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Introduction

Cohort studies have investigated associations between long-
term exposures to air pollution and various health outcomes 
based on the spatial contrasts of exposures and outcomes of in-

dividuals [1,2]. A significant challenge in these studies is that in-
dividual measurements of air pollution are not available. Some 
recent studies have developed exposure prediction approaches 
to estimate individual-level concentrations of air pollution [3,4]. 
Geographic variables, computed by using geographic informa-
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tion system (GIS), were often included in such models as pre-
dictors for air pollution concentrations at given locations. These 
variables represented potential sources of air pollution such as 
traffic and population in surrounding areas and improved the 
characterization of fine-scale variability of air pollution [3]. 
Large cohort studies in North America and Europe computed 
hundreds of variables to represent possible sources [5,6].

Interest has increased in estimating air pollution exposures 
based on cohort studies in South Korea [7,8]. However, most 
exposure prediction approaches have relied only on air pollu-
tion monitoring data without incorporating geographic vari-
ables, possibly due to logistical constraints [9]. The computa-
tion of geographic variables requires extended knowledge of 
available data sources and GIS techniques.

In the present study, we aimed to develop a list of geographic 
variables based on their relationships with air pollution reported 
in previous studies. Subsequently, we intended to explore avail-
able data sources, to combine all data to a single GIS database 
and to compute the finalized variables at 294 regulatory air pol-
lution monitoring sites in South Korea. Specifically, we consid-
ered various geographic variables as input data for statistical ex-

posure prediction models that have been largely used in cohort 
studies of air pollution. Our work focused on 2010 data owing 
to the large number of monitoring sites and availability of the 
most recent census data [10]. The data integration and variable 
computation were performed by using ArcGIS version 10.2 
(ESRI Inc., Redlands, CA, USA).

Conceptual Background of Geographic 
Variables

We explored eight categories of geographic variables as poten-
tial sources of air pollution. The choice of eight categories was  
based largely on two large cohort studies, the European Study of 
Cohorts for Air Pollution Effects [5] and the Multi-ethnic Study 
of Atherosclerosis and Air Pollution [6], which examined partic-
ulate matter (PM) less than or equal to 10 μm and 2.5 μm in di-
ameter (PM10 and PM2.5, respectively) in addition to black car-
bon, nitrogen oxide (NOX), nitric oxide (NO), and nitrogen di-
oxide (NO2) air pollution. The eight categories include traffic, 
demographic characteristics, land use, transportation facilities, 
physical geography, emissions, vegetation, and altitude (Table 1). 

Table 1. List of geographic variables in eight categories with their data sources and types of data 			 

Categorya Variable Source Type of data (data format)

Traffic
  
  

Distance to the nearest roads (all roads, MR1, and MR2)
Sum of road lengths (all roads, MR1, and MR2)b

Number of registered vehicles

KTDB
  
KOSIS

Road network (line)
  
Vehicle registration (table)

Demographic 
  characteristics

  
  

Number of people
Number of households
Numbers of housing buildings by a type of residence and by a constructed year 
Numbers of companies and employees by a type of business

SGIS
  
  
  

Census (table)
  
  
  

Land use Proportions of residential, industrial, commercial, cultural, transportation, public facility, 
  agricultural, forest, grassland, wetland, bare ground, and water areas

EGIS Land cover map (polygon)

Transportation facilities
  
  
  

Distances to the nearest railroad and subway station
Distance to the nearest bus stop
Distance to the nearest air port
Distance to the nearest major port

SGIS
Biz-GIS
ODP
SP-IDC

Railroad and subway stations (point)
Bus stop (point)
Airport (table)
Port (table)

Physical geography
  
  

Distance to river
Distance to coastline
Distance to the military demarcation line

SGIS
NSIC
SGIS

River (polygon)
Coastline (line)
Administrative boundary (polygon)

Emissions Proportions of major pollutants (CO, NOX, SOX, TSP, PM10, VOC, and NH3) NIER Emission estimates (table)
Vegetation

