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A central theme in nervous system function is equilibrium:
synaptic strengths wax and wane, neuronal firing rates adjust up
and down, and neural circuits balance excitation with inhibi-
tion. This push/pull regulatory theme carries through to the
molecular level at excitatory synapses, where protein function is
controlled through phosphorylation and dephosphorylation by
kinases and phosphatases. However, these opposing enzymatic
activities are only part of the equation as scaffolding interac-
tions and assembly of multi-protein complexes are further
required for efficient, localized synaptic signaling. This review
will focus on coordination of postsynaptic serine/threonine
kinase and phosphatase signaling by scaffold proteins during
synaptic plasticity.

Control of Synaptic Strength through Balanced
Phosphorylation/Dephosphorylation

A defining aspect of the mammalian brain is its profound
capacity for experience-dependent plasticity that modifies the
strength of specific synaptic connections between neurons.
Two well studied opposing forms of synaptic plasticity at excit-
atory synapses are long-term potentiation (LTP)2 and long-
term depression (LTD), which strengthen and weaken syn-
apses, respectively. LTP and LTD have been most heavily
studied in a brain region called the hippocampus where they
support spatial and declarative learning and memory. LTP and
LTD are induced by Ca2� influx through postsynaptic NMDA-

type ionotropic glutamate receptors (NMDARs) and are
expressed by long-lasting increases or decreases, respectively,
in the function of AMPA-type ionotropic glutamate receptors
(AMPARs) that mediate the bulk of excitatory synaptic trans-
mission (1, 2).

NMDARs are heterotetrameric assemblies most commonly
containing two GluN1 and two GluN2A-2D subunits and are
permeable to Na�, K�, and Ca2�. At hippocampal synapses,
NMDARs are assembled from GluN1, GluN2A, and GluN2B
subunits. AMPARs are heterotetrameric assemblies of GluA1–
GluA4 subunits, with most being permeable only to Na� and
K� due to inclusion of GluA2 subunits that prevent Ca2� influx
(3). However, hippocampal neurons can also express small
numbers of Ca2�-permeable AMPARs lacking GluA2 subunits
(i.e. GluA1 homomers) that primarily reside in extrasynaptic
and intracellular locations but can be recruited to synapses dur-
ing plasticity and following neuronal injuries (4). Intriguingly,
there is much commonality in the molecular mechanisms
underlying the ostensibly antagonistic processes of LTP and
LTD; both require correlated pre- and postsynaptic activity
leading to NMDAR Ca2� influx and are mediated by overlap-
ping sets of enzymes. However, it is the ability of the synapse to
detect subtle differences in Ca2� and other second messengers
and efficiently transduce these signals to discrete downstream
signaling pathways that permits diametrically opposed out-
comes to arise from grossly similar synaptic stimuli.

Ultimately, excitatory synaptic plasticity must add, remove,
or modify AMPARs to alter synaptic strength. Although
AMPAR regulation during plasticity is covered in-depth else-
where in this series (see Roche and colleagues (101)), it bears
mentioning here. Brief, strong NMDAR Ca2� influx can acti-
vate a host of kinases that increase AMPAR activity during LTP
through phosphorylating both AMPARs (2, 5–7) and other reg-
ulatory proteins (5, 8, 9). AMPAR GluA1 subunits, in particular,
are phosphorylated on several C-terminal tail residues to alter
channel biophysical properties and synaptic localization. For
example, Ca2�-calmodulin-dependent protein kinase II
(CaMKII) and PKC phosphorylate GluA1 on Ser-831 and Ser-
818 (PKC only) to increase single channel conductance and
synaptic incorporation during LTP. GluA1 is also phosphory-
lated on Ser-845 by the cAMP-dependent protein kinase
(PKA), which increases channel open probability and stimu-
lates recycling exocytosis to prime AMPARs for synaptic inser-
tion during LTP (reviewed in Refs. 5–7). Thus, although CaM-
KII may be the most important, direct transducer of NMDAR
Ca2� signaling during LTP, multiple postsynaptic kinases col-
lectively promote potentiation (Fig. 1).

