
Discovery and functional characterization of diverse Class 2 
CRISPR-Cas systems

Sergey Shmakov1,2,#, Omar O. Abudayyeh3,#, Kira S. Makarova2, Yuri I Wolf2, Jonathan S. 
Gootenberg3, Ekaterina Semenova4, Leonid Minakhin4, Julia Joung3, Silvana Konermann3, 
Konstantin Severinov1,4,5, Feng Zhang3,*, and Eugene V. Koonin2,*

1 Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia

2 National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, 
MD 20894, USA

3 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA, McGovern 
Institute for Brain Research, Department of Brain and Cognitive Science, Department of 
Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 
02139, USA

4 Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, 
NJ 08854, USA

5 Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia

Abstract

Microbial CRISPR-Cas systems are divided into Class 1, with multisubunit effector complexes, 

and Class 2, with single protein effectors. Currently, only two Class 2 effectors, Cas9 and Cpf1, 

are known. We describe here three distinct Class 2 CRISPR-Cas systems. The effectors of two of 

the identified systems, C2c1 and C2c3, contain RuvC-like endonuclease domains distantly related 

to Cpf1. The third system, C2c2, contains an effector with two predicted HEPN RNase domains. 

Whereas production of mature CRISPR RNA (crRNA) by C2c1 depends on tracrRNA, C2c2 

crRNA maturation is tracrRNA-independent. We found that C2c1 systems can mediate DNA 

interference in a 5’-PAM-dependent fashion analogous to Cpf1. However, unlike Cpf1, which is a 

single-RNA-guided nuclease, C2c1 depends on both crRNA and tracrRNA for DNA cleavage. 

Finally, comparative analysis indicates that Class 2 CRISPR-Cas systems evolved on multiple 

occasions through recombination of Class 1 adaptation modules with effector proteins acquired 

from distinct mobile elements.
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INTRODUCTION

CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-

ASsociated proteins) are adaptive immune systems of archaea and bacteria (Marraffini and 

Sontheimer, 2010; Koonin and Makarova, 2013; Barrangou and Marraffini, 2014). These 

systems have recently attracted much attention due to their unique, “Lamarckian” mode of 

action that retains “memories” from past infections and provides specific resistance to these 

infections via an RNA-guided process that has been harnessed to create powerful genome 

editing tools (Cong et al., 2013; Mali et al., 2013; Cho et al., 2013; Jiang et al., 2013; Hwang 

et al., 2013; Jinek et al., 2013). The CRISPR-Cas systems show extreme diversity of Cas 

protein composition as well as genomic loci architecture (Makarova et al., 2011b; Makarova 

et al., 2015).

Despite this diversity, CRISPR-Cas systems share a core set of features, indicative of a 

common origin. Most Cas proteins can be grouped into two main functional modules: the 

adaptation module, which delivers genetic material into CRISPR arrays to generate CRISPR 

RNAs (crRNAs), and the effector module, which, guided by crRNA, targets and cleaves 

invading nucleic acids (Makarova et al., 2011b; Makarova et al., 2013). The adaptation 

modules are largely uniform across CRISPR-Cas systems and consist of two essential 

proteins, Cas1 and Cas2. By contrast, the effector modules show extreme variability. The 

latest classification of the CRISPR-Cas systems divides them into two classes based on the 

architecture of the effector modules (Figure 1A) (Makarova et al., 2015). Class 1 systems, 

which encompass types I and III as well as the putative type IV, possess multi-subunit 

effector complexes comprised of multiple Cas proteins. Class 2 systems, which encompass 

type II and the putative type V, are characterized by effector complexes that consist of a 

single, large Cas protein (Figure 1A).

The effector protein of type II CRISPR-Cas systems is Cas9, a large multidomain nuclease 

that ranges in size depending on the species from ~950 to over 1,600 amino acids and 
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contains two nuclease domains, a RuvC-like (RNase H fold) domain and an HNH (McrA-

like fold) domain (Makarova et al., 2006), for target DNA cleavage (Barrangou et al., 2007; 

Garneau et al., 2010; Deltcheva et al., 2011; Sapranauskas et al., 2011; Jinek et al., 2012; 

Gasiunas et al., 2012). This multifunctional protein has been engineered into a key tool for 

genome editing. Recently, a second Class 2 effector protein, Cpf1, which contains a RuvC 

domain, but not an HNH domain (Schunder et al., 2013; Makarova et al., 2015), has been 

shown to be an RNA-guided endonuclease that cleaves the target DNA via a staggered cut 

(Zetsche et al., 2015). Based on their unique domain architecture, the Cpf1-containing 

systems have been categorized as type V CRISPR-Cas (Makarova et al., 2015).

Although Class 2 systems are less common than Class 1 systems (Chylinski et al., 2014; 

Makarova et al., 2015), it is likely that additional Class 2 systems, beyond those containing 

Cas9 and Cpf1 effector proteins, exist in the yet unexplored microbial diversity. Using a 

computational strategy, we identified three groups of candidate genomic loci encoding 

previously uncharacterized Class 2 variants. We experimentally demonstrate the 

functionality of two of the discovered systems, which have unique properties compared to 

Cas9. The characterization of these systems provides evidence to suggest Class 2 systems 

originated by combination of Class 1 adaptation modules with effector proteins derived from 

different mobile elements.