  
Annual summary (average, minimum, and maximum) of NDVI
Median value in August for previous, current and following years

IIS
  

Satellite image (raster)
  

Altitude
  

Absolute elevation
Proportion of concentric elevation points above or below 20 or 50 m

USGS
  

Digital Elevation Data (raster)
  

MR1, major road 1; MR2, major road 2, TSP, total suspended particle; CO, carbon monoxide; NOX, nitrogen oxides; SOX, sulfur oxides; NH3, ammonia; VOC, volatile 
organic compounds; NDVI, Normalized Difference Vegetation Index; KTDB, Korean Transport Database; KOSIS, Korean Statistical Information Service; SGIS, Statistical 
Geographic Information Service; EGIS, Environmental Geographical Information Service; ODP, open data portal; SP-IDC, Shipping and Port Integrating Data Center; 
NSIC, National Spatial Information Clearinghouse; NIER, National Institute of Environmental Research; IIS, Institute of Industrial Science, University of Tokyo; USGS, 
United States Geological Survey.			 
aDifferent buffer sizes by category: traffic, 25, 50, 100, 300, 500, and 1000 m; demographic characteristics and land use, 50, 100, 300, 500, 1000, and 5000 m; 
emissions, 3, 15, and 30 km.			 
bSum of road lengths were computed for three methods: single central lines of roads, road lines multiplied by numbers of lanes, and road lines multiplied by numbers 
of lanes and line widths. 			 
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Each variable was calculated at regulatory monitoring sites by 
using one of two metrics: the distance to a feature or a buffer 
summary statistic (e.g., sum or proportion) of a feature. A buffer 
is a circular feature that indicates that the air pollution concen-
tration measured at the central point of the buffer is influenced 
by probable sources at a given distance. In this study, we used 
three sets of different buffer sizes. The buffer radii for traffic 
variables were 25, 50, 100, 300, 500, and 1000 m, whereas larger 
radii of 100, 300, 500, 1000, and 5000 m were applied to non-
traffic variables for demographic characteristics and land use 
categories [5,11,12]. In addition, the largest buffer radii of 3, 15, 
and 30 km were adopted for emission variables [13].

Traffic 
Because traffic is considered a major source of air pollutants 

such as PM2.5 and NOX, associated with health endpoints in epi-
demiological studies, geographic variables reflecting traffic have 
been widely used in exposure prediction models in many cohort 
studies [14-17]. Vehicles emit various air pollutants from exhaust 
and non-exhaust factors such as diesel/gasoline engines, brake 
wear, and road surface wear. The amount of traffic estimated on 
each road for a given time period could be the best metric for 
representing vehicle emission. However, traffic volume data are 
not generally available [12]. Instead, the proximity to the nearest 
roads and lengths of surrounding roads are frequently adopted as 
proxies for traffic volume. Road lengths are summed within spe-
cific buffer sizes. In particular, NOX, NO, and NO2 have been 
positively associated with decreasing distances to major roads 
and increasing lengths of roads in surrounding areas [3].

Demographic Characteristics
Densities of population and households implying human activ-

ities related to heating, cooking, and transportation would result 
in increasing air pollution concentrations. The increasing num-
ber or density of residents and households in given buffer areas 
tended to be related to the elevated levels of air pollution concen-
trations in Europe, Canada, the US, and Taiwan [5,12,18-20].

Land Use
The types of land use such as residential, urban, and green areas 

have been used as significant predictors for PM and NOX/NO2 
air pollution in North America and Europe [3]. A study in New 
York City used a vegetative land use variable to explain the varia-
tion in PM2.5 concentrations [17]. In addition, a study in Taiwan 
using five land use categories found that high proportions of ur-
ban green and natural areas in given buffers were associated with 
decreased NOX concentrations, whereas a high proportion of the 
low density residential area contributed to increased NO2 [12].

