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Abstract

Viruses that express reporter genes upon infection have been recently used to evaluate neutralizing 

antibody responses, where a lack of reporter expression indicates specific virus inhibition. The 

traditional model-based methods using standard outcome of percent neutralization could be 

applied to the data from the assays to estimate antibody titers. However, the data produced is 

sometimes irregular, which can yield meaningless outcomes of percent neutralization that do not 

fit the typical curves for immunoassays, making automated or semi-high throughput antibody titer 

estimation unreliable. We developed a type of new outcomes model, which is biologically 

meaningful and fits typical immunoassay curves well. Our simulation study indicates that the new 

response approach outperforms the traditional response approach regardless of the data variability. 

The proposed new response approach can be used in similar assays for other disease models.
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1 Introduction

Green fluorescent protein (GFP) expressing influenza viruses have been developed to 

monitor virus infection by observation or quantification of GFP expression (18; 22; 1; 10; 2; 

13). A common virological assay that benefits from such reporter gene expression is the 

microneutralization assay, or an approach to detect antibody-mediated virus inhibition (18; 

1; 10; 2; 13). In this study, a GFP-expressing influenza virus was used to determine the 

presence and potency of influenza neutralizing antibodies in cell culture. Specifically, the 

GFP-based microneutralization assay evaluates a known influenza virus isolate against a test 

sample (antibody-containing sera) of unknown specificity or concentration. The test sample, 

*Hongmei_Yang@urmc.rochester.edu. 

HHS Public Access
Author manuscript
J Biopharm Stat. Author manuscript; available in PMC 2016 April 26.

Published in final edited form as:
J Biopharm Stat. 2016 ; 26(3): 409–420. doi:10.1080/10543406.2015.1052475.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which may be subject to pre-dilution, is two-fold serially diluted in a 96-well plate, using 

triplicates. Next, an equivalent amount of influenza virus is added to each well containing 

diluted test samples. The virus-antibody mixture is then used to infect cells and, 24 hours 

later, the change in GFP expression over the antibody dilution series will be evaluated by a 

fluorescence microscope or a fluorescence plate reader. This produces a dose-response 

curve. Figure 1 provides an example of a GFP-based influenza microneutralization assay 

using monoclonal antibodies. Figure 1(a) demonstrates the typical plate layout of the 

experiments, where influenza virus alone (in the absence of antibody) are used as positive 

controls characterizing 100% GFP expression, and cells without virus are used as negative 

controls providing the background auto-fluorescence of the cells within the assay. Thus the 

dose-response over serial dilution of neutralizing antibodies is evaluated. As strain-specific 

monoclonal antibodies are diluted, GFP expression is recovered which can be observed 

directly by fluorescence microscopy (Figure 1).

The question becomes how to quantify neutralizing antibody titers, or the concentration at 

which 50% virus neutralization is achieved. This corresponds to the highest dilution at 

which the GFP intensity is reduced by 50%. A simple but classical way is using linear 

interpolation by Reed and Muench (23), assuming a linear dose-response relationship 

around the potential antibody titer. But the Reed-Muench method uses only information 

from two points around the potential titer, and thus it is inefficient in both precision and 

accuracy. Another way is to model the dose-response curve. Before any model is selected to 

depict the dose-response curve, a response has to be appropriately defined in a way that the 

response is not only biologically meaningful, but can precisely capture the dose-response 

curve, by which it either increases or decreases as test samples are diluted. Traditionally, 

percent neutralization has been used to depict the dose-response curves. In consideration of 

negative controls (no-virus) and positive controls (no-antibody), percent neutralization can 

be calculated as

(1)

In theory, GFP intensities are maximum in no-antibody samples (positive controls) and 

minimum in no-virus samples (negative controls), and the signals from test antibody samples 

(simplified as TAS, and used thereafter) lie between the maximums and the minimums. If 

the data produced follow these principles, there will be no problem in the use of percent 

neutralization. But in reality, the data from the assays are often irregular; for example, 

signals from positive controls are smaller than those from TAS, or background noise from 

negative controls are larger than signals from TAS. As an example (Figure 2(a), different 

symbols represent different days), the raw GFP intensity data shows a subject’s 

neutralization antibody responses against influenza A/California/04/2009 (H1N1) on 

different days (0, 5 ~ 9 and 21) post vaccination. This intensity data can then be extrapolated 

as percent neutralization (described above) to generate a dose-response curve (Figure 2(b)). 