Conversely, LTD can be elicited by weak but sustained
NMDAR Ca2� influx. Under these conditions, protein phos-
phatases 1 (PP1), 2A (PP2A), and calcineurin (CaN; also known
as PP2B) become activated (10 –12) (Fig. 1). Consequently,
dephosphorylation of AMPARs as well as other postsynaptic
targets is generally favored during LTD. In particular, GluA1
Ser-845 dephosphorylation is critical for AMPAR removal dur-
ing LTD through promoting endocytosis and preventing recy-
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cling to favor receptor degradation (reviewed in Refs. 5–7).
Because of its direct activation by Ca2� and CaM, CaN is prob-
ably the most important, direct transducer of NMDAR Ca2�

signaling during LTD, but other phosphatases and kinases,
including CaMKII (discussed below), also play essential roles
during LTD (Fig. 1). Thus, an overriding question addressed in
this review is how are ubiquitous second messenger systems
(cAMP and Ca2�) and signaling enzymes with broad substrate
specificity (PKA, CaMKII, PP1, and CaN) organized at synapses
to coordinate very specific, localized signaling events during
LTP and LTD?

Coordinated Regulation of Postsynaptic PKA, PKC, and
Calcineurin Signaling by AKAP79/150

Important answers to the above question may be found in the
network of scaffolding interactions found in the postsynaptic
density (PSD), a structure located at the tip of dendritic spines
opposite the presynaptic terminal (see also Spence and Soder-
ling (102) in this issue for more on dendritic spine structure).
Scaffold proteins in this PSD network position signaling
enzymes to respond to second messengers and exert rapid
effects on synaptic substrates. The PKA-PKC-CaN complex
assembled by A-kinase anchoring protein (AKAP) 79/150
(human 79/rodent 150; also known as AKAP5) is a prototypical
example of a postsynaptic scaffold-organized signaling com-
plex (Fig. 2) (13).

First characterized by its ability to bind PKA through its
C-terminal amphipathic �-helical domain (14), AKAP79/150

was subsequently shown to bind CaN (15) through a variant of
the PXIXIT motif found in other CaN-binding proteins (16 –
18) and PKC through its N-terminal membrane-targeting
domain (19). AKAP79/150 also acts as a structural scaffolding
hub as it binds F-actin (20), the plasma membrane lipid phos-
phatidylinositol-4,5-bisphosphate (21), synaptic adhesion mol-
ecules (22), and PSD-95 family scaffold proteins that link to
NMDARs and AMPARs (23). Given its collection of anchored
enzymes and linkage to glutamate receptors, it is not surprising
that AKAP79/150 plays an integral role in synaptic plasticity.
Indeed, experiments using AKAP150 knock-out mice demon-
strated roles for this scaffold in hippocampal LTD and spatial
learning (24). Additional analysis of AKAP150 C-terminal trun-
cation knock-in mice lacking the PKA anchoring site showed
more specifically that AKAP-PKA signaling promotes GluA1
Ser-845 phosphorylation and supports LTP, LTD, and reversal
learning (25–27). Furthermore, studies employing RNAi with
mutant replacement (28, 29) and an AKAP150 knock-in mouse
lacking the PXIXIT-like CaN docking motif (30) reveal that
anchored CaN mediates GluA1 Ser-845 dephosphorylation
and AMPAR endocytosis to promote LTD and constrain LTP.
In addition, genetic disruption of AKAP-CaN or -PKA anchor-
ing alters spatial and contextual fear learning and memory.3
Finally, although AKAP79/150-anchored PKC can phosphory-
late GluA1 Ser-831 in heterologous cells and cultured neurons,

