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Abstract

Purpose—This review will discuss recent advances in understanding mouse and human 

pancreatic islet cell development, novel concepts related to β cell dysfunction and improved 

approaches for replenishing β cells to treat diabetes.

Recent Findings—Considerable knowledge about pancreatic islet development and function 

has been gained using model systems with subsequent validation in human tissues. Recently, 

several rodent studies have revealed that differentiated adult islet cells retain remarkable plasticity 

and can be converted to other islet cell types by perturbing their transcription factor profiles. 

Furthermore, significant advances have been made in the generation of β-like cells from stem cell 

populations. Therefore, the generation of functionally mature β cells by the in situ conversion of 

non-β cell populations or by the directed differentiation of human pluripotent stem cells could 

represent novel mechanisms for replenishing β cells in diabetic patients.

Summary—The overall conservation between mouse and human pancreatic development, islet 

physiology and etiology of diabetes encourages the translation of novel β cell replacement 

therapies to humans. Further deciphering the molecular mechanisms that direct islet cell 

regeneration, plasticity and function could improve and expand the β cell replacement strategies 

for treating diabetes.
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Introduction

Extensive research using rodent models has characterized many of the essential genes and 

molecular mechanisms that are important for pancreatic islet cell development and function. 

Recently, the increased availability of human fetal pancreas has revealed important 

similarities and differences in mouse versus human islet cell development and morphology. 

Furthermore, with the advent of high throughput sequencing, mouse studies have facilitated 

the identification of a number of causative genetic mutations for pancreatic agenesis, 

perinatal diabetes and mature onset diabetes of the young (MODY) in humans. With these 

advances, it is an optimal time to evaluate our current knowledge of mouse and human 
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pancreatic islet cell development, the conserved transcriptional program for generating and 

maintaining functionally mature β cells, and exciting new approaches for repairing or 

replacing damaged β cells as potential therapies for diabetes.

Pancreatic Specification

The pancreas derives from two distinct segments of the foregut endoderm that can be 

identified at approximately embryonic day (E) 8.5 in mice by the expression of the 

pancreatic determination transcription factor (TF) Pdx1 (Pancreatic and duodenal homeobox 

1)[1]. The Pdx1+ multipotent pancreatic progenitor cells (MPCs) cells are highly 

proliferative and give rise to all cell types of the three major pancreatic compartments, 

including the exocrine, endocrine, and ductal lineages[2]. Between E9.5 and E11, the 

expansion, rearrangement and morphogenesis of MPCs restructures the endoderm 

monolayer to multilayered stratified epithelia forming a dorsally and ventrally located 

pancreatic bud[3]. When cultured ex vivo, as few as eight MPCs isolated from the early 

pancreatic bud are sufficient to form pancreatic rudiments containing all three pancreatic 

lineages[4].

Pancreatic specification and maintenance of MPCs requires several TFs, including Pdx1, 

Ptf1a (Pancreas specific transcription factor 1a), Mnx1 (Motor neuron and pancreas 

homeobox1), Sox9 (SRY box 9), and HNF1β (Hepatocyte nuclear factor-1 β)[5–10]. 

Depletion of any of these TFs impairs pancreatic bud formation and leads to varying degrees 

of pancreatic agenesis. Furthermore, Pdx1 and Ptf1a are sufficient for pancreas 

specification; ectopic expression of Pdx1 or Ptf1a in specific regions of endoderm can 

induce ectopic pancreatic bud development[11–13].

Although little is known about the specification of pancreatic endoderm upstream of Pdx1 

and Ptf1a, there is evidence that the TFs Foxa1/Foxa2 and Gata4/Gata6 induce pancreatic 

fate by activating expression of Pdx1 and Ptf1a[14, 15]. Simultaneous loss of Foxa1/Foxa2 

or Gata4/Gata6 reduces the expression of Pdx1+ and Ptf1a+, impairs bud development and 

subsequently leads to pancreatic agenesis. Currently, the mechanism(s) by which the broadly 

expressed Gata and Foxa TFs induce Pdx1 and Ptf1a specifically in the prospective 

pancreatic endoderm is unknown. Likely candidates are the presence or absence of 

additional regulatory factors and the integration of spatiotemporal signals secreted from 

adjacent structures such as the notochord, mesenchyme and aorta to promote pancreas 

development [16].