The test antibody samples from the subjects at different days were run on four plates, with 

test samples on day 0 and day 5 on plate 1, day 6 and 7 on plate 2,day 8 and 9 on plate 3 and 

day 21 on plate 4. Data from all four plates present the above-mentioned irregularities, 
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especially from plate 1 and plate 3, which may be an artifact of differences in the plates 

themselves. The GFP intensities from the positive controls (no-test-antibody mixture) were 

very noisy, with a majority smaller than those from the test-antibody mixture, and 2 out of 6 

values even smaller than those from the negative controls (no-virus mixture). As a reason the 

majority of the calculated percent neutralization was negative, which was biologically 

impossible and meaningless. The percent neutralization was also noisy in many cases, it 

neither decreased upon TAS dilution nor generated clear dose-response curves (see the 

subject’s responses on day 5 in Figure 2(b)). Thus the traditional use of percent 

neutralization to measure antibody inhibition in this assay is associated with severe 

problems, and any inferences from model fitting based on such responses are unreliable. 

Therefore, a better response approach in cases such as these with similar assays needs to be 

defined for a reliable estimation of antibody titers in the context of infection or vaccination.

In response to the need characterized by the example above, we defined a new response 

approach, which is not only biologically meaningful, but reliably represents dose-response 

curves typically used in immunoassays. The performance of the new response approach 

compared with the traditional response approach and the point-based RM method is 

evaluated numerically through simulations, and illustrated by data from the example study. 

This new response approach can be extended to data from similar assays such as the TZM-

b1 assay for detecting HIV neutralizing antibodies (4; 19; 7; 20; 17; 26).

This paper is organized as follows. In Section 2, we define the new response and the 

subsequent non-linear model fitting and estimation. In Section 3, we conduct extensive 

simulation studies to evaluate the performance of the new response approach, and illustrate 

its application in analysis of real data from the example study. The paper is concluded with 

some discussion in Section 4.

2 Methods

2.1 Dose-response Curve

For a given assay run, let (xi, yij) be observations to describe the dose-response relationship, 

where yij is one of mi chosen responses, j = 1, …, mi, at one of the g dilution levels, i = 1, 

…, g. A general dose-response model for bioassay data is the nonlinear regression model

(2)

where the mean function f(xi, β) is nonlinear in the p - dimensional parameter vector β, the 

variance function υ{f(xi, β), θ} may depend on the mean function f(xi, β) besides the q - 

dimensional variance parameter θ, and εij are assumed to be independent random normal 

variables with mean 0 and variance 1. Hence the variance for response Var(yij) = σ2υ{f(xi, 

β), θ} may depend on both the scale parameter σ and the mean function f(xi, β). The most 

common variance model for bioassays assumes that υ{f(xi, β), θ} = fθ(xi, β). When θ = 0 we 

end up with a constant variance, suggesting response variance is homogeneous over dilution 

factors.
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The commonly used model for the mean response is the 4-parameter logistic regression 

model (25; 12),

(3)

where the dilution level xi is usually in log2 or log10 scale depending on serial dilution factor 

(2-fold or 10-fold), and the parameters are biologically meaningful, with β3 representing the 

maximum response, β2 being the minimum response, β4 being concentration that results in 

50% response, and β1 denoting the relative slope around 50% response (β4). The 4-

parameter logistic regression model has been successfully applied to radioimmunoassays, 

ELISA, pneunococcal opsonophagocytic killing assay and others (24; 15; 8; 3; 30; 14; 27). 

For simplicity, we will use this commonly used model for illustration, but other similar 

models such as the five-parameter logistic model (21) can be used as well.

2.2 Newly Defined Response

As mentioned earlier, percent neutralizations calculated from the readings of 

microneutralization assays is often non-monotonic over dilution levels, and thus the 

traditional use of it as response has potentially serious problem. A better response has to be 

defined to capture the dose-response curve (3). The new response has to be biologically 

meaningful, and also has to be robust to the aforementioned data irregularities which are 

common in practice, so that it will present a clear dose-response curve, either increasing or 

decreasing as TAS are diluted. Considering all the issues discussed above, we define the new 

response as

(4)