3 M. L. Dell’Acqua, unpublished observations.

FIGURE 1. Postsynaptic phosphorylation/dephosphorylation signaling during synaptic plasticity. During synaptic potentiation, brief, strong cytosolic
Ca2� predominantly activates kinases such as CaMKII, PKC, and PKA. AMPA (GluA1– 4 subunits) and NMDA-type (GluN1 and GluN2A-2D subunits) glutamate
receptors are among the many synaptic targets that are phosphorylated, promoting stronger synaptic transmission. Conversely, during the modest, pro-
longed influx of Ca2� that initiates synaptic depression, phosphatase activity in general outweighs kinase activity; CaN, PP1, and PP2A dephosphorylate
receptors, scaffolds, and other synaptic proteins, resulting in smaller dendritic spines and diminished synaptic strength. However, kinases also play roles in
synaptic depression.
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the role of AKAP-PKC anchoring in synaptic plasticity and cog-
nition has not been addressed (31). Taken together, these stud-
ies illustrate the critical role that scaffolding can play in locally
balancing phosphorylation and dephosphorylation to control
synaptic plasticity.

In addition to positioning kinases and phosphatases, AKAPs
can bind other key components of the cAMP signaling pathway,
including G protein-coupled receptors, adenylyl cyclases
(ACs), and phosphodiesterases. AKAP79/150 binds to the
�2-adrenergic receptor (�2AR) (32) and multiple AC isoforms
(33, 34). �2ARs couple to AC-cAMP-PKA signaling to enhance
LTP and learning and memory through GluA1 phosphoryla-
tion (35, 36). In a series of elegant experiments comparing
AKAP150 knock-out mice with AKAP150-PKA binding-defi-
cient mice, AKAP knockouts exhibited a greater deficiency in
�2AR enhancement of GluA1 Ser-845 phosphorylation and
LTP (37). The less severe phenotype of the PKA binding-defi-
cient mice was attributed to preserved interaction with AC,
resulting in normal �2AR-stimulated cAMP production that
likely signaled, albeit less effectively, through other pools of
PKA. Of note, AKAP250/Gravin (also known as AKAP12) can
also associate with �2ARs to facilitate LTP regulation (38).
Thus, there is likely interplay between these two AKAP-PKA
complexes in postsynaptic LTP regulation. Interestingly, in
many of the above studies, AKAP79/150-anchored PKA and
CaN were found to impact LTP/LTD through preferential con-
trol of GluA1 Ca2�-permeable AMPARs, perhaps because
these GluA1 homomers can be phosphorylated on four Ser-845
sites as compared with only two in GluA1/2 heteromers (26, 30,
37).

Due to their micrometer size, dendritic spines themselves are
microdomains for compartmentalized signaling, but it is clear
that AKAP79/150 and other PSD scaffold proteins nucleate
postsynaptic signaling complexes that function on the molecu-
lar/nanometer scale. Such intra-spine nano-domain signaling
may occur near receptors in the PSD, in extrasynaptic regions
of the spine plasma membrane, or in spine-localized endo-

