data in Fig 3A and Sup Fig 2B or 

B6.Cg-Gt(ROSA)26Sortm27.1(CAG-COP4*H134R/tdTomato)Hze/J, used in Fig 3B and Sup Fig 2C-

D (The Jackson Laboratory, Bar Harbor, ME). A Tph2-ChR2 (B6;SJL-Tg(Tph2-

COP4*H134R/EYFP)5Gfng/J) heterozygote breeding pair was purchased from the Jackson 

Laboratory. Mice used for Sup Fig 1C-D were intraperitoneally injected with reserpine (5 

mg/ kg) 23-24 hours before the experiment. All mice used were bred on a C57BL/6J 

background and were used at the age of p25-45, when both LTP and LTD are expressed 

postsynaptically (Seol et al. 2007).

Slice preparation—Coronal brain slices containing either visual or frontal cortex (300 μm 

thick) from C57BL/6J or transgenic mice (P25-P45) were prepared as described (Huang et 

al., 2012). Briefly, slices were cut in ice-cold dissection buffer containing (in mM): 212.7 

sucrose, 5 KCl, 1.25 NaH2PO4, 10 MgCl2, 0.5 CaCl2, 26 NaHCO3, 10 dextrose, bubbled 

with 95% O2/ 5% CO2 (pH 7.4). Slices were transferred to normal artificial cerebrospinal 

fluid (ACSF) (similar to the dissection buffer except that sucrose is replaced by 119 mM 

NaCl, MgCl2 is lowered to 1 mM, CaCl2 is raised to 2 mM), incubated at 30 °C for 30 

minutes, and then at room temperature for at least 30 minutes prior to recording.

Whole-cell current clamp recording—Visualized whole-cell recordings were made 

from layer II/III (>35% depth from the pia) regular-spiking pyramidal neurons. Glass pipette 

recording electrodes (3-5 MΩ) were filled with solution containing (in mM): 130 

(K)Gluconate, 10 KCl, 0.2 EGTA, 10 HEPES, 4 (Mg)ATP, 0.5 (Na)GTP, 10 

(Na)Phosphocreatine (pH:7.2-7.3, 280-290 mOsm). Only cells with membrane potentials 

<-65 mV, series resistance <25 MΩ, and input resistance >85 MΩ were recorded. Cells were 

discarded if any of these values changed >25% during the experiment. Data were filtered at 

10 kHz and digitized at 10 kHz using Igor Pro (WaveMetrics Inc., Lake Oswego, Oregon).

Electrical stimulation and induction of plasticity—Synaptic responses were evoked 

in two independent pathways at 0.05 Hz by either alternating or consecutive (300 ms apart) 

paired-pulse stimulations (0.2 ms; 10-100 μA; 50 ms interval) through two concentric 

bipolar electrodes (125 μm diameter; FHC, Bowdoin, ME) placed ∼300 μm apart in the 

middle of the cortical thickness. Stimulus intensity was adjusted to evoke simple-waveform 

(2-8 mV), short onset latency (<4 ms) monosynaptic excitatory postsynaptic potentials 

(EPSPs). Input independence was confirmed by the absence of paired-pulse interactions. 

Spike-timing (ST) conditioning consisted of 200 pairings (one presynaptic stimulation given 

either 10 ms before or 10 ms after 4 consecutive action potentials at 100 Hz in the 

postsynaptic neuron) delivered at 10 Hz. Action potentials were generated by injecting 

1.2-1.6 nA current for 2 ms. Pairings were followed by one of the following manipulations: 

a 10 s puff (1-6 psi) of neuromodulator Picospritzer; Parker Instrumentation), 50 UV light 

pulses (Thorlabs 365 nm LED, 100 ms duration) delivered through the 40× objective at 5 Hz 

to uncage DMNB-caged cAMP (Invitrogen), or trains of blue light pulses (Thorlabs 455 nm 
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LED, 10 ms duration) delivered at 10 Hz for 10 sec (Fig 3) or 1 sec (Fig 4) to activate ChR2. 

Pairing LTP/LTD in Sup Fig 4 was induced by 150 pairings of presynaptic stimulation with 

postsynaptic depolarization to 0/-40 mV at 0.75 Hz (each depolarization lasted for 666 ms; 

presynaptic stimulation was given 100 ms after the onset of depolarization). Pairing 

LTP/LTD in reserpine-injected mice (Sup Fig 1C-D) was induced by pairing 10 Hz 

presynaptic stimulation with 20 s of postsynaptic depolarization from -70 mV to -10 mV for 

LTP, and to -40 mV for LTD, with or without 10 s of neuromodulator puffing. The synaptic 

strength was quantified by measuring the initial slope of the EPSPs.

