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Abstract: Land use and land cover change is driven by multiple influential factors from 

environmental and social dimensions in a land system. Land use practices of human 

decision-makers modify the landscape of the land system, possibly leading to landscape 

fragmentation, biodiversity loss, or environmental pollution—severe environmental or 

ecological impacts. While landscape-level ecological risk assessment supports the 

evaluation of these impacts, investigations on how these ecological risks induced by land 

use practices change over space and time in response to alternative policy intervention 

remain inadequate. In this article, we conducted spatially explicit landscape ecological risk 

analysis in Ezhou City, China. Our study area is a national ecologically representative region 

experiencing drastic land use and land cover change, and is regulated by multiple policies 
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represented by farmland protection, ecological conservation, and urban development.  

We employed landscape metrics to consider the influence of potential landscape-level 

disturbance for the evaluation of landscape ecological risks. Using spatiotemporal 

simulation, we designed scenarios to examine spatiotemporal patterns in landscape 

ecological risks in response to policy intervention. Our study demonstrated that spatially 

explicit landscape ecological risk analysis combined with simulation-driven scenario 

analysis is of particular importance for guiding the sustainable development of ecologically 

vulnerable land systems. 

Keywords: land use and land cover change; landscape ecological risks; ecologically 

representative region; spatiotemporal simulation 

 

1. Introduction 

The objective of this study is to investigate land use and land cover change (LULCC) and associated 

landscape-level ecological risks in a national ecologically representative region, Ezhou City, China. 

LULCC, is an important theme in the study of social-ecological systems [1–3], and is driven by a range 

of factors from environmental, socio-economic, and political domains [4–6]. The influence of these 

interacting factors drives human decision-makers to modify (e.g., via urban expansion) the landscape of 

the land system in which they are situated. Thus, heterogeneous and dynamic landscapes are generated 

from these human activities, which further produce a series of environmental, ecological, and social 

impacts on land systems of interest. Landscape patterns that human actors interact with, represent the 

spatial consequence of underlying biophysical or socioeconomic processes. Change in landscape patterns 

due to LULCC is a form of anthropogenic stressor and may lead to, for example, biodiversity loss, habitat 

fragmentation, and environmental pollution [4,6]. In particular, in those regions that are ecologically 

vulnerable or representative, the environmental or ecological effects of LULCC are often severe or 

adverse, contributing to a series of public health issues (e.g., air- or water-borne diseases due to dust or 

contaminants from pesticides or fertilizers) [7,8]. Thus, the evaluation of the environmental or ecological 

effects of LULCC on these ecologically representative regions is of critical importance for the development 

of ecological security and sustainability of these regions. 

The analysis or assessment of landscape-level ecological risks (landscape ecological risks hereafter) 

offers a means of supporting the evaluation of ecological or environmental effects of LULCC. Landscape 

ecological risk has gained considerable attention from researchers interested in the study of LULCC and 

related domains [9–13]. In general, ecological risk is a reflection of the possibility that an ecosystem 

maintains itself in a low-energy equilibrium with relatively stable structures and functions in response 

to disturbances from external factors [14,15]. The value of ecological risk is associated with the degree 

of the external disturbance and the ecosystem’s internal capability (i.e., vulnerability and sensitivity) to 

cope with this form of disturbance. Landscape patterns are the outcome of the interactions between 

physical environments and human activities that may create alternative disturbances [16]. Change in 

landscape patterns has substantial influence on the flow of materials and energy, and habitat or 

environmental quality. Thus, landscape pattern change is linked to the internal process of an ecosystem 
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and can then be regarded as a direct reflection of ecological risk at regional or landscape level.  

Graham et al. [9] stressed that the analysis of ecological risks at a regional level must take into account 

spatial characteristics of the landscape for an ecosystem of interest. Norton et al. [11] presented a generic 

framework used by the U.S. Environmental Protection Agency (EPA) to support the assessment of 

ecological risks. This framework suggested three phases for ecological risk assessment: Problem 

formulation (including identification of key driving factors), characterization of exposure and ecological 

effects, and risk characterization. This three-phase framework provides effective guidance for 

subsequent ecological risk assessment efforts [14,15,17–19]. 

Benefiting from advances in landscape ecology and ecological modeling [16,20], landscape metrics 

have been developed to support the quantification of landscape patterns with respect to composition and 

configuration [21,22]. These landscape metrics allow for evaluating the spatially explicit characteristics 

of landscape patterns and associated change [16,23]. Therefore, these landscape metrics have been used 

as a critical component to help evaluate landscape ecological risks of a land system of interest [9,12,13]. 

For example, Graham et al. [9] identified a set of spatially explicit endpoint measures (i.e., driving factors), 

including two landscape measures (dominance and contagion), for their landscape ecological risk 

assessment in a forest-dominated landscape exposed by ozone concentration. Xie et al. [12] studied the 

spatial distribution of ecological risks based on a combined use of landscape disturbance and 

vulnerability indices in the Poyang Lake region, China. The landscape disturbance index used by Xie et al. 

was a function of landscape metrics. Likewise, Peng et al. [13] proposed a similar landscape ecological 

risk and applied this index to evaluate the adverse effect of mining-centric land use practices at the 

watershed level. While these studies reported in the literature show the significance of landscape metrics 

in evaluating ecological risks, investigations on how landscape ecological risks change over time under 

policy intervention and its possible futures remain inadequate. This investigation is, however, fundamentally 

important for those ecologically vulnerable regions, for example, in China. 