RESULTS

Computational prediction of candidate newly identified Class 2 CRISPR-Cas loci

We designed a computational pipeline to prospect the microbial genome sequence diversity 

to identify previously undetected Class 2 CRISPR-Cas loci (Figure 1B). Because most 

CRISPR-Cas loci include a cas1 gene (Makarova et al., 2011b; Makarova et al., 2015) and 

the Cas1 sequence is the most conserved among all Cas proteins (Takeuchi et al., 2012), we 

used cas1 as the anchor to identify candidate loci. A substantial majority of the candidate 

CRISPR-Cas loci identified by the pipeline could be assigned to known subtypes (Makarova 

et al., 2011b; Fonfara et al., 2014; Chylinski et al., 2013; Chylinski et al., 2014; Makarova et 

al., 2015). To identify additional Class 2 systems, we focused on unclassified candidate 

CRISPR-Cas loci containing long proteins (>500 aa) given that the presence of large single-

subunit effector proteins, such as Cas9 and Cpf1, is the diagnostic feature of type II and type 

V systems, respectively. Based on this criterion, we identified 63 candidate loci that were 

analyzed individually using PSI-BLAST and HHpred (Table S1). The protein sequences 

encoded in the candidate loci were used as queries to search metagenomic databases for 

additional homologs. In total, we discovered 53 loci (some of the originally identified 63 

were discarded as spurious whereas several incomplete loci that lacked cas1 were added) 

with characteristic features of Class 2 CRISPR-Cas systems that could be classified into 

three distinct groups based on the nature of the putative effector proteins (Figure 1C and 

Figure S1; Table S1).

The first group (Figure 1C and Figure S1A), provisionally denoted C2c1 (Class 2 candidate 

1), is represented in 18 bacterial genomes from four major taxa: Bacilli, Verrucomicrobia, 

α-proteobacteria, and δ-proteobacteria. The C2c1 loci encode a Cas1-Cas4 fusion, Cas2, and 

a large putative effector protein, and are typically adjacent to a CRISPR array. The loci in 
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the second group include solely metagenomic sequences and thus could not be assigned to 

specific taxa. These loci encode only Cas1 and a large putative effector protein denoted 

C2c3 (Class 2 candidate 3; although the candidates were designated in the order of 

discovery, throughout the text, we juxtapose C2c1 and C2c3 as they contain distantly related 

effector proteins, discussed below) (Figure 1C and Figure S1B). The third group, denoted 

C2c2 (Class 2 candidate 2), was identified in 21 genomes from five major bacterial taxa: α-

proteobacteria, Bacilli, Clostridia, Fusobacteria, and Bacteroidetes. These loci encompass a 

large protein with no sequence similarity to C2c1, Cpf1, or Cas9. Although under our 

computational strategy, the originally identified C2c2 loci encompassed cas1 and cas2, 

subsequent searches showed that the majority consists only of the c2c2 gene and a CRISPR 

array (Figure S1C). Such apparently incomplete loci could either encode defective CRISPR-

Cas systems or might function with the adaptation module encoded elsewhere in the 

genome, as observed for some type III systems (Majumdar et al., 2015).

Typically, the sequence and structure of repeats in CRISPR arrays strongly correlate with 

the sequence of the respective Cas1 protein, which interacts with the repeats during spacer 

acquisition. However, despite the high similarity of the C2c1 system Cas1 proteins to each 

other, the CRISPR in the respective arrays are highly heterogeneous. All the repeats are 

36-37 bp long and can be classified as unstructured (Table S1). Among the C2c3 loci, only 

one contains a CRISPR array with unusually short, 17-18 nt spacers. The repeats in this 

array are 25 bp long and appear to be unstructured (Table S1). The CRISPR arrays of the 

C2c2 loci are also highly heterogeneous (repeat length ranging from 35 to 39 bp) and 

unstructured (Table S1).

Although bacteriophages infecting bacteria that harbor these newly discovered Class 2 

CRISPR-Cas systems are virtually unknown, for each of these systems, we detected spacers 

that matched phages or predicted prophages (Table S1). Although the majority of the 

spacers were not significantly similar to any available sequences, the existence of spacers 

matching phage genomes implies that at least some of these loci encode active, functional 

adaptive immunity systems. The low fraction of phage-specific spacers is typical of 

CRISPR-Cas systems and most likely reflects their dynamic evolution and the small fraction 

of virus diversity that is currently known. This interpretation is compatible with the 

observation that closely related bacterial strains encoding homologous CRISPR-Cas loci, 

e.g. the C2c2 loci from Listeria weihenstephanensis and Listeria newyorkensis, typically 

contain unrelated collections of spacers (Figure S2)

C2c1 and C2c3 proteins contain RuvC-like nuclease domains and have a domain 
architecture resembling Cpf1

The lengths of C2c1 and C2c3 proteins range from ~1100 to ~1500 amino acids, similar to 

the typical lengths of Cas9 and Cpf1. Analogous to the previous findings for Cas9 and Cpf1 

(Chylinski et al., 2014; Makarova and Koonin, 2015; Makarova et al., 2015), the C-terminal 

regions of the C2c1 and C2c3 proteins are significantly similar to a subset of TnpB proteins 

encoded by transposons of the IS605 family (Figure 2A and Figure S3). However, in 

database searches, only C2c3 showed limited but significant similarity to Cpf1 within the 

TnpB homology regions, whereas C2c1 was not significantly similar to any of the other 
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known or putative Class2 effector proteins. Moreover, the subsets of the TnpB proteins with 

significant similarity to the known (Cas9 and Cpf1) and putative (C2c1 and C2c3) Class 2 

effectors did not overlap (Figure 2A and Figure S3), suggesting that Cas9, Cpf1, C2c1, and 

C2c3 evolved independently from distinct transposable elements.

The TnpB homology regions of C2c1 and C2c3 contain the three catalytic motifs of the 

RuvC-like nuclease (Aravind et al., 2000), the region corresponding to the arginine-rich 

bridge helix, which is involved in crRNA-binding by Cas9, and a counterpart to the Zn 

finger of TnpB (the Zn-binding cysteine residues are conserved in C2c3 but are missing in 

the majority of Cpf1 and C2c1 proteins; Cpf1 and C2c1 contain multiple insertions and 

deletions in this region suggestive of functional divergence) (Figure 2A; Figures S4 and S5). 