Corresponding morphological and molecular studies of early pancreas development in 

humans have been much more limited due to the scarcity of human fetal tissues. However, 

several recent studies have begun to define the similarities and differences between mouse 

and human pancreas development. Interestingly, pancreatic specification in humans occurs 

at a relatively later developmental stage – shortly after gut closure has occurred and the gut 

tube has become separated from the notochord and aorta[17]. Similar to mice, PDX1 can be 

first be detected in the presumptive dorsal and ventral pancreatic endoderm at 29–31 days 

post-conception (dpc) in a region of the pancreatic endoderm that is also positive for 

GATA4 and FOXA2[17]. No information is currently available for GATA6 or PTF1A 

Romer and Sussel Page 2

Curr Opin Endocrinol Diabetes Obes. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression; however, most cases of pancreatic agenesis in humans has been linked to 

heterozygosity of GATA6 (>56% of cases) and by rare mutations in PTF1a, PDX1, and 

GATA4[7, 18–25], suggesting there is some degree of conservation in these early 

developmental processes. In humans, however, GATA4 is not expressed in the early foregut 

endoderm prior to pancreas specification, which may at least partly explain a greater 

dependence on GATA6 for pancreatic specification[17].

Pancreatic Lineage Restriction

During early stages of murine pancreatic bud outgrowth, pancreatic lineage differentiation is 

primarily limited to a few endocrine glucagon-producing α cells[26]. This early wave of 

endocrine cell differentiation during murine development, known as the primary transition, 

is apparently absent in humans, perhaps as a consequence of the relative delay in pancreatic 

specification[17]. During the secondary transition, which represents the major wave of 

endocrine cell differentiation, the pancreatic bud drastically reorganizes into an epithelial 

arboretum with tip and branch structures that are enmeshed in a loose mesenchyme[3]. At 

this time, the ventral bud descends distally and fuses with the dorsal bud to form a single 

nascent pancreas. During these complex morphogenetic events, MPCs become lineage 

restricted and segregate to either Ptf1a+/Gata4+ exocrine progenitors located at the tips of 

the epithelial plexus or to Sox9+/Nkx6.1+ ductal/endocrine progenitors located in the 

trunks[27–29]. Shortly after tip/trunk compartmentalization, exocrine progenitors begin to 

differentiate into acinar cells at the distal end of the tips, while the bi-potent trunk 

progenitors differentiate into ductal and endocrine precursor cells. Similarly in humans, trip-

trunk segregation can be detected by the restriction of GATA4 expression to the tip cells and 

SOX9 and NKX6.1 to the trunk domain[24].

The specification of MPC towards exocrine or endocrine/ductal bi-potent progenitors 

involves the mutual repression of Ptf1a and Nkx6 factors[29] and appears to rely on 

instructive micro-environments established during epithelial polarization and plexus 

formation[3, 30]. A number of intra-epithelial and mesenchymal signals can instruct MPC 

proliferation, lineage allocation and differentiation (extensively reviewed in [31]). Notably, 

Notch signaling can promote both MPC proliferation and trunk bi-potent progenitor 

specification at the expense of exocrine differentiation[29, 32–37]. Certainly in the future, 

additional factors that influence MPC fate decisions will be identified, especially those from 

the developing vasculature that intercalate into the pancreas during the secondary 

transition[38]. Determining how these signals regulate the Ptf1a/Nkx6 lineage switch during 

tip trunk compartmentalization will greatly advance the understanding of MPC lineage 

allocation.

Endocrine islet development

Bi-potent trunk progenitors are directed to an endocrine fate by the transient induction of the 

TF Neurog3 (Neurogenin3). Neurog3 KO mice fail to develop endocrine cells and display 

enlarged ducts, suggesting the reallocation of progenitors to the ductal lineage[39–41]. 