In this study, we therefore focus on the evaluation of historic and future landscape ecological risks 

induced from LULCC in Ezhou City, China. Ezhou City is a national level ecologically representative 

region located in the middle course of Yangtze River. This region has experienced rapid LULCC in the 

past few decades and is under the influence of alternative government policies for farmland protection, 

ecological conservation, and urban planning. For example, farmland protection policies are represented 

by the “requisition-compensation balance” national policy that dates from 1997, which requires the 

reclamation of farmlands (from other land cover types) with the same quantity and quality as those that 

are occupied [24]. The “Grain for Green” national program for ecological conservation was initiated in 

1999 to encourage the conversion of low-quality farmlands to forests [25]. Further, Ezhou City has 

developed its own local urban planning policy to serve the needs of increasing urbanization. Land use 

conflicts thus often exist when taking into account these policies serving for different purposes.  

The study of landscape ecological risk and its potential future alternatives in response to policy 

intervention in this region will provide substantial support for the resolution of land use conflicts and 

sustainable development of land systems in the region. It will also offer valuable insights into, for 

example, the early warning of adverse environmental or ecological effects induced by LULCC. Thus, in 

this article, we conducted analyses on the spatiotemporal characteristics of LULCC by combining 

Geographic Information Systems (GIS; see [26]) and landscape pattern analysis. We carried out the 

evaluation of landscape ecological risks of LULCC in our study region. With support from a 
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spatiotemporal simulation model, we conducted a scenario analysis of alternative policy intervention 

and evaluated its potential impacts on future landscape ecological risks in this national ecologically 

representative region. 

2. Materials and Methods 

2.1. Study Area and Data 

Ezhou City (see Figure 1) is located in the southeastern region of Hubei province, China  

(114°32′E–115°05′E, 30°00′N–30°06′N). Ezhou City belongs to the Greater Wuhan Metropolitan region 

and consists of three counties (Echeng, HuaRong, and LiangZi Lake) encompassing 25 towns.  

Ezhou City, covering 1596 km2 in total, is dominated by undulating topography (high in the southeast, 

and low in northwest and middle) and diverse geomorphology: Alluvial terrace in the north, foothills in 

the east and southeast, plains in the northwest and southwest, and lacustrine plains in the middle. The 

study area is characterized by a humid subtropical climate with typical monsoon seasons (hot summers and 

cold winters). Soil types in Ezhou City include Quaternary Period brown red soil, yellow brown soil, and 

grey soil. Ezhou City is also known as the City of a Hundred Lakes, with a 90-km streamline of Yangtze 

River and 20,973 ha of lake area (6 large, 20 medium-sized, and 129 small lakes). Ezhou City has been 

playing a critical role in ensuring regional-level ecological security due to its rich biodiversity and water 

resources. Ezhou City has been established as a national lake conservation region and a ecologically 

representative region at the national level. The study region has experienced substantial LULCC since 

1979 (see Figure 2 for maps of land cover patterns in 1991 and 2004). This rapid LULCC has led to 

severe water and air pollution in this region due to, for example, unregulated or over use of pesticides 

and fertilizers for aquaculture and agriculture, and discharge of untreated wastewater [27,28]. 

We obtained land cover data from 1991, 2004, and 2013 for our study region from the Department of 

Land and Resources Administration, Ezhou City. These land cover data were developed through remote 

sensing classification (from aerial imagery and SPOT 5 satellite imagery) and field validation 

(classification accuracy: 93%–95%) [29]. All of the land cover data were organized and re-projected 

into a single coordinate system. We further reclassified land cover data into six classes: farmland, forests, 

built-up land, water bodies, aquaculture, and other lands (including orchard, rangeland, wetlands,  

and other open space). Elevation data are at a 30 m × 30 m spatial resolution from the Geospatial Data 

Cloud from the Chinese Academy of Science (see http://www.gscloud.cn). Other geographic 

information system (GIS) datasets, including highways, railways, roads, stream networks, and 

jurisdictional boundaries were provided by the Department of Urban-Rural Planning, Ezhou City 

(cartographic scale: 1:200,000). Spatial data of basic farmland protection zones and ecological 

conservation zones were obtained from the Department of Land and Resources Administration,  

Ezhou (cartographic scale: 1:10,000). 
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Figure 1. Map of the study area: Ezhou City, China. 

 

Figure 2. Maps of land cover patterns of Ezhou City in 1991 and 2004. 
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2.2. Methods 

We present a spatially explicit modeling framework that integrates a set of indices and models  

to enable the evaluation of spatially explicit landscape ecological risks (see Figure 3). Specifically, this 

framework consists of five key components: Land change analysis using dynamic degree index and 

Markov transition matrix, landscape pattern analysis using landscape metrics, landscape ecological risk 

analysis, spatiotemporal simulation of LULCC, and scenario analysis. 

 

Figure 3. Spatially explicit modeling framework of land use and land cover change and 

associated landscape ecological risks. 

2.2.1. Land Change Analysis Using Dynamic Degree Index and Markov Transition Matrix 

To evaluate the dynamics of land cover change in our study area, we chose to use dynamic degree 

index [30]. Dynamic degree index (also referred to as ratio of change or land change index) reflects the 

magnitude of land cover change and potential hotspots. Dynamic degree index has a focus on the process 

of land cover change instead of the outcome. The dynamic degree index of land change within a specific 

time period is calculated as follows: ܥܮ = ቆ∑ ܮ∆ ܷ→ୀଵ∑ ܮ ܷୀଵ ቇ × 100% (1)
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where LC is the dynamic degree index that represents change ratio of land conversion. ∆ܮ ܷ→ denotes 

the area of land cover changing from type i to type j. ܮ ܷ is the area of land cover type i, and n is the 

number of land cover types. 