Transportation Facilities
Public transportation depots such as airports, ports, subway 

stations, and bus stops could affect increased air pollution con-
centrations owing to the high emission from transportation 
equipment and facilities. For example, a large number of con-
centrations of ultrafine PM and PM2.5 was found to be related to 
aircraft takeoff [21]. PM2.5 concentrations attributable to avia-
tion emissions were shown to decrease with increasing distances 
from airports in the UK [22]. Moreover, a study in Italy report-
ed high concentrations of NO2 near a port area, possibly attrib-
uted to vessel traffic emission [23]. 

Physical Geography
Natural geographical features may also affect air pollution. For 

example, the proximity to water bodies affecting air flow in river 
valleys and oceans could be related to air pollution. The remote-
ness to a coastline has been associated with increasing NO2 in 
San Diego, California, the US [24] and decreasing PM8 in Shi-
zuoka Prefecture, Japan [25].

Emissions
Emissions derived from various sources for major pollutants 

could be related to air pollution concentrations. Many countries 
have provided emission estimates of major pollutants from pol-
lution sources such as roads, transportation, industry, and agri-
culture [26, 27]. To improve exposure prediction models, some 
studies in the US and Italy have included emission estimates for 
primary pollutants [6,28].

Vegetation
Normalized Difference Vegetation Index (NDVI), one of the 

most frequently used vegetation indices, measures the density of 
green vegetation on land by using satellite images. This index is 
computed by determining the reflectance values on a target area 
of the earth’s surface in the visible red (RED) and near-infrared 
(NIR) bands, as shown in equation 1 [29].

High NDVI values imply abundant vegetation and may be 
negatively associated with air pollution levels. Studies of expo-
sure prediction models in the US have used medians and quan-
tiles of 16-day composite NDVI values over one year and sea-
sonal values for high-vegetation and low-vegetation seasons [6].

Altitude
Atmospheric pressure and circulation changes by elevation 

could affect movements of air pollutants and air pollution con-
centrations at a given location. Although altitude has been nega-

(NIR-RED)
(NIR+RED) (1)
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tively associated with PM2.5 concentrations in four European cit-
ies of substantially varied altitudes [5], one study in Taipei, Tai-
wan, with relatively homogenous altitudes across monitoring 
sites excluded altitude variables in the final exposure prediction 
model for NOX and NO2 [12].

Data Acquisition

Locations of Regulatory Monitoring Sites
The Ministry of Environment in South Korea established reg-

ulatory air quality monitoring networks to monitor the condi-
tions of air pollution and attain the air quality standards since 
1980s [30, 31]. We obtained the addresses and coordinates of 
the 294 monitoring sites operated nationwide in 2010 from the 
Annual Report of Ambient Air Quality in Korea 2010 [31]. 
When address and coordinates did not match, we used the ad-
dress and extracted coordinates from Google Maps.

Road Networks
Road network data for 2010 were obtained from the Korean 

Transport Database (KTDB) of the Korea Transport Institute 
(http://www.ktdb.go.kr). The shapefile, a popular data file for-
mat in GIS software, for road networks is composed of more 
than 100000 line segments and corresponding characteristics of 
each road segment such as a road name, speed limit, direction, 
and number of lanes. KTDB classifies all roads in South Korea 
into eight types including national highway, metropolitan city 
highway, general national road, metropolitan city road, govern-
ment-financed provincial road, provincial road, district road, 
and highway link lamp. In addition, the monthly data for the 
number of registered vehicles in 2011 for a district administra-
tive unit with a median area of 391 km2 in 2010, known locally 
as a si–gun–gu, were downloaded from the Korean Statistical 
Information Service website of the Statistics Korea (http://ko-
sis.kr/eng/); 2010 is the earliest year with available data.

Census
We obtained 2010 census tabular data for a census territorial 

unit, as a census output area, known as a jipgegu with a median 
area of 0.02 km2 in 2010, from the Statistical Geographic Infor-
mation Service (SGIS) of the Statistics Korea (http://sgis.ko-
stat.go.kr). For each jipgegu, the numbers of residents, house-
holds, housing buildings, companies, and employees were avail-
able as a total value and by classification of gender and age, type 
and construction year of houses, and type of business. The type 
of house was classified on the basis of the size and height of the 
housing building, whereas the type of business was based on the 
seven categories of the Korean standard industrial classification. 