Moreover, ectopic Neurog3 expression in MPCs drives their precocious differentiation into 

endocrine cells[26, 32, 42]. Shortly after Neurog3 expression, endocrine cells delaminate 
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from the ductal epithelium and aggregate to form nascent islets. Although there is a transient 

peak in NEUROG3 expression in human fetal pancreas that corresponds to the stage of 

endocrine lineage commitment, inactivating mutations of NEUROG3 in humans causes 

relatively mild defects in endocrine islet cell development and function[43–46]. 

Interestingly, despite the remarkable molecular conservation between zebrafish and murine 

pancreas development, Neurog3 is also dispensable for endocrine lineage differentiation in 

zebrafish and, instead, the control of endocrine cell fate requires two basic helix-loop-helix 

factors, Ascl1b and Neurod1[47]. Since NeuroD1/NEUROD1 is essential for β cell function 

in mice and humans, NEUROD1 could potentially function redundantly with NEUROG3; 

however NEUROD1 expression in human pancreas development has yet to be 

determined[48–50].

In mice, the majority of endocrine cells emerge during the secondary transition as mono-

hormonal cells from the Neurog3 endocrine precursor population. The differentiation of 

specialized mono-hormonal islet cells is controlled by specific combinations of islet TFs that 

operate as genetic switches by cooperatively inducing islet cell-type specific gene regulatory 

networks (GRNs) and by repressing alternate islet GRNs (Figure. 1, extensively reviewed in 

[51, 52]). Although many individual transcription factors have been characterized for their 

respective roles in islet cell type specification, their cooperative activities are not completely 

understood. This represents a critical gap in our knowledge since the majority of essential 

islet TFs, including Pdx1, Nkx2-2, Neurog3, Nkx6.1, Mnx1, Pax6, Isl-1, Glis3, Insm1, 

Rfx6, and Neurod1 direct the differentiation and specialization for multiple pancreatic cell 

types[10, 39, 48, 53–63] and extra-pancreatic cell types, such as enteroendocrine cells [48, 

61, 64–66] and neuronal cells[67–73]. A further complication is that a single TF may 

employ distinct mechanisms for regulating different targets in each cell type. For example, 

in β cells, Nkx2-2 can synergize with Neurog3 to activate NeuroD1, yet it also can interact 

with the Grg3 co-repressor protein to directly repress Arx, an α cell factor[54, 74]. 

Furthermore, Neurod1 can promote or impede the development of α cells depending on the 

presence of Nkx2-2[75]. Therefore the precise mechanisms that control TF target specificity 

and the downstream GRNs that specify cell type identity are unclear, but are likely to 

involve unique combinations of TFs forming complexes with chromatin modifying enzymes 

on the promoters and enhancers of specific targets.

The developmental cues and signals that regulate the genetic switches for endocrine cell 

specification and specialization are also unclear. During early stages of pancreatic bud out 

growth, the vast majority of endocrine cells are α cells, followed by increased production of 

β, δ, and ε cells during the secondary transition, and finally the PP cell population during 

late embryogenesis. The influence of developmental timing on islet cell identity was 

recently confirmed by the doxycycline controlled ectopic expression of Neurog3 in MPCs 

(in a Neurog3 null background) at different stages of development[26]. Deciphering the 

complex transcriptional mechanisms that control islet cell specific GRNs and their 

regulation by developmental cues will lead to improved strategies for generating functional 

mono-hormonal β cells from alternative cell sources.

Most TFs analyzed have an expression profile consistent with having a conserved function 

during human islet development[17, 46, 76]. Moreover, mutations in TFs essential for islet 
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cell development in mice including NEUROD1, NKX2-2, GLIS3, PDX1, RFX6, and MNX1 

have been linked to diabetes[50, 77]. Interestingly, the expression pattern of NKX2-2 and 

MAFB is different in humans and this may explain divergence from mouse islet 

development[17, 76]. In contrast to mice, a large population of the early endocrine cells in 

humans is poly-hormonal and the majority of mono-hormonal cell types do not appear until 

later in development[17, 76, 78]. Interestingly, in humans, NKX2-2 is absent in the early 

MPCs and is only expressed relatively late during endocrine cell differentiation, 

corresponding to the appearance of mono-hormonal populations [16]. Given its importance 

in maintaining islet cell identity in mice[54, 55, 79, 80], NKX2.2 may function to resolve 

poly-hormonal cells into specialized mono-hormonal cells[17]. In mice, silencing of the TF 

MafB in the β cell also plays an important role in β cell maturation and identity[81]; 

however in humans MAFB expression is maintained in β cells indicating that alternative 

mechanisms may be important for this process [77, 94].