We also used a Markov transition matrix approach (see [31,32]) to evaluate change among land cover 

types. A Markov transition matrix records the amount of land converted between land cover types.  

From this matrix, we can further derive the transition probability of a specific land conversion type 

between two time periods. 

2.2.2. Landscape Pattern Analysis Using Landscape Metrics 

Landscape metrics have been extensively used to quantify characteristics of landscape patterns [16,33,34]. 

In this study, we chose three types of landscape metrics to quantitatively evaluate landscape characteristics 

(see [33,34] for detail): (1) landscape fragmentation: Splitting index (SPLIT), patch density (PD), and 

contagion (CONTAG); (2) geometric features: Perimeter-area fractal dimension; and (3) landscape 

diversity: Shannon’s diversity index. While all of these metrics at the landscape level are considered, 

splitting index, patch density, and perimeter-area fractal dimension at the class level are also derived. 

These landscape metrics allow us to evaluate the impact of natural and human drivers on landscape 

patterns and associated structural characteristics. Spatiotemporal patterns of these landscape metrics are 

helpful for evaluating landscape characteristics and associated spatiotemporal heterogeneity.  

The software that we used to derive landscape metrics is FRAGSTATS version 4 [35]. 

2.2.3. Landscape Ecological Risk Analysis 

Ecological risk is a reflection of the possibility that an ecosystem maintains itself into a low-energy 

equilibrium with relatively simple structures and functions in response to disturbance from external 

factors. The value of ecological risk is associated with the degree of the external disturbance and its 

vulnerability per se. In this study the metric of ecological risk that we used is based on the combination 

of two types of landscape-level indices: landscape disturbance index (external) and landscape 

vulnerability index (internal) (see [12,13]). Landscape disturbance index measures the magnitude of the 

disturbance from natural and human drivers at the landscape level, which can be represented using a 

function of a suite of landscape metrics. The landscape disturbance index used in this study is a weighted 

function of three landscape metrics: splitting index, landscape fragmentation, and landscape diversity. 

Landscape disturbance index for a specific land cover type is calculated as follows: ܦ = ଵݓ × ܫܮܲܵ ܶ + ଶݓ × ܦܲ + ଷݓ × (2) ܫܦܪܵ

where w1, w2, w3 represent the weights of each metric. As suggested in the literature (see [12]), w1 = 0.3, 

w2 = 0.5, and w3 = 0.2 in this study. i corresponds to land cover type i. Landscape metrics are normalized 

before calculating landscape disturbance index. In our study area, landscape disturbance from human 

drivers (e.g., road construction, impervious surface) are much greater than that from natural drivers.  

This leads to the degradation of natural landscape functions, worsening the natural habitat in our study area. 

Landscape vulnerability index evaluates the internal capability of a land cover type to maintain its 

current structure and function (similar to ecological succession and stability; see [16]). Landscapes are 

different in terms of species richness, characteristics of material and energy flows, and ability to respond 
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to external disturbance. Land cover types with high landscape vulnerability are characterized by high 

risk of structural change and function loss in the face of external disturbance. Natural land cover types 

(e.g., wetland or barren lands) often have high vulnerability since their structures and functions are 

sensitive to external disturbance. In contrast, those land cover types with intensive management efforts 

from human beings (for example, built-up lands) have high stability with respect to structure and 

function to resist external disturbance (low vulnerability). Further, most of the forests in our study area are 

man-made (shelter or commercial forests) instead of natural—i.e., their vulnerability is relatively low due 

to continual land management practices. Thus, we organized land cover types in our study area into six 

grades of vulnerability: Built-up land (grade 1; lowest), forest land (grade 2), farmland (grade 3), 

aquaculture land (grade 4), water bodies (grade 5), and other land (grade 6; highest). In this study,  

the vulnerability index for a specific land cover type (noted as Vi) is obtained after normalization on the 

grades of vulnerability. 

Thus, the index of landscape ecological risk is represented as a weighted sum function of landscape 

disturbance index and landscape vulnerability index. The index of landscape ecological risk is estimated 

as follows: ܴ =ߙ
ୀଵ ∗ ଵ/ଶܦ ∗ ܸଵ/ଶ (3)

where R denotes the index of landscape ecological risk for a specific analysis region of interest.  ߙ represents the weight on a specific land cover type (usually calculated as the ratio of the area of the 

land cover type over the total area of analysis regions), Di is the landscape disturbance index, and Vi is 

the landscape vulnerability index for land cover type i in the analysis region. 

Based on the landscape ecological risk model in this study, we calculated ecological risks for our 

study area and each of its towns to analyze the spatiotemporal patterns of ecological risks. We applied 

the following criteria to evaluate ecological risks using five categories: Low (0–0.2), relatively low  

(0.2–0.4), medium (0.4–0.6), relatively high (0.6–0.8), and high (0.8–1.0). 