somes. AKAP79/150 also serves as an excellent example of
postsynaptic nano-targeting, as its own localization is fine-
tuned by reversible palmitoylation of its N-terminal targeting
domain by the palmitoyl-acyltransferase DHHC2 (39, 40).
AKAP79/150 palmitoylation is not required for general target-
ing to the plasma membrane but is necessary for specific local-
ization to plasma membrane lipid rafts (which are associated
with the PSD) and recycling endosomes (40, 41). Importantly,
AKAP79/150 palmitoylation in endosomes is required for stim-
ulation of recycling exocytosis and delivery of the AKAP and
GluA1 to synapses during chemical LTP induction (39, 40).
However, in general, our understanding of the trafficking of
AKAP79/150 and other postsynaptic scaffolds lags behind our
understanding of the AMPAR trafficking that they control. We
do know that AKAP79/150 can be uncoupled from PSD-95
scaffolds and removed from both the postsynaptic mem-
brane and the endosomes during chemical LTD induction
through inhibition of its N-terminal targeting interactions
via a combination of depalmitoylation (39), phospholipase C
cleavage of phosphatidylinositol-4,5-bisphosphate, and
CaN-dependent F-actin reorganization. Importantly, this
inhibition of AKAP79/150 membrane targeting during LTD
may prevent PKA-mediated re-phosphorylation of GluA1 that
would promote recycling and reverse LTD (reviewed in Ref.
13). Interestingly, changes in AKAP79/150 synaptic localiza-
tion, PKA and CaN signaling, and GluA1 Ser-845 phosphory-
lation have also recently been implicated in regulating GluA1
synaptic localization during slower, homeostatic forms of syn-
aptic plasticity that scale synaptic strength up or down across all
inputs in response to chronic increases or decreases in overall
neuronal activity, respectively (42, 43).

Regulation of Postsynaptic CaMKII Signaling

CaMKII is dodecameric holoenzyme assembled from �, �, �,
and � isoforms. In most neurons, CaMKII contains � � � ��
�/� isoforms. Due to its enrichment at synapses and mecha-
nisms of Ca2� regulation, CaMKII (� in particular) has

FIGURE 2. Kinase and phosphatase scaffolding is critical for postsynaptic signaling during plasticity. Enzymes are targeted to Ca2� and cAMP sources and
important substrates through association with synaptic scaffolds such as AKAP79/150 and PSD-95 as well as actin-binding proteins such as neurabin and
�-actinin. CaMKII is unique in that it serves as an enzyme, self-scaffold, and actin organizer. Circled P represents phosphorylation. Green lines represent
phosphorylation, and red lines represent dephosphorylation. The black line represents degradation of p35 that inactivates CDK5 kinase activity. The specific
AMPARs and NMDARs depicted are GluA1/2 and GluN1/2B. TARP is an abbreviation for transmembrane AMPA receptor regulatory protein.
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attracted substantial attention in the synaptic plasticity field
(44 – 46). In response to Ca2� elevation, Ca2�-CaM binding to
CaMKII displaces the autoinhibitory domains to permit active
site access for both exogenous substrates and Thr-286 (Thr-287
on �, �, �) in the autoinhibitory domain of neighboring Ca2�-
CaM-bound subunits. Autophosphorylation of Thr-286 modi-
fies CaMKII function in two ways: it enhances Ca2�-CaM bind-
ing affinity (so-called CaM trapping) and prevents the
autoinhibitory domain from fully occupying the active site, gen-
erating what is referred to as CaMKII “autonomy” wherein the
kinase remains partially active after CaM dissociation. Impor-
tantly, CaMKII autonomy functions as a form of “molecular
memory” of past Ca2� signals and plays crucial roles in both
LTP induction and learning and memory (47, 48). CaMKII Thr-
286 can be dephosphorylated by either PP1 or PP2A, but PP1
appears to play a more prominent role in dephosphorylation of
CaMKII in the PSD (49). Following strong synaptic stimulation,
more CaMKII is also rapidly recruited to the PSD (50 –53),
where it phosphorylates not only AMPARs and its auxiliary
subunits (8, 9) but also small GTPase regulators (54, 55) and
adhesion molecules (56). With so many important targets, how
is CaMKII postsynaptic signaling controlled? Because there are
a number of comprehensive reviews on this topic (44 – 46), here
we will primarily focus on specific postsynaptic scaffolding
interactions that control CaMKII signaling (Fig. 2).