In both mice and humans, all the endocrine cell populations are formed by birth and the full 

complement of functionally mature endocrine cells aggregate into islet structures shortly 

after birth. In the adult mouse, 90% of islet cells are β cells that are clustered in the center of 

the islet and are surrounded by a mantle of the other endocrine islet cell types. In contrast, 

the human islet has a mosaic distribution of endocrine cells with the proportions of α, δ and 

β cells reaching 1:1:1 at birth[76, 78]. The relative abundance of α and δ cells in the human 

islet compared to the mouse islet maybe due to differences in the relative proliferation of 

these cells to β cells during development [76, 78, 82, 83].

Maintenance of Islet cell identity

The generation of conditional mutations in TFs that are required for islet cell differentiation 

has revealed that the functional identity of islet cells is not permanently hardwired, but needs 

to be actively maintained throughout the cell’s lifetime. For example, deletion of the β cell 

determination TFs Nkx6.1 and Pdx1 in adult β cells leads to their conversion to δ cell-like 

and α cell-like phenotypes, respectively[81, 84, 85]. β cell function also depends on 

sustained expression of Neurod1, Rfx6, Pax6, Glis3, Islet1, Foxa1 and Foxa2[49, 86–91]. 

Similarly, in α cells, deletion of Arx or ectopic expression of Pax4 directs their trans-

differentiation to a β cell-like phenotype[92, 93]. In addition to these genetic TF models, 

sufficient oxygenation of β cells also appears to be required to maintain the functional 

identity of β cells: culturing islets in hypoxic conditions or disrupting the Vhlh (von Hippel-

Lindau) and the Hif1α oxygen sensing pathway alters the expression of differentiation and 

progenitor markers. Although genetic lineage tracing in human islets is not possible, one 

study has demonstrated that α cells can also be partially converted to β–like cells when 

cultured in vitro in the presence of methyltransferase inhibitor[94]. These studies have 

revealed the existence of a previously unappreciated plasticity in the adult islet that has 

influenced current ideas about β cell dysfunction and raised the possibility that novel 

transdifferentiation mechanisms could be used to regenerate or replace β cells in diabetic 

islets[95].
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Loss of β cell identity during the pathogenesis of Type 2 Diabetes

During the pathogenesis of T2D, loss of glycemic control occurs by the deterioration of 

functional β cells in response to chronic exposure to cellular stressors generated during 

insulin resistance. Experiments that lineage labeled β cells in several diabetic mouse models 

revealed that β cell mass is reduced not only due to apoptosis, as previously believed, but 

also from the transcriptional silencing of insulin and other markers of functionally mature β 

cells[96]. During the initial stage of the disease, β cells can accommodate the increased 

demand for insulin by increasing β cell proliferation and insulin production. In particular, 

the TF Foxo1 is activated by metabolic stress during insulin resistance to enhance β cell 

function, at least in part, by directly inducing the expression of MafA and Neurod1[96, 97]. 

However, prolonged metabolic stress impairs Foxo1 activation and eventually causes a 

subset of β cells to acquire α cell-like phenotypes or express progenitor markers such as 

Neurog3, Oct4, and Nanog[96, 98]. The reactivation of progenitor markers has been coined 

“dedifferentiation”, however expression profiling and functional analysis for pluripotency 

have not yet confirmed whether these former Ins+ β cells have dedifferentiated to a 

progenitor-like state.