2.2.4. Spatiotemporal Simulation Based on Cellular Automata Coupled with Markov Model 

To generate future alternatives of land cover patterns for projected ecological risk analysis, we used 

a spatiotemporal simulation approach based on the coupling of cellular automata (CA) and Markov 

model—also known as Markov-CA model [36–38]. While Markov model supports the determination of 

amounts and transition probabilities of land conversion, CA enables the simulation of where and how 

land conversions occur. CA is a bottom-up simulation approach that is based on neighborhood 

interactions to guide the state transition of a spatial system of interest [39,40]. The landscape of the 

system is rasterized into a lattice of cells that interact with their neighbors using rules. Neighborhood 

interactions in a CA may drive the emergence of complex spatial patterns at the macro level. Thus, CA 

has a wide variety of applications in the simulation of complex spatial phenomena [39,41–43] including 

urban sprawl, land use and land cover change, and transportation planning. A typical CA model is 

composed of four components [39]: Cellular automata, the spatial dimension of these automata, 

neighborhood, and transition rules. In particular, transition rules are key to the use of CA for the 

simulation of complex spatial phenomena. Transition rules can be calibrated through logistic regression 
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and multi-criteria evaluation [39,42], which are typically linear approaches. However, these linear 

approaches may not be suitable for capturing the nonlinearity of land use and land cover change.  

Thus, in this study, we used a Least Square Support Vector Machine (LSSVM; see [44]) as a nonlinear 

regression approach for the generation of transition rules of CA. Each type of land conversion 

corresponds to a LSSVM model—in total, 36 LSSVM were used to cover all land transition types. 

Drivers that we chose in this study include distance to highway, distance to railway, distance to major 

roads, distance to town centers, distance to urban centers, distance to large water bodies, elevation, and 

slope (see Figure 4 for detail). First, we conducted GIS-based overlay analysis on land cover data over 

two years, 1991 and 2004, to obtain the spatial distribution of land cover change in our study area for 

the calibration of the Markov-CA simulation model. Samples of land change types were generated 

through stratified random sampling (500 sampling points were used for each conversion type).  

Thus, sample data and driving factors are sent to the LSSVM model to produce the probability maps of 

alternative types of land cover change. The probability maps represent the spatial distribution of 

suitability for specific land cover change. Then, these land change suitability maps are input to the  

Markov-CA model. In this study, we used the Markov-CA module in IDRISI software (see [45]),  

which has a variety of applications [36–38]. Thus, we are able to simulate land cover change in our study 

area and conduct associated landscape pattern analysis as well as ecological risk analysis in particular,  

in a spatiotemporally explicit manner [46,47]. We used the year of 2004 as the initial time step and land 

transition matrix from 2004–2013 to determine the amounts of land transition. Three types of 

neighborhoods were examined: 1 × 1, 3 × 3, and 5 × 5. Model performance suggested the use of a 3 × 3 

neighborhood for the Markov-CA model. We chose 6 months (a half year) as the temporal resolution of 

the model—i.e., the number of iterations was set to 18 (i.e., 9 years) for the 2004–2013 simulation. 

2.2.5. Scenario Analysis of Policy Intervention 

Scenario analysis provides an approach that allows for the study of alternative futures of land systems 

through projections [48]. Based on the spatiotemporal simulation model, we designed four scenarios to 

examine future land change and associated landscape ecological risks in response to alternative policies 

(basic farmland protection, ecological conservation, and urban development) in our study region. 

Scenario 1 represents status quo, assuming the contribution of drivers remains unchanged over time. 

Scenario 2 is designed for the protection of farmlands. At present, our study region is planning for the 

identification and determination of permanent farmlands. Once a farmland is determined to be permanent, 

this land will not be allowed for any conversion. The total area of farmlands, therefore, will not decrease. 

Based on this, in Scenario 2, we fixed the location of farmlands that are already planned, and the total 

area of farmlands is not less than that in 2013. We used scenario 3 for the purpose of ecological 

conservation. According to the plan for the ecological conservation of Ezhou City, we increased the 

suitability of forests and water bodies by 20% for the first grade ecological conservation area, and by 

10% for the second grade. Also, the area of water bodies and the area of forests are not less than those 

in 2013. Scenario 4 was designed to study prioritization on meeting land requirements for built-ups by 

adjusting the development probability of built-up lands 20% higher. For each scenario, we ran the 

Markov-CA simulation model to generate land cover patterns in 2015, 2020, 2025, and 2030. We then 
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applied landscape pattern analysis and landscape ecological risk analysis to these simulated land cover 

patterns so as to evaluate possible future alternatives in response to policy intervention. 

 

Figure 4. Maps of driving factors of land use and land cover change in the study region. 

3. Results and Discussion 

3.1. Results 

Table 1 and Figure 5 report land cover change from 1991 to 2013 in our study area. It can be observed 

that farmland, water bodies, built-up land, and aquaculture lands dominated the initial stage of land cover 
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patterns. During the period of 1991 to 2013, our study area experienced drastic land cover change. Figure 6 

depicts the results of dynamic degree index for 1991–2004 and 2004–2013. Tables 2 and 3 show results 

of land transition matrices for 1991–2004 and 2004 to 2013. It can be generally observed that land 

transition from 2004–2013 are more intensive than that from 1991–2004. 

Table 1. Summary of land cover types between 1991 and 2013 (area unit: hectares). 

Time Farmland Forest Built-up Water Aquaculture Others 

Year 1991 87,858.27 8974.62 13,646.88 34,832.97 7376.94 8740.89 
Percent 54.42% 5.56% 8.45% 21.58% 4.57% 5.41% 

Year 2004 71,604.36 9193.95 18,870.84 32,990.40 19,871.28 8899.74 
Percent 44.36% 5.70% 11.69% 20.44% 12.31% 5.51% 

Year 2013 61,694.55 14,535.99 27,503.01 28,726.02 21,615.57 7355.43 
Percent 38.22% 9.00% 17.04% 17.79% 13.39% 4.56% 

 

Figure 5. Spatial patterns of land conversion ((A) conversion from farmlands; (B) conversion 

to built-up; (C) conversion to aquaculture). 
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Figure 6. Dynamic degree index of land cover change. 