We also obtained a shapefile of jipgegus from the SGIS.

Land Cover Map
Land cover maps were obtained from the Environmental Geo-

graphic Information Service of the Korea Ministry of Environ-
ment (http://egis.me.go.kr). Land surface images captured by 
satellites were converted into land cover maps consisting of ar-
eas with various land surface characteristics categorized by using 
image-adjustment and image-classification algorithms. To cover 
the entire country through 2007, 814 maps were created; 150 
maps mostly the Seoul metropolitan areas were updated in 
2009. To use the most recently updated maps, we selected the 
2007 maps and replaced 150 areas with the updated 2009 data. 
These land cover maps consisted of 7, 22, and 41 classes for 
high, medium, and low spatial levels, respectively. The seven 
high-level classes included urbanized and built areas, agricultural 
areas, forest areas, grasslands, wetlands, bare ground, and waters 
(Table 2). We used the high-level classes except for the urban-
ized and built area class. For such class, we replaced by seven 
medium-level classes reflecting specific land use characteristics 
possibly associated with air pollution in complex urban settings.

Emissions
We downloaded the tabular data for emissions, created by the 

National Institute of Environmental Research, from the Nation-
al Air Pollutants Emission website (http://airemiss.nier.go.kr/

Table 2. Classification of land surface map data	

High spatial level Medium spatial level

Urbanized and built area Residential areaa

Industrial area
Commercial area
Cultural, sport, recreation area
Transportation area
Public facility area

Agricultural area Rice paddy
Field
Cultivated field under structure
Orchard
Other cultivated field

Forest area Broad-leaved forest
Coniferous forest
Mixed stand forest

Grassland Natural grassland
Artificial grassland

Wetland Inland wetland
Coastal wetland

Bare ground Natural bare ground
Other bare ground

Waters Inland water
Ocean water

aSix out of seven high-level classes and six medium-level classes of the 
urbanized and built area (bold and italic) were used in our study.	
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main.jsp). The emission data contain annual emission estimates 
of seven pollutants including carbon monoxide, NOX, sulfur ox-
ide, total suspended particulates, PM10, volatile organic com-
pounds, and ammonia aggregated on a 1-km grid by point, line, 
and area sources with grid coordinates indicating the bottom 
left corner of each grid cell.

Normalized Difference Vegetation Index
For NDVI, we downloaded satellite images from the Institute 

of Industrial Science (IIS), University of Tokyo (http://web-
modis.iis.u-tokyo.ac.jp/). The IIS provides cloud- and shadow-
free images captured by Aqua/Terra Moderate Resolution Im-
aging Spectroradiometer (MODIS) satellites over Asia every 10 
days. The 10-day composite images were created by using the 
Enhanced Second Minimum composition method, which se-
lects a pixel with second minimum reflectance in the red chan-
nel as a representative value during a 10-day period to avoid pix-
els shadowed by clouds [32]. The spatial resolution of these ras-
ter image data was approximately 428 m for each cell. The 
NDVI pixel image values were between 0 and 255.

Other data
Shapefile data for bus stops were downloaded from the Biz-

GIS website (http://www.biz-gis.com/XsDB/). This website, 
operated by the Biz-GIS company, provides spatial data in South 
Korea in shapefile formats for various spatial features such as 
apartments, hospitals, banks, and retail establishments. The ad-
dresses and coordinates of airports generated by the Korea Air-
ports Corporation were obtained from an open data portal 
(https://www.data.go.kr) that offers data generated by various 
public agencies. Coastline data generated by the Korea Hydro-
graphic and Oceanographic Administration were obtained from 
the National Spatial Information Clearinghouse (https://www.
nsic.go.kr/ndsi/). We obtained shapefile data for railroad sta-
tions, subway stations, urbanized areas, rivers, and boundaries of 
si–gun–gu from the SGIS. The Shuttle Radar Topography Mis-
sion (SRTM) 30 m ×  30 m digital elevation model (DEM) data 
for South Korea was downloaded from the EarthExplorer inter-
face of the United States Geological Survey website (http://
earthexplorer.usgs.gov).