Evaluation of human islets from patients with T2D has also revealed phenotypes consistent 

with β cell dormancy, which is characterized by diminished expression of insulin and other 

markers for differentiated β cells, but without significant induction of progenitor 

markers[98]. Expression analysis of TFs found to be critical for maintaining functionally 

mature β cells in the mouse revealed diminished expression of TFs PDX1, NKX6.1 and 

MAFA in human T2D islets[98]. The loss of Pdx1, Nkx6.1 and MafA in the mouse adult β 

cell leads to many of the same defects observed in T2D islets, suggesting β cell dormancy 

may be driven by the transcriptional silencing of these TFs during pathogenesis of T2D[81, 

84, 85, 99–101]. Recently, several studies have provided mechanistic insight into how β cell 

transcriptional complexes are inactivated during the pathogenesis for T2D. Most of the 

SNPs (Single poly-nucleotide polymorphisms) that are associated with T2D are found in 

non-coding sequences and little is known about how they contribute to β cell dysfunction or 

dormancy[102, 103]. The genome wide identification of human islet specific enhancers by 

ChIP-seq analysis has revealed that several of these SNPS are likely to predispose for β cell 

dormancy by disrupting TF binding sites found in islet specific enhancers[104]. The activity 

of TFs can also be modified by cellular stressors generated during insulin resistance. 

Hyperglycemia can lead to the accumulation of highly reactive free radicals that have 

recently been shown to directly inactivate the β cell TFs MafA and Nkx6.1[98]. Ectopic 

overexpression of MafA partially prevented β cell dedifferentiation in a mouse model for 

T2D and significantly improved their pathology[98]. Similarly, administering antioxidants 

or transgenic overexpression of Gpx-1, an enzyme that reduces free radicals, can prevent the 

dedifferentiation of β cells in a mouse model for T2D[98, 105, 106]. Better understanding of 

how cellular stressors generated during insulin resistance inactivate β cell specific 

transcriptional complexes will likely lead to other novel therapies designed to prevent or 

reverse β cell dormancy during the pathogenesis of T2D.
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Regeneration of β cells in the adult

Adult β cells are mostly quiescent, however a small fraction can be activated to proliferate in 

response to hyperglycemia from insulin resistance or β cell depletion[107–110]. Compared 

to mice, human β cells are more resistant to cell cycle entry during development and in 

response to stress or mitogens[111]. The limited regenerative capacity of β cells has led 

many researchers to search for alternative approaches to replenish lost or dysfunctional β 

cells, including taking advantage of the recently discovered islet cell plasticity. It has now 

been demonstrated that severe β cell depletion (>99%) can lead to a small fraction of either 

α or δ cells to transdifferentiate into a β cell-like phenotype in adult and adolescent mice 

respectively[112, 113]. Remarkably, the chemical ablation of β cells combined with 

treatment of the cytokines CNTF and EGF can convert acinar cells to a β cell-like 

phenotype, nearly restoring normal glycemic control[114]. Previous experiments suggested 

ductal cells could transdifferentiate to β cells in response to β cell depletion from partial duct 

ligation-induced injury[115]. These findings, however have become somewhat controversial 

in light of new studies using ductal lineage labeling experiments that fail to show duct-

derived β cell formation[27, 116].

The ectopic overexpression of β cell TFs can also induce the expression of insulin and other 

β cell markers in a number of non-islet cell types including liver, exocrine pancreas, 

gallbladder and mesenchymal stem cells [117–121]. Acinar cells can be converted to a β cell 

like phenotype in vivo by the adenoviral mediated ectopic overexpression of Pdx1, Neurog3, 

and MafA[119, 122]. Surprisingly, in a mouse model with ubiquitous transgenic 

overexpression of the same Pdx1, Neurog3 and MafA combination did not lead to acinar to 

β cell transdifferentiation, suggesting a permissive effect of either the adenovirus or the nude 

mouse background used for adenovirus mediated overexpression[119, 123]. The only cells 

that were converted to a β cell like phenotype by the ubiquitous transgenic overexpression of 

Pdx1, Neurog3, and MafA were intestinal crypt cells; highlighting their unique potential for 

reprograming to a β cell fate[123]. Recently both mouse and human intestinal cells could 

also be converted to a β cell-like phenotype by the depletion of Foxo1 activity[124, 125]. In 

the future, identifying the factors unique to intestinal cells that allow for their 

reprogramming to a β cell like fate could be used to directly reprogram other cell types.