Table 2. Land use transition matrix between 1991 and 2004 in the study area (unit: hectares). 

2004 
1991 

Farmland Forest Built-up Water Aquaculture Others 

Farmland 70,348.32 425.07 5256.45 89.01 11,248.29 491.13 
Forest 141.66 7992.18 400.86 1.62 120.96 317.34 

Built-up 684.00  67.50 11,769.93 58.05 336.15 731.25 
Water 152.19 96.66 178.65 32,744.34 1412.46 248.67 

Aquaculture 158.49 11.97 713.52 90.45 6344.64 57.87 
Others 119.70 600.57 551.43 6.93 408.78 7053.48

Net gain/loss −16,253.9 219.33 5223.96 −1842.57 12,494.34 158.85 

Table 3. Land use transition matrix between 2004 and 2013 in the study area (unit: hectares). 

2013 
2004 

Farmland Forest Built-up Water Aquaculture Others 

Farmland 52,086.15 4495.41 7686.72 321.12 4587.84 2427.12
Forest 1307.52 6518.97 459.36 17.10 78.75 812.25 

Built-up 2025.18 635.40 15,162.48 51.21 430.92 565.65 
Water 965.34 112.59 1102.41 27,523.62 2513.07 773.37 

Aquaculture 3625.65 117.72 1809.45 707.49 13,295.52 315.45 
Others 1684.71 2655.90 1282.59 105.48 709.47 2461.59

Net gain/loss −7901.55 7034.58 10,463.58 −886.23 7287.75 3206.43

Table 4 reports the results of landscape metrics for the years of 1991, 2004, and 2013. As we can see, 

contagion and patch density at the landscape level exhibit a decreasing pattern while splitting index and 

Shannon’s diversity index increase over time. Further, Appendix Table A1 shows results of class-level 

landscape metrics (for each land cover type). We computed splitting index and patch density for each 

town in Ezhou City over time (see Appendix Table A2). 
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Table 4. Landscape metrics in the study region over time (CONTAG: contagion; PAFRAC: 

perimeter-area fractal dimension; SPLIT: splitting index; SHDI: Shannon’s diversity index; 

PD: patch density). 

Year CONTAG PAFRAC SPLIT SHDI PD 

1991 49.5346 1.3711 10.6097 1.3304 13.9540 
2004 42.9412 1.3637 18.4742 1.5168 13.6851 
2013 40.3263 1.3920 37.7513 1.6030 11.4966 

Based on the Markov-CA model, we obtained simulated land cover patterns in 2013 for our study 

area (see Figure 7). Through comparison between simulated land cover patterns and the observed  

one, we calculated model accuracy metrics, including overall model accuracy (percentage of correct 

match; see [49]) and Kappa coefficient (see [50]). Through visual inspection, we can see that the spatial 

patterns of simulated and observed land cover patterns match well. Appendix Table A3 shows results of 

model accuracy. The overall model accuracy is 67% and the Kappa coefficient is 0.53, showing a 

reasonably good agreement between simulated and empirical data. Thus, this model is acceptable for the 

spatiotemporal simulation of future land cover change. Then, we ran the simulation model for the four 

scenarios until 2030. 

 

Figure 7. Spatial patterns of empirical and simulated land cover patterns of Ezhou City in 2013. 

Figure 8 illustrates the spatial distribution of landscape ecological risks at the town level in our study 

region for the years of 1991, 2004, and 2013. The averaged town-level landscape ecological risk of the 

study region is 0.51 in 1991, 0.53 in 2004, and 0.49 in 2013, at a medium level of ecological risk.  

For the four scenarios with respect to alternative policy intervention, averaged landscape ecological risks 

of our study region from 2015 to 2030 remain at a medium level (0.46–0.49). Landscape ecological risks 

at the town level are spatiotemporally heterogeneous for the four scenarios used in this study, and 

changing patterns are different among these towns (see Figures 9 and 10). 
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Figure 8. Maps of landscape ecological risk in the study region for year 1991, 2004, and 2013. 

 

Figure 9. Spatial patterns of change ratios in town-level ecological risks in 2030 for different 

scenarios (with respect to 2013). 



Int. J. Environ. Res. Public Health 2015, 12 14206 

 

 

 

Figure 10. Temporal change of landscape ecological risks at the town level for different 

scenarios (with respect to 2013). 
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3.2. Discussion 

3.2.1. Overall Characteristics of Historic Land Cover Change 

Our study region from 1991 to 2013 experienced substantial land cover change (see Table 1 and 

Figure 5), which led to severe loss of farmlands, rapid increase in built-up lands and aquaculture water 

bodies. First, while farmland is the dominant land cover type in our study area, the total area of farmland 

tends to decrease over time. The proportion of farmlands decreases from 54% in 1991 to 38% in 2013, 

corresponding to a loss of 26,163 hectares (30%). From the spatial distribution of farmland loss  

(see Figure 5a), we could observe that lost farmlands cluster in the middle of the study region (Hongxie Lake, 

BailiChangGang), in the downtown area of Ezhou City, and the Gedian Economic Development Zone. 