Isoproterenol hydrochloride (Iso, 50 μM), methoxamine hydrochloride (Met, 50 μM), 

carbamoylcholine chloride (CCH, 10-500 μM), norepinephrine bitartrate (NE, 10-50 μM), 

and ketanserine tartrate salt (Ketanserine, 1 μM) were purchased from Sigma. Serotonin 

hydrochloride (5-HT, 50 μM), dopamine hydrochloride (DA, 50 μM), RS 102221 

hydrochloride (RS 102221, 1 μM), ICI 118,551 hydrochloride (ICI 118,551, 1 μM), and 

reserpine (5 mg/kg, in 1.5% acetic acid) were purchased from Tocris. 4,5-Dimethoxy-2-

Nitrobenzyl Adenosine 3′,5′-Cyclicmonophosphate (DMNB-caged cAMP, 100 μM) was 

purchased from Invitrogen. The membrane-permeable peptide DSPL (11R-

QGRNSNTNDSPL) and its active analogue DAPA (11R-QGRNSNTNDAPA) were gifts 

from Dr. Johannes W Hell. Synthetic peptides (5-HT2C-Ct, VNPSSVVSERISSV; 5-

HT2CSSA-Ct, VNPSSVVSERISSA, >98% purity) were purchased from GenScript.

Biocytin staining and imaging—For imaging LC noradrenergic neurons, 5-week-old 

TH-ChR2 were transcardially perfuse with fresh PFA (4%). Brains were removed and fixed 

overnight in PFA before being transferred to a sterile solution of 30% sucrose in PBS(pH 

7.4) for at least 12 hours. The fixed brain was sectioned into 40 μm coronal slices using a 

freezing microtome (Leica) and kept at -20°C until use. For imaging recorded neurons from 

acute cortical slices of TH-ChR2 mice, biocytin was included into the recording pipette. 

After recording, slices were fixed in 10% formalin at least overnight before being rinsed in 

0.1 M PBS (2× 10 min). Slices were then permeabilized (2% Triton-X in 0.1 M PBS) for 1 h 

before incubation with 1 ug/ml streptavidin-488 (in 0.1 M PBS containing 1% Triton-X) 

overnight at 4°C. Slices were rinsed with 0.1 M PBS (2× 10 min) before being mounted on a 

glass slide.

Confocal images were taken on a Zeiss LSM 510 with the following objective lenses: 10× /

0.45, 20× /0.75, and 40×/ 1.2.

Data analysis—Data were analyzed using a custom program (Igor). Data were averaged 

over the last 5 min of post induction time and normalized to the last 5 min of baselinea and 

the Wilcoxon rank-sum test was used for independent data. One-way ANOVAs followed by 

Tukey's HSD post-hoc tests were used to compare the mean of more than 2 samples. 

Differences were considered significantly when P<0.05.

Mathematical Model

Learning rules: Simulations were performed on a recurrent network of excitatory neurons 

consisting of 100 integrate-and-fire units with all-to-all lateral connections. The network 

was driven by feedforward excitatory input representing incoming spikes from the LGN. 
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Model equations describing the dynamics of the neurons are as in Gavornik et al 2009, 

except for the learning rule that updates the changes of synaptic weights of the lateral 

connections. The prolonged network dynamics are due to the positive feedback from lateral 

connections, and the strength of synaptic efficacies (denoted by the matrix L) determines the 

duration of activity in the network. In the current model, two synaptic eligibility traces 

(previously referred to as proto-weights (Gavornik et al 2009)), mediating LTP (Tp
ij) and 

LTD (Td
ij) separately, evolve in time according to a pair of ordinary differential equations of 

the form:

(1)

(2)

where τp and τd are the decay time constants of the corresponding LTP and LTD traces, 

respectively; Hp(Ri,Rj) and Hd(Ri,Rj) are Hebbian terms, which in general are different for 

each trace and can include the effects of the pre- and post-synaptic spike ordering. In the 

present model we have used the simplest assumption, considering that both Hebbian terms 

are identical and depend on a product of instantaneous firing rates of post- (Ri) and pre-

synaptic (Rj) neurons, as in Gavornik et al 2009. Each synaptic trace can saturate at a 

different level, which are determined by the quantities Td
max and Tp

max. Finally, ε is a factor 

scaling the Hebbian term.