Generation of functionally mature β cells from stem cell populations

Previously, protocols based on the extensive knowledge gained from in vivo mouse 

pancreatic β cell development studies successfully differentiated embryonic stem cells 

(ESC) to foregut endoderm, pancreatic progenitors and Ins+ cells[126–129]. Although these 

protocols robustly produced pancreatic endodermal cells, induction of Ins+ cells was 

inefficient and the majority of Ins+ cells resembled functionally immature β cells that were 

poly-hormonal and only achieved modest GSIS after 3–4 months of in vivo 

engraftment[128–131]. However, recent studies by two independent groups have reported 

significantly improved differentiation protocols that efficiently yield mono-hormonal Ins+ 

cells with an expression profile and physiology comparable to β cells isolated from human 

cadaveric islets[132–134]. Within only 2 weeks after transplantation into diabetic mice, the 

newly improved stem cell derived β cells secreted insulin in response to glucose and 
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partially restored normal glycemic control[132, 134]. This achievement greatly advances the 

potential for using ESC or IPS cells as a source for β cell replacement therapies for diabetes.

Conclusions

The generation of functionally mature β cells by the differentiation of stem cells or the in 

situ conversion of other islet cell types, acinar and intestinal cells are major breakthroughs 

towards replacing dysfunctional β cells in diabetic patients. Moreover, elucidating the 

etiology of β cell dysfunction during the pathogenesis of T2D has revealed many new 

potential therapies for preventing or repairing dysfunctional β cells. These breakthroughs 

were possible due to insight from over 25 years of basic and clinical research aimed at 

understanding the molecular mechanisms that control key events during islet cell 

development and diabetes-related dysfunction. This review has highlighted current 

knowledge and gaps in the understanding of the mechanisms that control pancreatic 

specification, subsequent lineage restriction and differentiation of MPCs to functionally 

mature islet cells. Further elucidation of the signaling and transcriptional mechanisms that 

direct cell type specific GRNs during the development of functionally mature islet cells will 

enhance the efficiency of β cell differentiation, transitioning from transgenic to 

pharmacological approaches for reprogramming, and for diversifying the sources of β cell 

differentiation. The overall conservation of the mechanisms that direct the development of 

functional β cells in mice and humans reinforces the idea that these strategies may translate 

to treating patients with diabetes.
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Key points

1. Many of the key transcription factors (TFs) that regulate pancreatic islet cell 

development are conserved between mice and humans, however divergent 

expression patterns and/or functions of some factors may explain phenotypic 

differences between murine and human islets.

2. The functional maturity and identity of β cells are actively maintained by TFs 

that are important for islet development.

3. Inactivation of β cell TFs during the pathogenesis of T2D can lead to β cell 

dormancy and/or dysfunction.

4. Functionally mature β cells can be generated by the differentiation of embryonic 

stem cells or the in situ trans-differentiation of non-β cell populations, such as α 

cells, acinar cells and intestinal cells.
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Figure 1. Transcription Factors direct pancreatic islet cell development
Pancreatic bud development from foregut endoderm depends on the TFs Pdx1, Ptf1a, Mnx1, 

Foxa1, Foxa2, Gata4 and Gata6. Human pancreas specification has greater dependency on 

GATA6 possibly due to a lack of GATA4 expression in the foregut endoderm prior to 

pancreas specification. Lineage restriction of multi-potent pancreatic progenitor populations 

towards exocrine progenitor cells and ductal/endocrine bi-potent progenitor cells occurs 

during their segregation to the tips and trunks of the developing pancreatic arboretum 

respectively and is directed by mutual repression between Nkx6.1 and Ptf1a. Neurog3 is 

essential for the differentiation of trunk progenitors to hormone producing islet cells in mice 

but not humans; suggesting functional redundancy by other factors. Specific combinations 

of functionally conserved TFs are required for Neurog3+ precursors to differentiate into 
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specialized mono-hormonal islet endocrine cells. In humans NKX2-2 is not expressed until 

endocrine cell differentiation, which may explain why many of the early endocrine cells are 

poly-hormonal. TFs that differ in human versus mouse by their expression pattern or genetic 

functions are highlighted in grey with a superscript H to delineate “human”.
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