The CaMKII holoenzyme configuration permits CaMKII �
and � subunits to serve as scaffolds for one another through
both common and distinct interacting proteins. F-actin binding
is one such interaction that is distinctly controlled by � versus �
subunits. CaMKII can associate indirectly with F-actin through
the adapter protein �-actinin (57) but can also bind F-actin
directly through its � isoform (58 – 61). Upon activation by
Ca2�-CaM, CaMKII� unbinds from F-actin, allowing the
kinase to redistribute and establish new interactions. In partic-
ular, CaMKII activation promotes binding to the PSD scaffold
densin-180; however, because densin-180 also binds �-actinin,
a ternary complex results that can still be linked to F-actin but
also further associate with NMDARs through CaMKII binding
to GluN2B subunit (57, 62, 63). However, adding to this com-
plexity, there are secondary interactions of CaMKII with the
GluN1 subunit that are instead inhibited by �-actinin binding
to GluN1 (64). Importantly, CaMKII and F-actin have recipro-
cal effects on one another; CaMKII is positioned by its interac-
tions with F-actin but in turn can directly bundle and stabilize
actin fibers through its � isoform in a Ca2�-CaM-regulated
manner (59 – 61). Indeed, CaMKII� is important for the integ-
rity of the actin cytoskeleton, and its loss destabilizes spines
(61). Interestingly, this effect of CaMKII� loss on spines can be
rescued with a kinase-inactive mutant, highlighting the func-
tion of CaMKII as a structural scaffold. The importance of this
kinase-independent role is further supported by comparing the
phenotypes of CaMKII� knock-out mice with those expressing
kinase-inactive CaMKII� (65). Although CaMKII� knock-out
impairs CaMKII synaptic localization, LTP, and learning, none
of these functions are disrupted by the kinase-inactive
mutation.

As alluded to above, another key CaMKII postsynaptic inter-
action is with the NMDAR GluN2B subunit, which contains a

binding site in its C-terminal tail near the CaMKII phosphor-
ylation site Ser-1303 (66 – 69). Recruitment of activated
CaMKII to GluN2B occurs rapidly following Ca2� stimula-
tion but, like Thr-286 phosphorylation, outlasts the Ca2�

signal, thus permitting postsynaptic CaMKII to participate
in yet another form of “molecular memory.” Indeed, CaMKII
binding to GluN2B has been implicated in LTP maintenance
and memory consolidation. In one study, a high dose of an
inhibitor peptide (tatCN21), which competes with GluN2B for
CaMKII binding, was found to acutely disrupt both GluN2B-
CaMKII binding and LTP maintenance (70). In a second study,
CaMKII binding-deficient GluN2B knock-in mice exhibited
reductions in GluA1 Ser-831 phosphorylation, LTP, and mem-
ory consolidation (71). Collectively, these findings support a
model in which CaMKII enzymatic and non-enzymatic func-
tions may work together to process and store information at
excitatory synapses.

Abundant evidence exists for the role of CaMKII in LTP, but
there is accumulating evidence that it also participates in LTD
(72). Intriguingly, a newly characterized Ser-567 phospho-site
in GluA1, which results in AMPAR synaptic exclusion (73), was
recently shown to be phosphorylated by autonomous CaMKII
under NMDAR LTD conditions (72). In addition, GluA1 Ser-
567 exhibits distinct characteristics as compared with typical
CaMKII substrates implicated in LTP (i.e. Ser-831) in that
Ca2�-CaM stimulation does not elevate Ser-567 phospho-lev-
els above those obtained with autonomous CaMKII. Thus, an
intriguing new hypothesis is that there are two classes of
CaMKII substrates that are differentially regulated by stimu-
lated versus autonomous kinase activity to favor either LTP or
LTD, respectively. These recent findings also provide a clear
exception to the over-simplified rule that kinases mediate syn-
aptic potentiation and phosphatases mediate synaptic
depression.