We chose a very simple rule for updating the synaptic weights, which depends on the 

difference between these traces and on the delivery of reward:

(3)

where Lij is the magnitude of the synaptic weight between neurons i (post-synaptic) and j 

(presynaptic), η is the learning rate, and the delta function term indicates that the changes 

occur at the time of reward (tReward) when neurotransmitter is released. This delta function 

can easily be replaced by a narrow function near the reward time, representing the presence 

of neuromodulator. All these equations were chosen to be as simple as possible rather than 

to be biophysically precise.

Note that the model assumes a reward signal at time tReward and does not distinguish 

between the two neuromodulators. By doing this, we implicitly assume that the actual 

reward activates both neuromodulators simultaneously. One could write a more complex 

equation with two different neuromodulators acting independently on the two different 

traces, for our implementation here it would not matter but could be useful if we are to 

consider situations where one neuromodulator is active and the other is not.
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Recurrent network—The recurrent network is constructed as in Gavornik et al (2009), 

and only the learning rule is modified. Each neuron is a conductance-based integrate-and-

fire unit, following the equations:

and

where υi represents the membrane potential of the i-th neuron, which in this simple model is 

excitatory (E) and where sk is the synaptic activation of the k-th pre-synaptic neuron. Other 

parameters are: membrane capacitance C; leak and excitatory conductances gL, gE,i; leak 

and excitatory reversal potentials EL, EE,; percentage change of synaptic activation with 

input spikes ρ and time constant for synaptic activation τs. The neuron fires an action 

potential once it reaches threshold (υth), υi = υth and the membrane potential is then reset to 

υrest. The delta-function in the equation above indicates that these changes occur only at the 

moment of the arrival of a pre-synaptic spike at tkj, where the index j indicates that this is the 

j′th spike in neuron k, and where:

All parameter values are as in Gavornik et al 2009.

Derivation of equation in figure S5,E

After training, network activity decays almost fully before the reward signal is delivered. 

The difference between the time that the network decays below a threshold and the reward 

time is defined as D (Fig S5,D). The value of D can be approximated based on the 

observation that fixed points are obtained when the two eligibility traces are equal (equation 

3). To calculate this, we make the following approximations: we assume that the network is 

either fully active or inactive, and that when it is fully active both traces are saturated. 

Combining these crude approximations with equations 1 and 2, we observe:

which can be solved for D to yield:
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In figure S5,E this approximate formula is compared to simulation results, yielding a good 

agreement, at least for these biophysically plausible parameter ranges.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Specific monoamines transform STDP-induced eligibility traces into LTP and LTD.

(A) Two-pathway whole-cell recording configuration.

(B) Induction of eligibility traces with STDP paradigms. A representative response for the 

two-pathway ST conditioning is shown in the dashed box.

(c) In the visual cortex, ST conditioning alone did not affect synaptic strength in either the 

pre-post (red dots) or the post-pre (blue dots) pathway.

(D,E) Pressure ejection of NE (50 μM, 10 sec, grey bar) immediately after the ST 

conditioning (arrow) converted LTP eligibility traces in the pre-post pathway (pre-post in D: 

132.3 ± 9.0%), while a similar puff of 5-HT (50 μM) transformed LTD traces in the post-pre 

pathway (post-pre in E: 73.1 ± 4.5%).

(F,G) Eligibility traces were not affected by pressure ejection of either 50 μM DA (F) or 50 

μM CCh (G).

Indicated in parentheses is the number of experiments. Traces in C to G are averages of 10 

EPSPs of the two pathways (Red: pre-post; blue: post-pre) recorded in the same neuron 

immediately before (thin light-color line) or 25 min after (thick dark-color line) 

conditioning.

Scale: 2 mV, 25 ms.

See also Fig S1.
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Figure 2. 
Eligibility traces in the prefrontal cortex.

(A) In LII/III synapses of the mPFC, a 10 s puff of DA (50 μM) transformed the LTP trace 

(pre-post: 133.1 ± 9.7%).

(B) A puff of 5-HT (50 μM) transformed the LTD trace (post-pre: 72.0 ± 7.3%).

(C) A puff of DA (50 μM) transformed the LTP trace (pre-post: 133.1 ± 9.7%).

(D) A puff of CCh (250 μM) did not affect the EPSPs (pre-post: 113.5 ± 7.4%; post-pre: 

116.6 ± 8.6%).

Traces in A to D are coded as in Figure 1. Scale: 2 mV, 25 ms.

He et al. Page 19

Neuron. Author manuscript; available in PMC 2016 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Endogenous neuromodulators released optogenetically transform previously induced 

eligibility traces.

(A-B) In the visual cortex, local release of endogenous NE in the TH-ChR2 mouse or 5-HT 

in the Tph2-ChR2 by optogenetic stimulation (blue bar) transformed the LTP/LTD 

eligibility traces generated by ST conditioning (pre-post in A: 115.5 ± 4.4%; post-pre in B: 

73.8 ± 8.9%.).