The conservation of the catalytic residues implies that the RuvC homology domains of all 

these proteins are active nucleases. The N-terminal regions of C2c1 and C2c3 show no 

significant similarity to each other or any known proteins. Secondary structure predictions 

indicate that both these regions adopt a mixed α/β conformation (Figures S4 and S5). Thus, 

the overall domain architectures of C2c1 and C2c3, and in particular the organization of the 

RuvC domain, resemble Cpf1 but are distinct from Cas9 (Figure 2A). Accordingly, we 

propose that the C2c1 and C2c3 loci are best classified as subtypes V-B and V-C, 

respectively, with Cpf1-encoding loci now designated subtype V-A.

C2c2 contains two HEPN domains and is predicted to possess RNase activity

Database searches detected no significant sequence similarity between C2c2 and any known 

proteins. However, inspection of multiple alignments of C2c2 protein sequences revealed 

two conserved R(N)xxxH motifs that are characteristic of HEPN (Higher Eukaryotes and 

Prokaryotes Nucleotide-binding) domains (Grynberg et al., 2003; Anantharaman et al., 

2013). Additionally, a conserved glutamate embedded in a strongly predicted long α-helix 

and corresponding to the similar motif of HEPN domains was identified (Figure 2B; Figure 

S6). The HEPN superfamily includes small (~150 aa) α-helical domains with extremely 

diverse sequences but highly conserved catalytic motifs shown or predicted to possess 

RNase activity (Anantharaman et al., 2013). Searching the Pfam database using the HHpred 

program and the C2c2 sequences as queries detected similarity to HEPN domains for both 

putative nuclease domains of C2c2 albeit not at a highly significant level. Importantly, 

however, these were the only HHpred-generated alignments in which the R(N)xxxH motifs 

were conserved. The identification of HEPN domains in C2c2 proteins is further supported 

by secondary structure predictions, which indicate that each motif is located within 

compatible structural contexts, and the predicted α-helical secondary structure of each 

putative domain is consistent with the HEPN fold (Figure 2B; Figure S6). Outside of the two 

HEPN domains, the C2c2 sequence is predicted to adopt a mixed α/β structure without 

discernible similarity to any known protein folds (Figure S6). Given the unique predicted 

effector of C2c2, these systems qualify as a putative type VI CRISPR-Cas.

The candidate Class 2 CRISPR-Cas loci are expressed to produce mature crRNAs and 
encode putative tracrRNAs

In addition to the adaptation and interference protein modules, type II, Cas9-based systems 

also use a small non-coding trans-activating CRISPR RNA (tracrRNA), which is typically 

Shmakov et al. Page 5

Mol Cell. Author manuscript; available in PMC 2016 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



encoded adjacent to the cas operon. The tracrRNA is partially complementary to repeat 

portions of the respective CRISPR array transcript (pre-crRNA) and is essential for its 

processing into crRNA, which is catalyzed by RNase III recognizing the repeat-anti-repeat 

duplex (Deltcheva et al., 2011; Chylinski et al., 2013; Chylinski et al., 2014). We 

investigated whether the loci encoding Class 2 systems identified here also contain small 

RNAs with complementarity to cognate CRISPR repeats. We chose a representative C2c1 

system from Alicyclobacillus acidoterrestris ATCC 49025 (Aac) for initial characterization 

and conducted whole-transcriptome RNA sequencing (RNA-seq) and Northern blotting to 

map transcription of small RNAs associated with the C2c1 locus. The CRISPR array was 

found to be actively transcribed in the same orientation as the cas gene cluster and shows 

robust processing of crRNAs that are 34 nt in length, with a 5’ 14-nt direct repeat (DR) and 

a 20-nt spacer (Figure 3A). We also identified an abundant 79-nt small RNA encoded 

between the cas2 gene and the CRISPR array and transcribed in the same orientation as the 

CRISPR array (Figure 3A, B). The internal region of this RNA contains a sequence 

complementary to the processed CRISPR repeat sequence (anti-repeat), suggesting that this 

transcript is the tracrRNA. In silico co-folding of the processed 14-nt CRISPR repeat with 

this putative tracrRNA predicts a stable secondary structure (Figure 3C). Given that the 

putative tracrRNA in A. acidoterrestris contains a characteristic anti-repeat sequence, we 

sought to predict potential tracrRNAs for the rest of the identified C2c1, C2c2, and C2c3 

loci by searching for anti-repeat sequences within each locus. In many CRISPR-Cas loci, the 

repeat located at the promoter-distal end of the CRISPR array is degenerate and has a 

sequence that is distinct from the rest of the repeats (Biswas et al., 2014). Such degenerate 

repeats were detected in several C2c1 and C2c2 systems (Figure S1), allowing us to predict 

the direction of the array transcription. By integrating this information, we identified 

putative tracrRNAs in 4 of the 13 C2c1 and 4 of the 17 C2c2 loci (Figures S1 and S7A; 

Table S1). However, in some subtype II-B and II-C loci, the CRISPR array is transcribed in 

the opposite direction, starting from the degenerate repeat (Sampson et al., 2013; Zhang et 

al., 2013). Accordingly, we attempted to predict the tracrRNA in different positions with 

respect to the CRISPR array but were unable to identify additional candidate tracrRNA 

sequences. However, not all Class 2 CRISPR systems require tracrRNA for crRNA 

maturation or effector function, as demonstrated by the Cpf1 systems (Zetsche et al., 2015). 

Effectively identical patterns of RNA expression and processing were observed when the 

Aac C2c1 locus was expressed in the heterologous E. coli system (Figure S7B).