Data Integration

To compute the geographic variables, we integrated all data ob-
tained from the various sources into the one GIS database. This 
integration included the transformation of different coordinate 
systems to a single system. Spatial data generated from the vari-
ous organizations were on different coordinate systems or no in-

formation was provided for coordinate systems. This limitation 
created difficulties in displaying all available data on the same 
map, which is necessary for computing geographic variables. 
Thus, we adopted the Korean Central Belt 1995 coordinate sys-
tem, which is most commonly used in our GIS data (Table S1).

In addition, we combined tabular, vector, and raster data into 
the database. The data for monitoring sites, census, registered 
vehicles, and emissions were provided in tabular formats. Shape-
files for road networks and administrative boundaries included 
vector data representing point, line, and polygon features. Image 
files for satellite data contained raster data, which display data 
values on grid cells.

Variable Computation

Traffic
We computed the distance to the nearest road, the sum of road 

lengths in a buffer space, and the number of registered vehicles 
at each regulatory monitoring site. The distance to the nearest 
road was computed as the minimum Euclidian distance be-
tween the line of the road and each monitoring site. For the sum 
of road lengths, we created various sizes of traffic buffers, select-
ed road segments within each buffer, and aggregated the lengths 
of all selected road segments. For the number of registered vehi-
cles, we calculated the annual average of registered cars from 
monthly data for each si–gun–gu. Then, we linked this tabular 
data to the shapefile of si–gun–gu and identified the number of 
vehicle registrations in the si–gun–gu that included a target 
monitoring site.

The traffic variables of road networks were computed for each 
of the three categories of roads including all roads, major road 1 
(MR1), and major road 2 (MR2). MR1 was defined by national 
highways and metropolitan city highways, whereas MR2 in-
cluded MR1 as well as local roads with more than six lanes (Fig-
ure 1). We created the category of MR2 owing to the limited 
number of MR1 roads. The total length of all roads was 90816 
km in South Korea, whereas lengths of MR1 and MR2 were 
8128 and 12194 km which are 8.95 and 13.43 % of all roads, re-
spectively.

In addition, we incorporated the numbers of lanes and road 
widths to the sum of road length variables. Road networks in 
the KTDB are represented by single line features of the center-
lines of roads without considering lanes and widths. The KTDB 
road network data contains attributes of the number of lanes. 
We assigned road width values depending on highway/non-
highway, speed limit, and urban/non-urban areas based on the 
Administrative Rule on the Structure and Installation of Road  
(Table S2) [33]. Information on highway/non-highway and 

http://earthexplorer.usgs.gov
http://earthexplorer.usgs.gov
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speed limit were given in the KTDB road network data. For ur-
ban/non-urban areas, we defined the urban area that overlapped 
with the urbanized area shapefile obtained from the SGIS (Fig-
ure S1). Thus, the road segments intersecting with urbanized 
areas were considered as roads in the urban areas; others were 
defined as non-urban roads.

Demographic Characteristics
We computed the numbers of total population and house-

holds, numbers of housing buildings by construction years and 
house types, and numbers of companies and employees by busi-
ness types in a non-traffic buffer. After linking the tabular census 
data to the administrative boundary shapefiles by using the jip-
gegu identifier, we selected jipgegus intersecting with a non-
traffic buffer and aggregated the numbers of residents, house-
holds, housing buildings, companies, or employees within inter-
sected jipgegus with the weight of jipgegu sizes (Figure 2). For 
example, equation 2 shows the total population within a given 
buffer i (Pi), derived by using total population in a jipgegu j (Pj) 
and an areal weight as the ratio of the area of the intersected jip-
gegu with the buffer (Aij) to the area of the jipgegu (Aj).

Pi = ∑

Land Use
A land use variable was computed as the proportion of the ar-

eas for a type of a land use to the area of a given non-traffic buf-
fer. For each type of the 12 land use classes within a buffer area, 
we selected the polygons of each land use within the buffer and 
computed the proportions of the selected areas of the land use 
to the buffer area.