Second, in 1991, the percentage of built-up lands in our study region is only 8%. In 2013, this percentage 

reaches 17%, a net increase of 13,856 hectares (102% of net gain). In particular, built-up lands 

significantly increased between 2004 and 2013. Observed from the map of build-up land (Figure 5b), 

this change occurred in the northwestern part of the study region (close to Wuhan City), southeastern, 

and central city region of Ezhou City. Our field investigation revealed that an increase in built-up land 

generally falls within regions planned for development. Third, from 1991 to 2004, the proportion of 

aquaculture water bodies increased from the original 5% to 12% (169% net increase; i.e., 12,494 hectares). 

From 2004–2013, aquaculture water bodies remain stable. This pattern can be attributed to the structural 

adjustment of regional agriculture and markets. Our study area is characterized by rich water resources. 

Between 1991 and 2004, driven by an increase in market revenue from aquaculture compared to farming, 

a large number of water bodies, including ponds, were converted for aquaculture (e.g., fish, shells, and lotus). 

After this period, as market revenue from aquaculture tends to be stable, the area of aquaculture water 

bodies remains almost unchanged. Increase in aquaculture water bodies mainly clustered in the middle 

of the study region (see Figure 5c), dominated by dense stream networks. 

3.2.2. Land Use Transition 

The Markov transition matrices allow us to investigate conversions among specific land cover types, 

serving as a form of disturbance to landscape patterns. From Markov transition matrices in Tables 2 and 3, 

we have the following findings. 

Intensive occupation of farmlands due to urban-rural expansion: From 1991 to 2004, 5256 hectares 

(5.98%) of farmlands were converted to built-up lands. From 2004–2013, the area of farmlands 

converted to built-up lands is 7686 hectares (10.74%). From 1991 to 2013, the total area of farmlands 

converted to built-up lands is 12,843 hectares (16.72%). Thus, we could see that over different periods 

urban-rural expansion consumed large amounts of farmlands and this trend tends to be accelerated.  

This indicates that our study region, as a key part of the Greater Wuhan Metropolitan Region,  

has experienced rapid land development, imposing substantial influence on the socio-ecological 

environment. Ezhou is also a major region for grain in central China. The intensive occupation of 

farmlands will pose a severe threat for regional food security. Meanwhile, under the national policy of 

“requisition-compensation balance”, large amounts of rangelands or other lands were converted into 

low-quality farmland, which tends to degrade the environment of the study region. 
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Increase in conversion of ecological lands into built-up: From 1991 to 2004, about 1293 hectares of 

ecological land types (e.g., forest, water bodies, and aquaculture) were converted into built-up—i.e., 

about 18.21% of land conversion. From 2004–2013, 3371 hectares of lands were converted into built-up 

(27.32% of land conversion). This means that ecological lands are becoming targets of urban-rural 

expansion, stimulated by strict farmland protection and large demands of built-up lands. This will 

potentially impose negative impacts on the development of ecologically representative regions in  

Ezhou City, which need new policies to prevent the continual loss of ecological lands. 

Frequent conversion between farmlands and aquaculture water bodies: From 1991 to 2004, about 

13,526 hectares of lands were converted to aquaculture, 83.16% from farmlands. Yet, only 158 hectares 

of aquaculture water bodies were converted into farmlands. From 2004–2013, the area of the lands 

converted into aquaculture water bodies is 8320 hectares (55.14% from farmlands). Under the policy of 

strict farmland protection and agriculture subsidy as well as a decrease in revenue from aquaculture 

markets, about 3625 hectares of aquaculture water bodies were converted back to farmlands. In total, the 

area of farmlands converted to aquaculture water bodies is 12,449 hectares and the area of aquaculture 

water bodies converted from farmlands is 3625 hectares. This shows a frequent conversion between 

farmlands and aquaculture water bodies. This conversion will adversely affect the landscape 

characteristics and quality of farmlands, which is neither good for landscape-level ecological security 

nor for the productivity of farmlands. 

Conversion of water bodies for aquaculture: From 1991 to 2013, 3557 hectares of water bodies were 

converted for aquaculture purpose. However, only 294 hectares of aquaculture water bodies were 

converted back to regular water bodies. While conversion between regular water bodies and aquaculture 

ones is reversible, the large number of conversion tends to increase landscape vulnerability and its 

associated ecological risk. 

Impact of policies: From 1991 to 2004, only 425 hectares of farmlands were converted into forests, 

yet this conversion reaches 4495 hectares from 2004 to 2013. This significant increase shows that the 

protection policies such as conversion of farmlands into forests for ecological restoration (Grain for 

Green program started in 1999) and requisition-compensation balance (started in 1997) are effective. 

Conversion of other land: In this study, other land cover types include orchard, rangeland, wetlands, 

and other open space. From 1991 to 2004, about 1687 hectares of other lands were converted to forests, 

built-up, farmlands, and aquaculture. From 2004 to 2013, 6438 hectares of other lands were converted 

mainly to forests, built-up, farmlands, and aquaculture. This suggests that the conversion of other lands 

has been very intensive due to high demands for land resources in our study region. The excessive 

conversion of other lands (into built-up, farmlands, and aquaculture) may deteriorate environmental quality 

in our study area (due to pollution from, for example, untreated residential waste, pesticides, and fertilizers). 

3.2.3. Landscape Pattern Analysis of Land Cover Change 

Overall landscape patterns of our study area tend to be more fragmented from 1991 to 2013 (see Table 4). 