In theory the negative controls have zero GFP intensity and the positive controls have the 

maximum GFP intensity. Thus the newly defined response theoretically measures the 

percent fluorescence intensity of test antibody samples relative to the maximum. Hence it is 

biologically meaningful. Advantages of the newly defined response approach include:

• By using the percent of GFP intensity from the test samples relative to the sum of 

GFP intensity of negative and positive controls, we circumvent the problems of 

meaningless negative values in traditional response of percent neutralization 

brought by common data irregularities;

• For each plate, the GFP intensities are fixed for no-test-antibody (positive controls) 

and no-virus (negative controls), but increases as the test antibody samples are 

diluted. With a fixed denominator and the numerator decreasing as the dilution 

levels, it clearly defines a dose-response curve;

• ynew = 50 ⇔ ytrad = 50. In other words, the calibration of the fitted curve at 50 

using the new response approach is the exact antibody titer estimator (50% 

reduction of GFP intensity), consistent with the literature definition on antibody 

titer.
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These advantages are clearly suggested by the new dose-response scatter curves (Figure 

3(a)) for the same set of data, where percent neutralization was previously used as a 

response (Figure 2(b)). As expected, the new response increased as test samples were 

diluted, and it generated a clear logistic curve. In addition, the new response approach is 

always positive, bypassing the negative value problem brought by the classical use of 

percent neutralization as a response approach.

2.3 Nonlinear Model Fitting

The methods for nonlinear model fitting were previously detailed (5; 3), and will not be 

discussed here. Noteworthy here is the specification of initial parameter values required by 

nonlinear maximization. The choice of initial values may influence the convergence of 

estimation algorithm, and in the worst case may yield no convergence. For the 4-parameter 

logistic regression model above, the initial values can be obtained by using the biological 

representations of the parameters and linearization:

• Using the maximum response as the initial value for β3;

• Using the minimum response as the initial value for β2;

• Transforming the 4-parameter logistic model as

(5)

with , x* = log x and .

Then the initial values β1 and β4 can be obtained by linear regression. With a good choice of 

initial values, nonlinear model fitting can be processed as previously described (5; 3).

2.4 Antibody Titer Estimation & Inference

Once model fitting and parameter estimation is accomplished by the non-linear model fitting 

as described in section 2.3, the antibody titers x50, at which 50% neutralization is achieved, 

shall be obtained by inversion of the fitted curve at 50 for test samples. In the general case 

let h(y, β) be the inverse function of the monotonic mean function f(x, β). Then a natural 

estimator of x50 is x̂50 = h(50, β̂), where β̂ is the parameter estimator of β with asymptotic 

covariance matrix σ2V (β, θ). In the case of 4-parameter logistic regression model, we have

(6)

The variance estimation of x50 can be processed by the Delta method. Let h(y, β) denote the 

inverse function of the mean function f(x, β) in (3). In the case of the 4-parameter logistic 

regression model, x = h(y, β) = exp (1/β̂
1 log (β̂

3 − 50)/(50 − β̂
2) + log β̂

4). By the Delta 

method,

(7)
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where hβ(y, β) represents the derivative of h with respect to β, (β̂, θ̂) are estimators for (β, θ), 

σ2V (β, θ) is the asymptotic covariance matrix for β, which can be obtained by standard 

theory.

3 Numerical Study

3.1 Monte Carlo Simulations

Monte Carlo simulations are applied to validate the good features of the new response 

approach over the traditional response approach. Unlike the common simulation studies 

where endpoints are measurements directly from experiments, the endpoints yij in this study 

are derived from the experiments’ measurements of GFP expressions. To mimic 

experimental scenarios, we need to randomly simulate the raw measurements of GFP 

expressions, and then use the generated data to derive model responses and apply our 

method. Thus the question becomes how to simulate raw data of GFP expression to mimic 

the real experiments. As an example of experimental GFP expression, we will use the raw 

GFP intensity data of the subject T11 in Figure 3(b) at day 21.