Given the robust expression of the Aac locus and the identification of processed tracrRNA 

and crRNAs, we designed an interference screen to determine if the Aac C2c1 loci are active 

and to identify the protospacer adjacent motif (PAM), which in type II systems dictates 

where the effector protein will cleave (Figure 3D). Whereas the 3’ PAM screen showed no 

significant depletion of PAMs, the 5’ PAM library screening resulted in the identification of 

364 significantly depleted PAMs (> 3.5 log2 fold depletion) (Figure 3E) that all had the 

sequence NNNNTTN (Figure 3F). Although there was a slight preference for bases other 

than C in the 5’ position immediately adjacent to the protospacer, these results indicate that 

the 5’ TTN motif is likely recognized by the AacC2c1 complex. We validated the proposed 

PAM using the first spacer of the AacC2c1 locus and all four TTN PAMs. The results of this 
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experiment confirm that a 5’ TTN PAM is necessary for interference and that interference is 

slightly reduced with the 5’TTC PAM (Figure 3G).

C2c1 is a dual-RNA-guided DNA endonuclease

We then sought to investigate whether C2c1 is an RNA-guided endonuclease, and to 

determine its RNA substrate requirements. We assayed in vitro DNA cleavage by incubating 

target DNA with protein lysate from human 293FT cells expressing C2c1 and in vitro 

transcribed crRNA and putative tracrRNA (Figure 4A). We designed crRNAs corresponding 

to the mature processed form that consisted of a 22-nt DR followed by a 20-nt spacer 

targeting a sequence from the human EMX1 locus. To test cleavage of the EMX1 target 

DNA, we used PCR to amplify a ~600-bp fragment containing the same DNA target site as 

the EMX1-targeting crRNA. A. acidoterrestris optimally grows at 50°C (Chang and Kang, 

2004), and we observed most efficient AacC2c1-mediated RNA-guided, crRNA-specific 

and tracrRNA-dependent cleavage of the target DNA at 50°C (Figure 4B).

Because RNA-seq experiments identified putative tracrRNA transcripts of variable size 

(Figure 3A), we tested a series of 3’-truncated tracrRNAs and found that the shortest 

tracrRNA capable of supporting RNA-guided cleavage using C2c1 cell lysate was 78-nt in 

length (Figure 4C). Using this minimal tracrRNA, we showed that 50°C is indeed the 

optimal cleavage temperature and that there is no observable cleavage below 40°C (Figure 

4D). To further validate the PAM requirements of C2c1, we designed a second crRNA 

targeting the protospacer-1 of the endogenous AacC2c1 CRISPR array (Figure 3F) and 

found that linear DNA molecules containing protospacer-1 preceded by TTT, TTA, and 

TTC PAMs but not GGA were efficiently cleaved (Figure 4E).

Given the demonstration that AacC2c1 is a dual-RNA-guided endonuclease, we 

hypothesized that, similar to Cas9 (Jinek et al., 2012), the C2c1 crRNA:tracrRNA duplex 

could be simplified into a single-guide RNA (sgRNA) by fusing the 3’ end of the 78-nt 

tracrRNA with the 5’ end of the crRNA (Figure 4F). Target cleavage activity similar to that 

obtained with the crRNA:tracrRNA duplex was observed for the sgRNA with both the 

EMX1 and protospacer-1 plasmid targets (Figure 4G). Thus, these experiments demonstrate 

that the lysate of human cells expressing C2c1 can cleave target DNA, identify the 

temperature optimum of the enzyme and demonstrate the requirement for a 

crRNA:tracrRNA duplex and 5’ PAM for AacC2c1 nuclease activity, in contrast to Cas9 

which requires a 3’ PAM (Jinek et al., 2012; Mojica et al., 2009) .

To validate the results obtained with heterologous expression and expand the findings to 

other type V-B systems, we screened the C2c1 locus from Bacillus thermoamylovorans 

(Bth). Whole-transcriptome sequencing of a synthesized BthC2c1 locus cloned into pET-28 

in E. coli revealed strong processing of both spacers present in the array, as well as 

expression of a 91-nt RNA (Figure S7C) that displayed secondary structure and repeat-anti-

repeat base-pairing similar to the putative Aac tracrRNA (Figure S7D). To test for 

interference, we transformed the PAM library with the corresponding spacer into E. coli 

harboring the BthC2c1 locus and compared depletion to pET-28. In agreement with the 

results obtained for AacC2c1, this screen showed that BthC2c1 employs a 5’ PAM with the 

consensus sequence ATTN (Figure S7E).
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Type VI C2c2 systems produce mature crRNA without tracrRNA

Using a similar approach, we investigated the functionality of the C2c2 loci. We synthesized 

the C2c2 locus of Listeria seeligeri serovar 1/2b str. SLCC3954 (Lse) and expressed it in E. 

coli. We observed a high level of expression and the formation of crRNAs with a 5’ 29-nt 

DR and 15-18-nt spacers (Figure 5A). In contrast to the C2c1 loci, although this C2c2 locus 

contains a predicted tracrRNA (Figure S1C), we did not observe its expression (Figure 5A). 

Thus, the secondary structure present in the pre-crRNA of this C2c2 locus could be 

sufficient for processing, yielding the mature crRNA as well as crRNA loading onto the 

C2c2 protein. The RNA-folding of the processed crRNA shows a strongly predicted stem-

loop within the direct repeat that might serve as a handle for the C2c2 protein (Figure 5A). 