The overall shape and characteristics of land patches became more complicated over time. From 1991 

to 2013, farmlands tend to form into more separated parts, yet built-up lands became aggregated  

(see Appendix Table A1). Fragmented patterns of farmlands are attributed to the occupation of land 

developments in rural areas, which leads to the isolation of farmland patches. The patch density of forests 
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increases from 1991 to 2004 but decreases from 2004 to 2013. The splitting index of forests decreases over 

time. This is mainly due to the national “Grain for Green” policy of converting farmlands back to forests 

between 2004 and 2013. This policy leads to the clustered pattern of forests. Patch density of water 

bodies exhibits a similar pattern to that of farmlands: increases first then decreases. However, the splitting 

index of water bodies tends to increase over time. From the land transition matrix (Tables 2 and 3), we see 

that water bodies were mostly converted for aquaculture. Because large amounts of aquaculture water 

bodies were embedded in regular water bodies, patch density shows an increment from 1991 to 2004. 

After 2004, because of the adjustment of agriculture structure, small-sized aquaculture water bodies were 

converted into regular ones. This explains the decreasing pattern of patch density of regular water bodies 

after 2004. Correspondingly, patch density of aquaculture water bodies shows a decreasing pattern and 

the splitting index decreases over time. 

Our results of town-level landscape metrics (see Appendix 2) suggest that the splitting index of most 

towns exhibited an increasing pattern (only the central city region and Gedian Economic Development 

zone show a decreasing pattern). Patch density of those towns with rapid (slow) land development from 

1991 to 2004 decreases (increases) over time. From 2004 to 2013, patch density of most towns decreases 

due to the policy of land intensification, which encourages the aggregation of built-up and farmlands. 

3.2.4. Landscape Ecological Risks and Scenario Analysis 

Most towns in the study region in 1991 are at the medium level of ecological risks (see Figure 8). 

Ecological risks of the eastern and southern parts of the study region are relatively high (close to 0.8). 

In 2004, ecological risks at the town level tend to increase (in particular, in the middle and north). In 

2013, the eastern part of the study region experienced an increase in ecological risk, but in its 

mountainous area, ecological risk exhibits a decreasing pattern. In the Liangzi Lake region (also see 

Figure 1), ecological risks decrease substantially due to the establishment of a national-level ecologically 

representative region. Ecological risks in the Gedian Economic Zone and central city area increase. In 

general, from 1991 to 2013, ecological risks show an increasing pattern mainly due to the rapid 

urbanization process, leading to more landscape disturbance in our study region. 

For the four scenarios, averaged town-level landscape ecological risks of our study region remain at 

a medium level (0.46–0.49) from 2015 to 2030. The landscape fragmentation index shows different 

patterns across scenarios. From 2015 to 2030, landscape fragmentation due to the protection policies of 

farmland or forests tends to be high at the early stage (patch density is 4.33 for Scenario 3 in 2015 and 

3.80 for scenario 2 in 2020); the impact of landscape fragmentation due to the policy of urban planning 

tends to be high after 2025 (patch density is 3.71 and 3.56 for Scenario 4 in 2025 and 2030). At the level 

of land cover type, landscape fragmentation and splitting index for farmlands are the lowest in Scenario 2, 

yet these indices for built-up lands are higher than those in other scenarios. This shows that due to a 

strict farmland protection policy, urban development on those farmlands close to existing built-up lands 

are limited. In Scenario 3, due to the protection of forests and small change in spatial distribution of 

forested lands, landscape patterns of forest remain relatively stable. However, in Scenario 2, to ensure 

no decrease in the amounts of farmlands, conversion between forests and farmlands tends to be intensive, 

i.e., an increase in conversion from forests and other lands to farmland, and an increase in converting 

low-quality farmland to forests. As a result, this leads to the clustering of forests, in line with the policy 
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of forest conservation. Among these scenarios, landscape patterns of regular water bodies do not exhibit a 

substantial change. Landscape fragmentation for aquaculture water bodies tends to decrease but the 

splitting index shows an increasing pattern over time. 

For towns of Gedian and Huarong (northwestern region; also see Figure 1), ecological risks show 

decreasing patterns over time, which can be attributed to continual increase in built-up lands under the 

influence of Wuhan Donghu High Tech Development Zone. For those towns rich in forests and water 

resources, landscape ecological risks tend to increase first then decrease (see Figure 10). This is because 

aquaculture water bodies and forests tend to be converted into farmlands, leading to an increase in 

landscape fragmentation. Yet, when farmlands become dominated, landscape fragmentation index and 

splitting index tend to decrease, which explains decrement in ecological risks. However, ecological risks 

in these towns in Scenario 3 exhibit an increasing pattern. This can be attributed to the conversion of 

forests and aquaculture water bodies (in second-level conservation zones) into farmlands, leading to 

increased landscape fragmentation. 

4. Conclusions 

Ezhou City is an important satellite city of the Greater Wuhan Metropolitan region in central China. 

This study region has experienced rapid LULCC driven by socio-economic development and national 

policies for urban development, ecological conservation, and farmland protection. In this study, we used 

a spatially explicit approach that is based on the integration of GIS and landscape pattern analysis to 

evaluate spatiotemporal characteristics of land cover patterns and associated landscape ecological risks. 