Regulation of Postsynaptic PP1 Signaling

Another challenge in understanding plasticity is that synap-
tic changes are often controlled through multiple parallel and
overlapping signaling pathways, such as CaN, PP1, and PP2A
phosphatases that all participate in LTD (10 –12). Like control
of CaN signaling by AKAP79/150, PP1 and PP2A signaling also
rely heavily on binding partners to regulate activity and subcel-
lular targeting, but because less is known about regulation of
PP2A signaling during LTD, here we will only discuss PP1.
Prominent among postsynaptic PP1 regulatory proteins are the
related F-actin-binding proteins neurabin-1 (Fig. 2) and spi-
nophilin (also called neurabin-2), which anchor PP1 through
modular binding motifs with the loose consensus sequence
(K/R)(V/I)X(F/W) that is commonly abbreviated as RVXF (74).
Importantly, disruption of the interaction between PP1 and
neurabin/spinophilin using competing RVXF binding motif
peptides can block LTD (75). In addition, specific interference
with neurabin-PP1 association by mutation inhibits LTD,
whereas overexpression of wild-type neurabin-1 enhances LTD
and promotes dephosphorylation of GluA1 Ser-845 and Ser-
831 (76, 77). Overall, these findings support a model where
neurabin-1recruitsPP1tosynapsestopromoteAMPARdephos-
phorylation during LTD.
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Thus, another key question is how is PP1 enzymatic activity
regulated by synaptic activity when complexed with scaffolds
such as neurabin? Historically, models for NMDAR activation
of PP1 during hippocampal LTD have implicated CaN-medi-
ated dephosphorylation of PP1 inhibitory PKA substrate inhib-
itor-1 (I-1) (10). Also, PKA phosphorylation of neurabin-1 can
inhibit its PP1 binding, a mechanism that may favor LTP (76,
78). However, several additional PP1 regulatory mechanisms
have recently received attention in NMDAR signaling, includ-
ing PP1 binding to inhibitor-2 (I-2), possibly in a ternary com-
plex with neurabin-1, and PP1 inhibitory phosphorylation on
Thr-320. In particular, recent work identified cyclin-dependent
kinase 5 (CDK5) as the kinase for PP1 Thr-320 and demon-
strated that when CDK5 is inhibited by synaptic NMDAR
activation via proteasomal degradation of its p35 subunit, PP1
auto-dephosphorylates to become active (79). This study also
uncovered a requirement for association of PP1 with I-2, which
was increased by I-2 Thr-72 dephosphorylation, to promote
PP1 signaling during NMDAR LTD; this mechanism stands in
contrast with reversal of PP1 association with I-1 through
Thr-35 dephosphorylation. Collectively, these studies indicate
that a kinase (CDK5) and multiple PP1-binding proteins con-
spire to regulate postsynaptic PP1 activity (Fig. 2). Interestingly,
another recent study found that PP1 is also required for homeo-
static synaptic downscaling, but in this case, PP1 is activated by
release from I-2 inhibition through Ser-43 phosphorylation by
myosin light-chain kinase (80).

Coordinated Kinase and Phosphatase Signaling in
Postsynaptic Excitation-Transcription Coupling

Longer-lasting forms of plasticity that are maintained for
hours, days, months, or even years, such as the late phase of
LTP, require not only initial changes in AMPAR synaptic local-
ization that occur during the early-phase of LTP but also sub-
sequent gene transcription (81) and protein synthesis (covered
by Alvarez-Castelao and Schuman (103) in this issue). Several
pathways linking acute changes in neuronal activity to persis-
tent alterations in gene transcription rely on local Ca2� influx
through voltage-gated L-type calcium channels (LTCCs) to
trigger phosphorylation or dephosphorylation of transcription
factors, such as Ca2�/cAMP-responsive element-binding
protein (CREB), CREB-regulated transcriptional coactivator
(CRTC1), and nuclear factor of activated T-cells (NFAT) (82–
84). In particular, a privileged role for LTCC Ca2� signaling to
CREB in neuronal excitation-transcription (E-T) coupling
associated with LTP/LTD and long-term memory has been
known for almost 25 years (85– 88).