In addition, we expressed the Leptotrichia shahii str. SLCC3954 C2c2 locus in E. coli and 

found that the CRISPR array is expressed and processed into 44-nt crRNAs (Figure 5B). We 

then used RNAseq to compare the expression of the L. shahii C2c1 locus in the endogenous 

and heterologous systems and in both cases, detected abundant, mature crRNA species but 

no tracrRNA (Figure S7F, G). An additional, uncharacterized small RNA was expressed in 

the vicinity of the CRISPR array in L. shahii (Figure S7F) but not in E. coli cells (Figure 

S7G). In silico folding of the crRNA predicted secondary structure that was highly similar to 

that in L. seeligeri (Figure S7F). However, co-folding with the highly expressed small RNA 

showed no stable structure or significant complementarity (not shown). The functional 

relevance of this RNA species in the C2c2 system remains to be determined.

The adaptation modules of distinct Class 2 systems evolved independently from different 
divisions of Class 1 systems

Cas1 is the most conserved Cas protein (Takeuchi et al., 2012) and the only one for which 

comprehensive phylogenetic analysis is feasible (Makarova et al., 2011b; Makarova et al., 

2015). In the phylogenetic tree of Cas1, putative subtype V-B (C2c1) is largely 

monophyletic and confidently clusters with type I-U (Figure 6; see also Supplemental 

Experimental Procedures). Among all the (putative) CRISPR-Cas loci, only type I-U and 

C2c1 encode a Cas1-Cas4 fusion. This derived shared character, together with the 

phylogenetic affinity of Cas1, indicates that the adaptation module of subtype V-B derives 

from that of type I-U. The type V-C Cas1 is the most diverged variant of Cas1 sequences 

discovered to date as indicated by the long branch in the phylogenetic tree (Figure 6). In the 

Cas1 tree, the type V-C branch is inside subtype I-B, although the position of such a fast 

evolving group should be taken with caution. The type VI Cas1 proteins are distributed 

between two clades. The first clade includes Cas1 from Leptotrichia and is located within 

the type II subtree along with a small type III-A branch. The second clade consists of Cas1 

proteins from C2c2 loci of Clostridia and belongs to a mixed branch that mostly contains 

Cas1 proteins of type III-A. Although Cas2 is a small and relatively poorly conserved 

protein, for which a reliable phylogeny is difficult to obtain, all available data point to 

coevolution of cas1 and cas2 (Norais et al., 2013; Chylinski et al., 2014). Thus, the 

adaptation modules of these newly identified Class 2 CRISPR-Cas systems apparently come 

from different variants of Class 1.
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DISCUSSION

Despite intense efforts to characterize the CRISPR-Cas systems, major aspects of the basic 

biology, diversity, and evolution of this remarkable defense strategy remain unknown. We 

describe here the discovery of three distinct Class 2 CRISPR-Cas systems, C2c1 and C2c3 

(subtypes of the previously described putative type V), and C2c2 (putative type VI). Type V 

effector proteins resemble Cas9 in their overall domain architecture but contain only a single 

nuclease domain, the RuvC-like domain. The type V effector Cpf1 was recently shown to 

cleave double-stranded DNA, indicating that these enzymes use a different mechanism than 

Cas9 (Zetsche et al., 2015). Type VI CRISPR-Cas systems contain a unique effector protein 

with two predicted HEPN domains, which typically possess RNAse activity (Anantharaman 

et al., 2013), suggesting that they might target and cleave mRNA. RNA cleavage has been 

reported for certain type III CRISPR-Cas systems (Hale et al., 2009; Hale et al., 2014; Peng 

et al., 2015). Alternatively, C2c2 could be the first DNase in the HEPN superfamily, perhaps 

with the two HEPN domains each cleaving one DNA strand.

We showed that two C2c1 CRISPR arrays are expressed, processed into mature crRNAs, 

and capable of interference in E. coli. These experiments reveal distinct characteristics of the 

C2c1 loci including: (i) a 5’ processed DR in the crRNA, (ii) a 5’ PAM, and (iii) a putative 

tracrRNA. The AT-rich PAM of C2c1 contrasts with the GC-rich PAMs of Cas9. Using 

expression of C2c1 in a human cell culture, we show that a tracrRNA is essential for in vitro 

cleavage of target DNA. This feature is in sharp contrast to the recently characterized Cpf1 

nuclease (Zetsche et al., 2015), which does not require a tracrRNA for DNA cleavage. These 

findings show that, despite their common overall layout, Class 2 CRISPR-Cas systems 

substantially differ in their requirements for PAM and tracrRNA.

We also showed that when the C2c2 locus from L. seeligeri is expressed in E. coli, it is 

processed into crRNAs containing a 29-nt 5’ DR; similar results were obtained for the C2c2 

locus of L. shahii. In this case, the degenerate repeat is at the beginning of the array, rather 

than at the end, as in most other CRISPR arrays, and the array and cas genes are transcribed 

co-directionally. We did not detect a putative tracrRNA in the C2c2 RNA-seq data. The 

predicted secondary structure of the 29-nt DR shows a stable hairpin handle which could be 

important for complex formation with the C2c2 effector protein. Together, these results 

strongly suggest that C2c2 loci are functionally active.

The discovery of three distinct Class 2 CRISPR-Cas systems combined with the results of 

previous analyses (Makarova et al., 2011b; Chylinski et al., 2014) reveals a dominant theme 

in their evolution. The effector proteins of two of the three types within this class appear to 

have evolved from a pool of transposable elements that encode TnpB proteins containing the 

RuvC-like nuclease domain. Cas9, the effector protein of type II systems, seems to be 

derived from a family of TnpB-like proteins with an HNH nuclease insert that is particularly 

abundant in Cyanobacteria (Chylinski et al., 2014) Figure 2). By contrast, it is hardly 

possible to trace Cpf1, C2c1, and C2c3 to a specific TnpB group; however, given that they 

contain distinct insertions between the RuvC-motifs and apparently unrelated N-terminal 

regions, the effector proteins of each subtype of type V likely evolved independently from 

different TnpB proteins (Figure S3). The TnpB proteins seem to be “predesigned” for 
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utilization in Class 2 CRISPR-Cas effector complexes, perhaps stemming from their 

predicted ability to cut single-stranded DNA while bound to an RNA molecule via the R-

rich bridge helix, which in Cas9 has been shown to bind crRNA (Nishimasu et al., 2014; 

Anders et al., 2014).