(C-D) Neuromodulators only consolidate eligibility traces when phasically released after, 

but not immediately before (no overlap between the light and the conditioning), the ST-

conditioning (light before in C: 90.7 ± 6.7%; light before in D: 106.2 ± 11%).

Traces in A-B are coded as in Figure 1. Scale: 2 mV, 25 ms. See also Fig S2.
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Figure 4. 
Optogenetic release of endogenous neuromodulators transforms eligibility traces induced by 

spaced single ST-conditioning.

Experimental design (left): two pathways received 40 ST-conditioning epoch in an 

alternated manner every 20 sec. One pathway (red or blue symbols) was paired with 1 s light 

(10 light pulses (10 ms 700 mA each) delivered at 10 Hz); the unpaired pathway (grey 

symbols) served as a control.

(A) Light stimulation transforms LTP traces induced by pre-post conditioning (red symbols) 

in slices from TH-ChR2 mice.

(B) Light stimulation transforms LTD traces induced by post-pre conditioning (blue 

symbols) in slices from the Tph2-ChR2 mice.

Traces in A and B are coded as in Figure 1. Scale: 2 mV, 25 ms
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Figure 5. 
Anchoring of monoamine receptors is crucial for the transformation of transient LTP/D 

eligibility traces.

(A) The β2AR-specific antagonist ICI 118,551 (1 μM) prevents the transformation of the 

LTP eligibility trace by NE (95.2 ± 5.3%). The magenta line depicts control LTP (data from 

Fig1D).

(B) The 5-HT2CR specific antagonist RS 102221 (1 μM) prevents the transformation of the 

LTD eligibility trace by 5-HT (99.8 ± 8.2%). The blue line depicts control LTD (data from 

Fig1E). (C) β2AR directly interacts with PSD-95, and its c-terminal peptide DSPL disrupts 

this interaction.

(D) DSPL, but not the scrambled peptide DAPA, abolished the NE-mediated transformation 

of the LTP eligibility trace (DSPL: 96.1 ± 8.2%; DAPA: 127.8 ± 7.9%).

(E) The C-terminal peptide 2C-ct prevents the interaction between 5-HT2CR and PDZ-

containing proteins such as PSD-95.

(F) 2C-ct, but not the control peptide CSSA, blocked transformation of the LTD eligibility 

trace by 5-HT (2C-ct: 102.9 ± 3.7%; CSSA: 82.6 ± 3.9%).

See also Fig S3-4.
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Figure 6. 
Eligibility traces for LTP/D are transient and have different durations.

(A) Magnitude of synaptic changes (measured 30 min after conditioning) evoked when 

neuromodulators (50 μM isoproterenol for LTP: magenta line and symbols; 50 μM 5-HT for 

LTD: blue line and symbols) were puffed after the ST conditioning at the specified delays 

(Δt (s), delay as described in the top right insert). The duration was less than 10 s for the 

LTP eligibility trace and less than 5 s for the LTD eligibility trace.

(B) Significant LTP (filled magenta circles, top panel) or LTD (filled blue circles, bottom 

panel) was induced when neuromodulators were puffed immediately after the spike-timing 

pairings. There was no change in EPSP slope when puffing Iso 10 s after (open magenta 

circles, top panel) or 5-HT 5 s after (open blue circle, bottom panel).
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Figure 7. 
Competition between LTP and LTD eligibility traces results in stable reinforcement 

learning.

(A) Diagram of recurrent network of excitatory neurons representing cells in visual cortex 

driven by feed-forward input from LGN.

(B-D) Simulated average population firing rate computed from a recurrent network of 100 

integrate-and-fire excitatory units. The network is trained to report a 1 second time interval 

after a 100 ms stimulation. Three instances of network dynamics are shown: B, before 

training; C, during training (18 trials); and D, after training (70 trials).

(E-G) Time evolution of LTP- and LTD-promoting eligibility traces corresponding to the 

same trials as in B - D. Magenta lines are LTP eligibility traces, and blue lines are LTD 

eligibility traces. LTP and LTD eligibility traces both increase during the period of network 

activity (see above). LTD traces saturate at higher effective levels. At the beginning of 

training (E), LTP traces are larger than LTD traces at the time of reward, and therefore LTP 

is expressed. At the end of training (G), LTP and LTD traces are equal, resulting in no net 

change in synaptic efficacy. (H) The model can be trained to predict different reward 

timings accurately.

See also Fig S5
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