With support from land change simulation based on Markov-CA modeling, we conducted a scenario 

analysis for future landscape patterns in response to alternative policy intervention. The scenario analysis 

is pivotal to supporting policy making or adjustment of land use and ecological conservation. Our 

simulation outcomes and landscape ecological risk assessment for Ezhou City offer insight into the 

exploration of spatiotemporal complexity of land systems in study regions that are often  

ecologically vulnerable. 

Specifically, results in this study show that from 1991 to 2013, farmlands, water bodies, built-up 

lands, and aquaculture water bodies remain as dominant land cover types. Yet, land cover patterns 

experience drastic change: severe loss of farmlands, substantial increase in aquaculture, and built-up 

lands. Urban-rural development has consumed significant amounts of farmland and ecological land. 

Meanwhile, frequent exchanges between farmlands and aquaculture water bodies potentially lead to 

negative impacts on land quality and landscape patterns. Under the policy of “requisition-compensation 

balance”, a significant number of other lands have been converted to farmlands, forests, and built-up 

lands. From 1991–2013, the overall landscape of our study region experienced substantial fragmentation: 

a decrease in landscape connectivity, and an increase in landscape diversity suggests intensive landscape 

disturbance from human activities. Further, landscape ecological risks in east and southeast Ezhou City 

are relatively high. An increase in landscape ecological risks in the southern part of Liangzi Lake was 

attributed to intensive land conversion. Results of scenario analyses in response to alternative policy 

interventions suggest that the planning of permanent basic farmlands in the study region holds potential 

in preventing landscape fragmentation and spontaneous urban expansion. More constraints on ecological 
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conservation (e.g., regulation on development density) are needed for the protection of landscape-level 

environments in our study region. 
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Appendix 

Table A1. Landscape Metrics for Land Cover Types in the Study Region over Time. 

Index Time Farmland Forest Built-up Water Aquaculture Others 

PD 
1991 0.69 1.33 3.52 0.16 6.28 1.98 
2004 1.14 1.35 2.94 0.20 5.83 2.22 
2013 1.50 1.26 2.46 0.13 4.01 2.14 

PAFRAC 
1991 1.43 1.43 1.36 1.37 1.34 1.40 
2004 1.43 1.40 1.34 1.36 1.34 1.40 
2013 1.44 1.39 1.40 1.32 1.36 1.36 

SPLIT 
1991 13.40 24,697.46 9856.42 51.51 53,174.54 28,541.09
2004 28.59 21,747.92 2530.97 54.28 3975.03 28,744.75
2013 98.27 5125.79 108.04 156.29 2274.13 41,441.98

PD: patch density; PAFRAC: perimeter-area fractal dimension; SPLIT: splitting index; SHDI: Shannon’s 

diversity index. 

Table A2. Landscape Metrics at the Town Level in the Study Region over Time. 

County Towns 
Splitting Index Patch Density 

1991 2004 2013 1991 2004 2013 

HuaRong 

DuanDian 3.38 4.17 4.62 16.19 15.7 11.4 
GeDian 3.44 7.17 9.59 17.97 15.61 14.71 

HuaRong 2.96 4.16 8.59 16.88 16.32 14.81 
LinJiang 2.47 2.81 3.54 12.02 11.45 10.6 
MiaoLin 3.23 6.84 16.32 12.97 14.54 11.06 
PuTuan 2.24 4.47 42.78 10.87 14.84 14.27 
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Table A2. Cont. 

County Towns 
Splitting Index Patch Density 

1991 2004 2013 1991 2004 2013 

LiangZi

DongGou 5.73 17.22 18.87 9.09 11.65 9.56 
LiangZi 1.43 1.44 1.45 3.26 3.31 2.64 
TaiHe 3.36 4.57 8.81 16.46 15.9 11.76 

TuJiannao 3.1 3.64 3.21 21.74 22.51 16.12 
ZhaoShan 2.35 2.95 3.43 16.62 17.24 14.37 

ECheng

BiShidu 3.03 4.09 5.76 17.71 16.09 16.56 
ChangGang 3.1 7.02 11.68 10.41 9.29 10.41 

DuShan 5 11.65 10.85 6.37 7.17 6.71 
FanKou 6.68 5.06 3.06 7.96 8.55 6.49 

FengHuang 8.7 5.09 4.57 15.75 7.82 5.91 
GuLou 2.32 1.41 1.48 10.01 1.43 1.67 
HuaHu 5.31 5.95 12.58 13.72 14.23 12.92 
ShaWo 4.49 5.7 19.77 28.8 28.08 16.26 
TingZu 2.97 4.11 16.86 16.9 14.7 16.52 

XinMiao 3.81 14.5 9.69 29.13 29.06 23.48 
XiShan 4.54 4.69 4.08 14.51 10.52 13.4 
YangYe 4.43 6.06 9.77 9.14 8.94 6.9 

YanJi 4.09 8 10.32 21.55 19.49 13.29 
ZeLin 5.61 8.11 12.39 12.79 12.96 10.62 

Table A3. Results of Model Accuracy (Area Units: Hectares; Accuracy Units: %). 

Actual Simulated Farmland Forest Built-up Water Aquaculture Others Total Accuracy

Farmland 50,364 4524 6845 444 4479 2412 69,067 73 
Forest 1353 6904 543 19 86 959 9864 70 

Built-up 4134 718 16,573 63 1026 659 23,172 72 
Water 871 91 958 2710 2241 601 7473 36 

Aquaculture 3461 125 1597 812 13,168 382 19,544 67 
Others 1495 2174 987 137 616 2342 7752 30 
Total 61,678 14,536 27,503 4184 21,616 7355 136,872 67 
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