With regard to the origin of the putative type VI systems, although HEPN domains so far 

have not been detected in bona fide transposons, they are characterized by high horizontal 

mobility and are integral to certain mobile elements such as toxin-antitoxin units 

(Anantharaman et al., 2013). Thus, type VI systems seem to fit the paradigm of the modular 

evolution of Class 2 CRISPR-Cas from mobile components. Given that the C2c2 protein is 

unrelated to the other Class 2 effectors, the discovery of type VI seems to clinch the case for 

the independent origins of different Class 2 variants.

In view of the emerging scenario of the evolution of Class 2 systems from mobile elements, 

it is instructive to examine the overall evolution of CRISPR-Cas loci and the contributions 

of mobile elements (Figure 7). The ancestral adaptive immunity system most likely 

originated via the insertion of a casposon (a Cas1-encoding transposon) next to a locus that 

encoded a primitive innate immunity system (Krupovic et al., 2014; Koonin and Krupovic, 

2015). An additional important contribution was the incorporation of a toxin-antitoxin 

system that delivered the cas2 gene, either in the ancestral casposon or in the evolving 

adaptive immunity locus. Given the wide spread of Class 1 systems in archaea and bacteria 

and the proliferation of the ancient RRM (RNA Recognition Motif) domains in them, there 

is little doubt that the ancestral system was of Class 1. The different types and subtypes of 

Class 2 then evolved via multiple substitutions of the gene block encoding the Class 1 

effector complexes via insertion of transposable elements encoding various nucleases. This 

direction of evolution follows from the observation that the adaptation modules of different 

Class 2 variants derive from different Class 1 types (Figure 6).

Strikingly, Class 2 CRISPR-Cas systems appear to have been completely derived from 

different mobile elements. There seem to have been at least two (subtype V-C) but typically, 

three or, for type II, even four mobile element contributors: (i) the ancestral casposon, (ii) 

the toxin-antitoxin module that gave rise to Cas2, (iii) a transposable element, in many cases 

a TnpB-encoding one, that was the ancestor of the Class 2 effector complex, and (iv) for 

type II, the HNH nuclease that could have been donated to the ancestral transposon by a 

group I or group II self-splicing intron (Stoddard, 2005) (Figure 7). The type V-C loci 

described here encode the ultimate minimalist CRISPR-Cas system, the only identified one 

that lacks Cas2; conceivably, the highly diverged subtype V-C Cas1 proteins are able to 

form the adaptation complex on their own, without the accessory Cas2 subunit.

Our report here of newly identified varieties of Class 2 CRISPR-Cas systems could be only 

a sample of the additional variants that exist in nature, and although most if not all of the 

new CRISPR-Cas systems are expected to be rare, they could employ novel strategies and 

molecular mechanisms, providing a major resource for versatile applications in genome 

engineering and biotechnology. That the development of such new tools is realistic, is 

demonstrated by the activity of a C2c1nuclease in human cell lysate described here, and 

Cpf1-mediated genome editing in human cells (Zetsche et al., 2015). In addition, the 
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discovery of new variants will provide direct tests of the modular scenario of the evolution 

of CRISPR-Cas systems (Figure 7) and shed further light on the function of these diverse 

systems.

EXPERIMENTAL PROCEDURES

Computational sequence analysis

The TBLASTN program with the E-value cut-off of 0.01 and low complexity filtering 

turned off parameters was used to search the NCBI WGS database using the Cas1 profile 

(Makarova et al., 2015) as the query. Sequences of contigs or complete genome partitions 

where a Cas1 hit was identified were retrieved from the database, and regions 20 kb from 

the start of the cas1 gene and 20 kb from the end of it were extracted and translated using 

GeneMarkS (Besemer et al., 2001). Predicted proteins from each Cas1-encoding region 

were searched against the collection of profiles from the CDD database (Marchler-Bauer et 

al., 2013) and the specific Cas protein profiles (Makarova et al., 2015) using the RPS-

BLAST program (Marchler-Bauer et al., 2002).

The previously developed procedure to assess the completeness and to classify CRISPR-Cas 

systems into the existing types and subtypes (Makarova et al., 2015) was applied to each 

locus. Partial and/or unclassified loci that encompassed proteins larger than 500 amino acids 

were analyzed on a case-by-case basis. Specifically, each predicted protein encoded in these 

loci was searched against the NCBI non-redundant (NR) protein sequence database using 

PSI-BLAST (Altschul et al., 1997), with a cut-off e-value of 0.01 and composition based-

statistics and low complexity filtering turned off. Each non-redundant protein identified in 

this search was searched against the WGS database using the TBLASTN program (Altschul 

et al., 1997). The HHpred program was used with default parameters to identify remote 

sequence similarity using as the queries all proteins identified in the BLAST searches 

(Soding et al., 2006). Multiple sequence alignments were constructed using MUSCLE 

(Edgar, 2004) and MAFFT (Katoh and Standley, 2013). Phylogenetic analysis was 

performed using the FastTree program with the WAG evolutionary model and the discrete 

gamma model with 20 rate categories (Price et al., 2010). Protein secondary structure was 

predicted using Jpred 4 (Drozdetskiy et al., 2015).

CRISPR repeats were identified using PILER-CR (Edgar, 2007) or, for degenerate repeats, 

CRISPRfinder (Grissa et al., 2007). The Mfold program (Zuker, 2003) was used to identify 

the most stable structure for the repeat sequences. The CRISPRmap method (Lange et al., 

2013) was used for repeat classification.