The GFP expressions (in log scale, green dots) from the serially diluted test samples also fall 

into a logistic regression curve over the dilution levels, and the 4-parameter logistic model 

fits the raw data relatively well (the solid curve). The 5-parameter logistic regression model 

should also fit the raw data. However, our purpose is not on the model development, but the 

way to define a meaningful response which clearly depicts the typical dose-response curve 

once data is generated. Thus it does not matter which model is used to simulate raw data as 

long as the generated data mimic real data examples. For simplicity, we use the 4-parameter 

logistic model to generate data. As suggested in (8; 11), raw data from immunoassays often 

present unequal variance varying with dilution factors. Hence we consider here both 

constant variance model and varying variance model. Specifically, the model below was 

used to simulate the raw data:

(8)

In practise there are usually 3 replicates at each dilution level, and 8 dilution levels in total, 

so we chose g = 8 and k = 3, to mimic the real situations. The selection of β is based on 

fitting the 4-parameter logistic model to the raw data (Figure 3(b)), and using the coefficient 

estimator β̂ = (−15.67, 11.41, 12.35, 3.08)′ to generate data. Recalling that β4 is the 

concentration that results in 50% response, the true antibody titer is set at 3.08.

To assess the relative performance, we first studied their numerical failure (NF) occurrence 

and their out-of-limit (OOL) frequency out of 1000 runs for the two model-based estimators. 

An out-of-limit event occurs when a model converges but the two asymptotes are either both 

larger than 50 or both smaller than 50, thus the titer estimator is out of the limits and can not 

be obtained. Next, we explored the coverage properties of the associated confidence 
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intervals using the variance estimator (7) for the model-based estimators, by computing the 

coverage probabilities (CP) of the associated CIs containing the true titers. Last, we compare 

the three estimators by their absolute relative errors (defined below).

(9)

where b denotes the bth simulation run, with b = 1, …, 1000. The 10% trimmed mean of 

AREs is used to avoid extreme data due to random generation.

We start with the constant variance model, when θ = 0. We selected σ ranging from 0.2 to 

0.5 as in (8), to explore the performance of the proposed approach over a broad range.

Table 1 presents the NF, OOL and CP of the the two model-based estimators and the ARE of 

all the three estimators under each σ. As indicated, the new response approach performs very 

stable in terms of both the NF and the OOL even when data variance is large, while the 

traditional response approach encounters more numerical problems in addition to much 

higher rate of out-of-limit problems for large data variance. Overall, both of the model-based 

estimators have good coverage properties when data variance is small to medium, but the 

new response approach has better coverage rate when data variance is large. With respect to 

ARE, the two model-based estimators have similar performance for small constant variance, 

while the RM method performs much worse, as expected. As variance increases, the AREs 

of the two model based estimators increase as well, but the absolute relative error of the 

traditional response approach increases much faster. This again proves the advantages of the 

new response approach. The RM keeps giving the largest AREs.

We also consider the varying variance model  where θ ≠ 0, with the model (8) used to 

generate data and the coefficient β being the same as well. We let the average noise level σ 

be 0.05, 0.08 and and 0.1, as previously used (8). Different values of θ represent different 

variance model: when θ = 0, the variance model reduces to the constant variance model we 

studied previously; when θ = 1, the variance is proportional to mean response; when θ = 2, it 

is a constant coefficient variation model. Due to its effect on the generation of positive 

control data, θ having values greater than 1.5 often leads to irregular data and hence 

numerical convergence failure. Thus we let θ vary from 0.5 to 1.2.

We present the NF, OOL and CP of the two model-based estimators in Table 2, and the ARE 

of all three estimators in Table 3. As suggested by the tables, the traditional response method 

has severe numerical convergence problem under the varing variance model, with over 98% 

convergence failure. On the contrary, the new response method has zero convergence failure. 

Considering both the NF and the OOL, the new response method successfully gives 

estimators over 92% runs against less than 2% runs by the traditional response approach, 

although its OOL frequencies look worse. Furthermore, the new response method has very 

good coverage rates (close to 95%). The poor performance of the traditional response 

method is not surprising, since when data variability is large and changes with dilution 

levels, the responses traditionally defined are frequently irregular and biologically 

meaningless, and therefore do not follow any curves. As for ARE, each method performs 
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worse as either δ or θ increases. However, the estimator using the new response approach is 

much more amenable to the change in data variance. As in the constant variance model, the 

AREs of the RM estimator are consistently the largest.