Transportation Facilities 
The distances of a monitoring site to the nearest transportation 

depots such as railroad stations, subway stations, bus stops, air-
ports, and major ports were calculated. We defined major ports by 
ports that accommodate more than 10000 vessels per year based 
on the statistics from the Shipping and Port Integrated Data Cen-
ter. Ten out of 31 ports were identified as major ports in South 
Korea. 

Physical Geography 
The minimum distances to rivers, coastlines, and the border be-

Figure 1. Road networks in Seoul, Korea. MR1, major road 1; MR2, major road 2.

All roads

MR1

MR2

Boundary of Seoul

j = 1
N Pj ×  Aij

Aj
(2)
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tween North and South Korea were computed. To produce the 
borderline, we combined all jipgegu polygons into a single poly-
gon, converted the polygon into a line feature representing the 
outer boundary of South Korea, and extracted the northern end.

Emissions
By using the emission tabular data at 106070 1-km national 

grid coordinates in South Korea, we aggregated emission esti-
mates from point, line, and area sources at each coordinate. 
Then, we created 1-km grid-shaped polygons based on grid co-
ordinates, and assigned emission estimates at the grid points to 
corresponding polygons. Air pollutant emissions in grid poly-
gons were accumulated within 3, 15, and 30 km buffers with ar-
eal weight as previously described in the demographic charac-
teristics.

Normalized Difference Vegetation Index 
We computed the average, minimum, and maximum of 36 10-

day composite MODIS NDVI data during 2010 for each grid to 
avoid seasonal variation and to estimate spatially representative 
values. In addition, the median for August during 2009, 2010, 

and 2011 was computed for reflecting the lushest vegetation in 
South Korea. Finally, we extracted the NDVI values at each 
monitoring site from the grid in which the monitoring site is lo-
cated.

Altitude
By using the 30 m × 30 m SRTM DEM raster image data, we 

assigned the elevation value in a grid cell to each monitoring site 
included in the cell. In addition, we computed the relative eleva-
tion as the proportion of concentric cells in which the elevation 
values are above or below threshold elevations of 20 and 50 m, 
respectively, compared with that at a monitoring site. The con-
centric cells refer to the DEM grid cells on a 30 m-wide donut-
shaped polygon 1 or 5 km from the monitoring site. 

Summary of Computed Variables

On the basis of the 313 geographic variables computed at 294 
regulatory monitoring sites in South Korea, we examined the 
relationships between traffic variables and the summary statis-
tics of selected variables to verify our computation results and to 

Figure 2. Map of 100 and 300 m buffers and nearby jipgegus of a regulatory monitoring site in Seoul, Korea.

Monitoring site

Buffer (100 m)

Buffer (300 m)

Jipgegu
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provide insight into distributions of the geographic variables. 
Our presentation of descriptive statistics was restricted to Seoul 
and focused on the comparison by two types of regulatory 
monitoring sites including 25 urban background and 12 urban 
roadside sites. 

Figure 3 shows the relationships of natural log-transformed 
distances to the nearest road among all roads, MR1, and MR2 
across regulatory monitoring sites in South Korea. For most 
monitoring sites, the nearest road was a local road rather than an 

MR1 or MR2. For one urban roadside site, a MR1 was the near-
est road. This site is the only regulatory monitoring site located 
on a metropolitan city highway according to its address, indicat-
ing that our computation was accurate. For about 20 % of the 
sites, MR2 roads were the nearest roads.