The spacer sequences were searched against the NCBI nucleotide NR and WGS databases 

using MEGABLAST (Morgulis et al., 2008) with default parameters except that the word 

size was set at 20.

Bacterial RNA-sequencing

RNA was isolated from stationary phase bacteria by first resuspending the bacteria in 

TRIzol and then homogenizing the bacteria with zirconia/silica beads (BioSpec Products) in 

a BeadBeater (BioSpec Products) for 7 one-minute cycles. Total RNA was purified from 
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homogenized samples with the Direct-Zol RNA miniprep protocol (Zymo), DNase treated 

with TURBO DNase (Life Technologies) and 3’ dephosphorylated with T4 Polynucleotide 

Kinase (New England Biolabs). rRNA was removed with the bacterial Ribo-Zero rRNA 

removal kit (Illumina). RNA sequencing libraries were prepared from rRNA-depleted RNA 

using a derivative of the previously described CRISPR RNA sequencing method (Heidrich 

et al., 2015). Briefly, transcripts were poly-A tailed with E. coli Poly(A) Polymerase (New 

England Biolabs), ligated with 5’ RNA adapters using T4 RNA Ligase 1 (ssRNA Ligase), 

High Concentration (New England Biolabs), and reverse transcribed with AffinityScript 

Multiple Temperature Reverse Transcriptase (Agilent Technologies). cDNA was PCR 

amplified with barcoded primers using Herculase II polymerase (Agilent Technologies) .

RNA-sequencing analysis

The prepared cDNA libraries were sequenced on a MiSeq (Illumina). Reads from each 

sample were identified on the basis of their associated barcode and aligned to the 

appropriate RefSeq reference genome using BWA (Li and Durbin, 2009). Paired-end 

alignments were used to extract entire transcript sequences using Picard tools (http://

broadinstitute.github.io/picard) and these sequences were analyzed using Geneious 8.1.5. 

All the sequences obtained in this work were deposited in the Single Read Archive (SRA) 

database under the accession number PRJNA296743.

PAM Screen

Randomized PAM plasmid libraries were constructed using synthesized oligonucleotides 

(IDT) consisting of 7 randomized nucleotides either upstream or downstream of the spacer 1 

target (see Supplemental Experimental Procedures). The randomized ssDNA oligos were 

made double stranded by annealing to a short primer and using the large Klenow fragment 

for second strand synthesis. The dsDNA product was assembled into a linearized PUC19 

using Gibson cloning. Stabl3 E. coli cells were transformed with the cloned products and 

more than 107 cells were collected and pooled. Plasmid DNA was harvested using a Qiagen 

maxi-prep kit. We transformed 360ng of the pooled library into E. coli cells transformed 

with the AacC2c1 locus, BthC2c1 locus, pACYC-184 and pET-28a. After transformation, 

cells were plated on ampicillin/chloramphenicol (Aac/pACYC-184) and ampicillin/

kanamycin (Bth/pET-28a). After 16 hours of growth, >4*106 cells were harvested and 

plasmid DNA was extracted using a Qiagen maxi-prep kit. The target PAM region was 

amplified and sequenced using an Illumina MiSeq with single-end 150 cycles.

PAM validation

Sequences corresponding to both PAMs and non-PAMs were cloned into digested pUC19 

and ligated with T4 ligase (Enzymatics). Competent E. coli with either the AacC2c1 locus 

plasmid or pACYC184 control plasmid were transformed with 20ng of PAM plasmid and 

plated on LB agar plates supplemented with ampicillin and chloramphenicol. After 18 hours, 

colonies were counted with OpenCFU (Geissmann 2013).
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In vitro lysate cleavage assay

Cleavage was performed using the lysate of HEK293 cells expressing C2c1 protein at 50°C, 

unless otherwise noted, in cleavage buffer (NEBuffer 3, 5mM DTT) for 1 hour. Each 

cleavage reaction used 200ng of target DNA and an equimolar ratio of crRNA:tracrRNA 

(500ng of crRNA). The RNA was pre-annealed by heating to 95°C and slowly cooling to 

4°C. Target DNA consisted of either genomic PCR amplicons from the EMX1 gene or the 

first protospacer of the AacC2c1 locus cloned into pUC19. The pUC19 protospacer 

construct was linearized by BsaI digestion prior to the cleavage reaction. Reactions were 

cleaned up using PCR purification columns (Qiagen) and run on 2% agarose E-gels (Life 

Technologies).

For additional details see Supplemental Experimental Procedures

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Prediction of candidate newly identified Class 2 CRISPR-Cas systems
(A) Architectural principles of Class 1 (multi-protein effector complexes) and Class 2 

(single-protein effector complexes) CRISPR-Cas systems.

(B) Schematic of the computational pipeline for identification of putative new Class 2 loci.

(C) Genomic architectures of the known and newly identified Class 2 CRISPR-Cas systems. 

The left panel shows the previously described three subtypes of type II and subtype V-A, 

and the right panel shows subtypes V-B and V-C, and type VI identified in this work. 

Subfamilies based on Cas1 are also indicated. The schematics include only the common 

genes represented in each subtype; additional genes present in some variants are omitted. 

The red rectangle shows the degenerate repeat. The gray arrows show the direction of 

CRISPR array transcription. PreFran, Prevotella-Francisella.

See also Figures S1 and S2, and Table S1.
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Figure 2. Domain architectures and conserved motifs of the Class 2 effector proteins
(A) Types II and V: TnpB-derived nucleases. The top panel shows the RuvC nuclease from 

Thermus thermophilus (PDB ID: 4EP5) with the catalytic amino acid residues denoted. 