The transcriptional activating function of CREB itself can be
controlled by phosphorylation on Ser-133 by a variety of
kinases including PKA, CaMKs, and ERK (81). However, stud-
ies of E-T coupling have revealed vital roles for not only kinases
but also phosphatases in activating CREB-dependent transcrip-
tion. In a variety of neuron types, LTCCs activate both CaN and
CaMKII, which can have either opposing or cooperative roles in
regulating CREB-mediated transcription (83, 89, 90). However,
recent studies in sympathetic and cortical neurons found that
LTCC Ca2� influx recruits CaMKII� to the channel to trans-
phosphorylate Thr-287 in the autoinhibitory domain of

CaMKII� and promote Ca2�-CaM trapping, whereas concom-
itant activation of CaN dephosphorylates Ser-334 in a nuclear
localization sequence on CaMKII�. Subsequent CaMKII�
translocation and shuttling of CaM to the nucleus then acti-
vates CaMK kinase (CaMKK) and CaMKIV to phosphorylate
CREB (91). Interestingly, a kinase-inactive mutant of CaMKII�,
which could not phosphorylate itself or other substrates but
still served as substrate for CaMKII�, was able to signal to
CREB, thus providing additional support for a CaM shuttling
rather than an enzymatic role for CaMKII�. Thus, phospho-
regulation of CaMKII� at two critical sites allows it to shuttle
CaM to the nucleus and induce gene transcription. However,
the molecular details of how changes in CaMKII� phosphory-
lation state and CaM binding are so precisely regulated to only
load CaM at the channel and then release it in the nucleus await
further investigation. In addition, according to this mechanism,
only CaMKII holoenzymes exclusively composed of the � iso-
form must be able to enter the nucleus (Fig. 3); otherwise it is
hard to rule out additional signaling by enzymatically active
CaMKII� that enters the nucleus in association with CaMKII�.

The above CaMKII-CaMKIV signaling mechanism also
likely contributes only to an initial, rapid phase of CREB activa-
tion (seconds to minutes) following excitation where Ca2�

increases not only near LTCCs but also globally to maintain
Ca2�-bound CaM all the way to the nucleus. In contrast, more
prolonged CREB activation (minutes to hours) in response to
local LTP induction and restricted Ca2� influx in dendrites is
thought to be mediated by local, postsynaptic CaMKII activa-
tion of the ERK pathway followed by slower, longer-distance
translocation of ERK signaling from dendrites to nucleus to
phosphorylate CREB (87, 92, 93). In addition, the CREB co-ac-
tivator CRTC1 is dephosphorylated by CaN in response to
LTCC Ca2� influx triggered by synaptic input to dendrites and
then also slowly translocates distally to the nucleus where it is
required for CREB-dependent gene expression underlying fear
memory (83, 94). Thus, although many key players in CREB E-T
coupling have been identified, future work must further explore
the mechanisms of cellular and synaptic organization that per-
mit signaling to CREB over these different distance and time
scales.

A parallel E-T coupling system, in which more has already
been learned regarding the contribution of postsynaptic orga-
nization to nuclear signaling, is NFAT translocation to the
nucleus (over minutes to an hour) following brief, local LTCC
Ca2� influx in neurons. Work over the past decade has revealed
the complexity and importance of an AKAP79/150-organized
signaling complex in both PKA/CaN bi-directional regulation
of neuronal LTCC activity and NFAT-mediated E-T coupling
(Fig. 3) (18, 95, 96). AKAP79/150 directly binds the LTCC
CaV1.2 through a C-terminal leucine zipper and anchors CaN
through a PXIXIT-like motif that is very similar to the CaN
docking sequences found in the NFAT transcription factors
themselves (17). However, despite essentially competing with
NFAT for CaN binding and also suppressing PKA-mediated
enhancement of LTCC activity, AKAP79/150-CaN anchoring
is critical for NFAT activation by LTCC Ca2� influx (18, 95).
How exactly is LTCC-CaN-NFAT signaling promoted by the
AKAP? Guided by the crystal structure of the AKAP-CaN com-
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plex, mutations in the PXIXIT-like motif designed to either
increase or decrease CaN anchoring affinity, were both, sur-
prisingly, found to inhibit NFAT activation. In particular,
increasing anchoring affinity immobilized CaN in spines and
prevented NFAT translocation to the nucleus (97). Thus,
AKAP-CaN anchoring is by necessity dynamic and promotes
NFAT signaling by balancing strong recruitment of CaN
near its upstream activator, the LTCC, with its efficient
release to communicate with its downstream effector NFAT.