Table 3 gives summary statistics of the two types of sites in 
Seoul. The urban roadside sites were located closer to all roads 
or MR2s than urban background sites and were more surround-
ed by these roads. The differences of the sums of road lengths 

Table 3. Summary statistics of selected geographic variables by 25 urban background and 12 urban roadside regulatory monitoring sites in Seoul		

Category Variablea Type
Urban background (n=25) Urban roadside (n=12)

Min Max Mean SD Min Max Mean SD

Traffic Distance to the nearest road (m) All roads
MR1
MR2

7
219
47

392
3647
709

79
1469
261

77
913
210

2
44
2

73
3347
226

21
1466

41

20
1207

61
Sum of road length (km)1 All roads

MR1
MR2

0
0
0

2.7
0.5
1.4

1.4
0.0
0.4

0.6
0.1
0.4

1.2
0.0
0.6

4.3
2.3
2.6

2.3
0.3
1.2

0.9
0.7
0.6

Sum of road length×lane×width 
(1000 m2)1

All roads
MR1
MR2

0
0
0

39.1
5.4

31.4

17.3
0.2
8.9

9.5
1.1
8.4

17.1
0

11

46
22.8
34

30.8
2.6

22.7

7.6
6.8
7.3

Demographic characteristics No. of people1

No. of employees1

  
Construction
Lodging and restaurant

4
0
0

13900
971

2040

6624
173
376

4042
233
432

602
0

12

7717
1317
1772

2915
334
815

2024
444
573

Land use The proportion of land use (%)1 Residential
Forestry

0
0

93
49

39
5

25
11

1
0

85
29

25
3

22
8

Physical geography Distance to the nearest river (m) 158 3861 1109 829 51 2805 1368 924
Emissions PM10 (1,000 µg/m3)2 479 1031 688 148 515 983 704 109
Vegetation Annual mean NDVI 141 167 148 6 140 155 144 4
Altitude Altitude (m)

P�roportion of 5 km concentric 
elevation points (%)

  
Above 20 m
Below 20 m

14
0
7

91
78
81

35
18
35

17
22
19

19
0
0

35
17
9

27
7
0

6
6
0

Min, minimum; Max, maximum; SD, standard deviation; MR1, major road 1; MR2, major road 2; NDVI, Normalized Difference of Vegetation Index; PM10, par-
ticulate matter less than or equal 10 μm in diameter. 
aGeographic variables calculated within different sizes of buffers: buffer radii of 300 m (1) and 3 km (2).

Figure 3. Scatter plots between all roads and major road 1 (MR1) (A), between all roads and major road 2 (MR2) (B), and between MR1 and MR2 (C) across 
294  monitoring sites in South Korea.
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within 300 m buffers between the two sites types increased 
when lanes and widths were applied. More than a half of the 
sites did not have an MR1 within 300 m. More residents lived 
within 300 m from urban ambient sites than urban roadside 
sites, and fewer workers were employed in construction, lodg-
ing, and restaurant businesses. The average proportion of resi-
dential areas within 300 m from urban roadside sites (25 %) was 
lower than that within 300 m from urban background sites (39 
%). Emission estimates for PM10 within 3 km were consistent 
between the two types of sites (0.7 g/m3). The monitoring sites 
were located in relatively flat areas with less than 40 % of 5 km 
distant points below or above 20 m. 

Discussion

We demonstrated the computation process of 313 geographic 
variables at air pollution regulatory monitoring sites in the eight 
categories of possible pollution sources in South Korea. The 
computed variables reflected the geographic characteristics in 
South Korea and showed the different patterns between urban 
background and urban roadside sites. 

For characterizing spatial variability of air pollution, we com-
puted a large suite of geographic variables for the development 
of statistical exposure prediction models that rely largely on geo-
graphic variables. Previous studies included geographic variables 
chosen by model selection [34] or a few summary variables es-
timated by dimension reduction techniques [35] into statistical 
models. Whereas land use regression includes geographic vari-
ables only [3], universal kriging also incorporates the spatial 
correlation structure [36]. In addition to statistical methods, 
other studies have developed air quality models such as photo-
chemical models and dispersion models based on the chemical 
and physical atmospheric processes of air pollution. These 
models used limited geographic variables of traffic, population, 
or emissions, and other input data such as meteorology. The dif-
ferent approaches resulted in inconsistent model performance 
in air pollution prediction [37-39] and varying health effect es-
timates in subsequent health analyses using predicted individu-
al-level air pollution concentrations [40,41]. Studies comparing 
model performance between land use regression and dispersion 
models have generally showed large spatial variability in land 
use regression and large temporal variability in dispersion mod-
els [37-39]. Large spatial variability of air pollution is particular-
ly important for assessing health effects of long-term exposures 
in cohort studies which largely rely on spatial contrasts. Because 
our ultimate goal in computing geographic variables lies in 
health analysis rather than the identification of air pollution dis-
tribution, we focused on statistical exposure prediction models 