Underneath each domain architecture, an alignment of the conserved motifs in selected 

representatives of the respective protein family (a single sequence for RuvC) is shown. The 

catalytic residues are shown by white letters on a black background; conserved hydrophobic 

residues are highlighted in yellow; conserved small residues are highlighted in green; in the 

bridge helix alignment, positively charged residues are in red. Secondary structure 

prediction is shown underneath the aligned sequences: H denotes α-helix and E denotes 

extended conformation (β-strand). The poorly conserved spacers between the alignment 

blocks are shown by numbers. See also Figures S3, S4 and S5.

(B) Type VI: predicted RNases containing two HEPN domains. The top alignment blocks 

include selected HEPN domains described previously and the bottom blocks include the 

catalytic motifs from the putative type VI effector proteins. The designations are as in (A). 

See also Figures S3 and S6.
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Figure 3. Functional validation of the Alicyclobacillus acideoterrestris C2c1 locus
(A) RNA-sequencing shows the A. acideoterrestris C2c1 locus is highly expressed in the 

endogenous system, with processed crRNAs incorporating a 5’ 14-nt DR and 20-nt spacer. 

A putative 79-nt tracrRNA is expressed robustly in the same orientation as the cas gene 

cluster (see also Figures S7A, B and C).

(B) Northern blot of RNAs expressed from the endogenous locus (M) and a minimal first-

spacer array (S) show processed crRNAs with a 5’ DR and the presence of a small putative 

tracrRNA. Arrows indicate the probe positions and their directionality.

(C) In silico co-folding of the crRNA direct repeat and putative tracrRNA shows stable 

secondary structure and complementarity between the two RNAs. 5’ bases are colored blue 

and 3’ bases are colored orange (see also Figure S7D).

(D) Schematic of the PAM determination screen.

(E) Depletion from the 5’ left PAM library reveals a 5’ TTN PAM. Depletion is measured as 

the negative log2 fold ratio and PAMs above a threshold of 3.5 are used to calculate the 

entropy score at each position.

(F) Sequence logo for the AacC2c1 PAM as determined by the plasmid depletion assay. 

Left: Letter height at each position is measured by entropy scores and error bars show the 

95% Bayesian confidence interval. Right: Letter height at each position is measured by the 

relative frequency of the nucleotide (see also Figure S7E).

(G) Validation of the AacC2c1 PAM by measuring interference with 8 different PAMs. 

PAMs matching the TTN motif show depletion as measured by cfus.
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Figure 4. Characterization of the cleavage requirements of A. acideoterrestris C2c1 in a human 
cell lysate
(A) Schematic of the AacC2c1 crRNA and tracrRNA design hybridizing to the EMX1 target 

site.

(B) In vitro cleavage of the EMX1 target with the human cell lysate expressing AacC2c1 

shows that in vitro targeting of AacC2c1 is robust and depends on tracrRNA. Non-targeting 

crRNA (crRNA 2) fails to cleave the EMX1 target, whereas crRNA 1 targeting EMX1 

enabled strong cleavage in the presence of Mg++ and weak cleavage in the absence of Mg++.

(C) In vitro cleavage of the EMX1 target in the presence of a range of tracrRNA lengths 

identifies the 78-nt species as the minimal tracrRNA form, with increased cleavage 

efficiency for the 91-nt form.

(D) Analysis of the temperature dependency of the in vitro cleavage of the EMX1 target 

shows that the optimal temperature range of robust AacC2c1 cleavage is between 40°C and 

55°C

(E) In vitro validation of the AacC2c1 PAM requirements with four different PAMs. The 

PAMs matching the TTN motif are efficiently cleaved.

(F) Schematic of the chimeric AacC2c1 sgRNA shown hybridized to the EMX1 DNA target 

with repeat:anti-direct pairing between segments derived from the tracrRNA (red) and the 

crRNA (green)

(G) Comparison of the in vitro target cleavage in the presence of crRNA:tracrRNA 

AacC2c1 and sgRNA identifies comparable cleavage efficiencies.
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Figure 5. Expression and processing of C2c2 loci
(A) RNA-sequencing of the Listeria seeligeria serovar 1/2b str. SLCC3954 C2c2 locus (see 

also Figures S7F and S7G).

(B) Northern blot analysis of the Leptotrichia shahii DSM 19757 shows processed crRNAs 

with a 5’ DR. Arrows indicate the probe positions and their directionality.

Shmakov et al. Page 21

Mol Cell. Author manuscript; available in PMC 2016 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Phylogenetic tree of Cas1
The tree was constructed from a multiple alignment of 1498 Cas1 sequences which 

contained 304 phylogenetically informative positions. Branches, corresponding to Class 2 

systems are highlighted: cyan, type II; orange, subtype V-A; red, subtype V-B; brown, 

subtype V-C; purple, type VI. Insets show the expanded branches of the newly identified 

(sub)types. The bootstrap support values are given as percentage points and shown only for 

several relevant branches. The complete tree in the Newick format with species names and 

bootstrap support values and the underlying alignment are available at ftp://

ftp.ncbi.nih.gov/pub/wolf/_suppl/Class2/.

See also Supplemental Experimental Procedures.
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Figure 7. Evolutionary scenario for the CRISPR-Cas systems
The scenario is a synthesis of the present and previous analyses (Makarova et al., 2011a; 

Makarova et al., 2013; Chylinski et al., 2014; Makarova et al., 2015). The Cas8 protein is 

hypothesized to have evolved by inactivation of Cas10 (shown by white X), which was 

accompanied by a major acceleration of evolution. Genes and portions of genes shown in 

gray denote sequences that are thought to have been encoded in the respective mobile 

elements but were eliminated in the course of evolution of CRISPR-Cas systems. 

Abbreviations: TR, terminal repeats; TS, terminal sequences; HD, HD family endonuclease; 

HNH, HNH family endonuclease; RuvC, RuvC family endonuclease; HEPN, putative 

endoribonuclease of HEPN superfamily.
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