Building on this theme of dynamics and balance in local
signaling complexes, additional research found that disrup-
tion of AKAP79/150-PKA anchoring, both through acute
overexpression and through knock-in of PKA anchoring-de-
ficient mutants, also prevents NFAT signaling, a deficit
attributable to profound decreases in basal LTCC phosphor-
ylation, current density, and depolarization-evoked Ca2�

influx (98, 99). Thus, neuronal LTCC-NFAT transcriptional
signaling requires precise organization and balancing of the
phosphatase activity of CaN in the channel nano-environ-
ment, which is required for NFAT activation, with the
opposing kinase activity of PKA, which is needed to prevent
CaN from suppressing channel function. Importantly, these
studies of AKAP79/150 provide some of the most complete
and detailed molecular mechanisms to date explaining how
local Ca2� signaling by LTCC plays such a privileged role in
neuronal E-T coupling.

Conclusions and Future Directions

It is clear that postsynaptic kinase/phosphatase signaling
balance is key to synaptic plasticity regulation on multiple

time scales through controlling both local signal transduc-
tion confined to synapses as well as distal communication
with the nucleus. In all cases, the high degree of signaling
specificity and efficiency required is conferred by regulatory
binding partners/scaffolds that are as important as the activ-
ities of the kinases and phosphatases themselves in deter-
mining impacts on synaptic function. Indeed, distinct and
even opposing types of plasticity can involve the same kinase
and phosphatase players, but the actions of these players
appear to be directed by scaffolding interactions toward one
pathway or another to achieve different outcomes. Future
research should further elucidate how scaffold proteins play
key roles in such local, postsynaptic decision making
through interrogating signaling complexes on the nanome-
ter scale using new super-resolution microscopy methods
(100). In addition, it will be important to further explore how
scaffold-directed phosphorylation intersects with signaling
through other reversible post-translational modifications,
such as palmitoylation and ubiquitination (6)(see also Alva-
rez-Castelao and Schuman (103) in this issue). Finally, given
that many neuropsychiatric and neurological disorders are
characterized by alterations in synaptic plasticity, a better
understanding of how kinase/phosphatase signaling path-
ways are organized at synapses will hopefully identify novel
drug targets and therapies for brain diseases. Precisely tar-
geting synaptic scaffolding interactions could have many
advantages, in terms of improved efficacy and specificity,
over globally inhibiting kinase and phosphatase catalytic
activity using existing pharmacology.

FIGURE 3. Signaling by kinases and phosphatases in postsynaptic excitation-transcription coupling. Anchored kinases and phosphatases finely tune
Ca2� influx through LTCCs. The calcium-activated phosphatase CaN dephosphorylates nuclear localization sequences on the transcription factors NFAT and
CRTC1, permitting their translocation to the nucleus. LTCC-calcium influx also activates CaMKII�/� that can phosphorylate and “lock” CaMKII� in a conforma-
tion that tightly binds Ca2�-CaM. Subsequent CaN-mediated dephosphorylation of the nuclear localization sequence of CaMKII� drives nuclear translocation
and delivery of Ca2�-CaM to CaMKIV, which phosphorylates and actives CREB. Green lines represent phosphorylation, and red lines represent
dephosphorylation.
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