and presented a large set of geographic variables.
Our descriptive statistics of geographic variables provided in-

sights into data handling and model building in future studies of 
exposure prediction models. We found some extreme values 
particularly for distance variables. Some regulatory monitoring 
sites were located substantially far from national highways, air-
ports, and ports. Variables with large variability resulting from 
extreme values could affect model selection and exposure pre-
diction. Future studies should exclude or truncate such vari-
ables. We used small sizes of buffers including 25 m to represent 
the fine-scale spatial variability in a metropolitan city with high 
density. However, these small buffer variables may not provide 
meaningful or accurate values; few large roads were detected 
within 25 m and the distance to large roads based on central 
lines could contain errors similar to the buffer size. Future stud-
ies of exposure modeling approaches need to carefully consider 
the inclusion of these small-buffer variables.

We presented about 300 geographic variables that require fu-
ture updates. Recent studies additionally included outputs of 
dispersion models and air quality models [42] or air pollution 
estimates determined by satellites [43] as predictors. Future 
studies need to introduce data sources and variable computa-
tion of these variables for South Korea. In addition, new data 
sources that have not been explored in previous studies mostly 
performed in North America and Europe may be available. 
These data could explain complex air pollution environments in 
other regions including densely populated metropolitan cities. 

This study contributes to future studies of exposure prediction 
and health analyses. Our previous study in South Korea used 
ordinary kriging to predict air pollution concentrations based 
solely on spatial correlation without geographic variables. Find-
ings showed poor model performance and suggested the inclu-
sion of geographic variables to improve model performance 
[44]. An extended set of geographic variables could help explain 
the spatial variability of air pollution in complex urban environ-
ments in large and dense metropolitan cities in South Korea. A 
previous simulation study also showed that improved air pollu-
tion predictions tended to give less biased and more precise 
health effect estimates [45]. High quality exposure predictions 
incorporating geographic variables would clarify the association 
of air pollution and health in South Korea.

Conclusion

The computation of extended geographic variables provides 
an opportunity for developing exposure prediction models that 
characterize heterogeneity of air pollution over space. This 
study will help future research utilize geographic variables for 
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the development of prediction models and provide air pollution 
estimates with fine-scale spatial variability. Such air pollution 
predictions will allow subsequent health analyses based on indi-
vidual exposure estimates in South Korea.
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Table S1. Coordinate systems used in different data sources							     

Data source Geographical 
coordinate system Projection

Origin Added values to origin
Scale factor

Longitude Latitude Easting Northing

KTDB Bessel 1841 TM 128 38 400000 600000 0.9999
SGIS Bessel 1841 TM 128.00289 38 200000 500000 1
IIS WGS 1984 - - - - - -
EGIS ITRF 2000 TM 127 38 200000 500000 1

KTDB, Korean Transport Database; SGIS, Statistical Geographic Information Service; IIS, Institute of Industrial Science, University of Tokyo; EGIS, Environmental Geographical Informa-
tion Service; WGS, World Geodetic System; ITRF, International Terrestrial Reference System; TM, Transverse Mercator 			
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Table S2. Minimum widths of roads depending on type of road, speed 
limit, and type of area in the Administrative Rule on the Structure and In-
stallation of Road			 

Type of road Speed limit (km/h)
Type of area

Non-urban Urban

Highway 3.50 3.50
Non-highway ≥80

≥70
≥60
<60

3.50
3.25
3.25
3.00

3.25
3.00
3.00
3.00
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Figure S1. Road networks and urbanized areas in Seoul, Korea.