3.2 Real Data Examples

Influenza neutralizing antibodies correlate well with protection against future viral 

infections (9). The antigenic, but highly variable, head domain of influenza HA is a common 

target for neutralizing antibodies, where they aim to hinder access to the receptor binding 

domain (28; 6). The hemagglutination inhibition (HAI) assay strictly evaluates neutralizing 

antibodies that can block HA-receptor binding. However, neutralizing antibodies that bind to 

the more conserved stalk domain and can inhibit virus entry are similarly important, but are 

not detected using HAI and instead rely on other methodologies (e.g. conventional 

microneutralization assays or plaque reduction neutralization titer 50 assays) for detection 

(29). In general HAI and traditional microneutralization titers correlate well with each other, 

perhaps because the concentration or efficiency of inhibition of head-reactive antibodies is 

often saturating in sera. To address if HAI correlates with GFP-based microneutralization 

assays we describe here, the new response approach was used to analyze subject T11, using 

HAI for comparison (Figure 4). As expected, GFP-based microneutralization and HAI titers 

followed the same dynamic trend despite differences in magnitude, suggesting that the GFP-

based microneutralization analysis is biologically relevant. The plots also suggest that after 

vaccination, the induction of neutralizing antibodies for this subject increases starting at day 

6 and peaks around day 9, which then gradually waned for the next two weeks. Differences 

in magnitude between the GFP-based microneutralization and HAI approaches likely result 

from the amount of virus used for these assays. For the GFP-based microneutralization 

assay, ~ 100 – 200 viruses are pre-incubated with the tested samples (18), while, in the HAI 

assay, an estimated amount of ~ 1, 000 – 10, 000 viruses are used (16). Thus, in the GFP-

based microneutralization assay, a lower concentration of neutralizing antibodies are 

required for effective neutralization as compared to traditional HAI.

4 Discussion

Virus microneutralization assays using reporter gene expression as a surrogate for viral 

infection are relatively new (18; 22; 4; 19; 7; 20; 17; 26). The traditional model-based 

methods using standard outcome of percent neutralization could be, and often are, used in 

such assays to estimate neutralizing antibody titers. However, there can be problems with the 

data in practice, which yield meaningless and irregular outcomes that do not fit the typical 

curves for immunoassays. Thus antibody titer estimators obtained are often unreliable. We 

developed a new type of outcomes model that generates data that are biologically 

meaningful and fit the typical immunoassay curves well. The 4-parameter logistic model 

was used to generate raw data in our simulation study. Although the 5-parameter logistic 

regression model or others could be used as well, our purpose is not on the model 

development, but the way to define a meaningful response which clearly depicts the typical 

dose-response curve once data is generated. Thus it does not matter which model is used to 

simulate raw data as long as the generated data mimic real data examples. The simulation 

study indicates that the new response approach outperforms the traditional response 
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approach regardless of the data variability. The proposed new response approach can be used 

in similar assays for other diseases (4; 19; 7; 20; 17; 26). Statistical software R was used for 

data analysis and simulation studies.
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Figure 1. 
(a) Typical design; (b) Identity of pCal WSNΔHA/GFP: Influenza A/California/04/09 HA-

pseudotyped WSN-GP/GFP virus (pCal WSNΔHA/GFP, top) was tested in the GFP-based 

microneutralization assay using the influenza A/California/04/09 monoclonal neutralizing 

antibody 29E3 (blue). Influenza A/WSN/33 monoclonal neutralizing antibody 2G9 (red) 

was used as an internal control. Two-fold serial dilutions of the antibodies (starting 

concentration of 100 ng) were pre-incubated with the pCalE3 WSNΔHA/GFP virus for 1 

hour. The antibody-virus mixture was used to infect MDCK HA-expressing cells. Virus 

infection was monitored under a fluorescent microscope (a) and GFP-expression was 

quantified under a GFP plate reader (b). Percentage of GFP expression is illustrated for the 

different antibody dilutions. Virus in the absence of antibody (−Ab) was used to set up 100% 

GFP expression. Same monoclonal antibodies were also tested with the influenza 

A/WSN/33 HA-pseudotyped WSNΔHA/GFP virus (pWSN WSNΔHA/GFP, bottom). As 

expected, monoclonal antibody 29E3 specifically neutralize the pCal WSNΔHA/GFP virus 

but not pWSN WSNΔHA/GFP. To the contrary, monoclonal antibody 2G9 neutralized the 

pWSN WSNΔHA/GFP but not the pCalE3 WSNΔHA/GFP virus.
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Figure 2. 
(a) Raw Data; (b) Percent Neutralization.
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Figure 3. 
(a) Response newly defined; (b) Raw GFP data at day 21.
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Figure 4. 
Dynamic Curve of MN & HAI titers for subject T11.
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