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Abstract

Cognitive tests of verbal fluency (VF) consist of verbalizing as many words as possible in one 

minute that either start with a specific letter of the alphabet or belong to a specific semantic 

category. These tests are widely used in neurological, psychiatric, mental health, and school 

settings and their validity for clinical applications has been extensively demonstrated. However, 

VF tests are currently administered and scored manually making them too cumbersome to use, 

particularly for longitudinal cognitive monitoring in large populations. The objective of the current 

study was to determine if automatic speech recognition (ASR) could be used for computerized 

administration and scoring of VF tests. We examined established techniques for constraining 

language modeling to a predefined vocabulary from a specific semantic category (e.g., animals). 

We also experimented with post-processing ASR output with confidence scoring, as well as with 

using speaker adaptation to improve automated VF scoring. Audio responses to a VF task were 

collected from 38 novice and experienced professional fighters (boxing and mixed martial arts) 

participating in a longitudinal study of effects of repetitive head trauma on brain function. Word 

error rate, correlation with manual word count and distance from manual word count were used to 

compare ASR-based approaches to scoring to each other and to the manually scored reference 

standard. Our study's results show that responses to the VF task contain a large number of 

extraneous utterances and noise that lead to relatively poor baseline ASR performance. However, 

we also found that speaker adaptation combined with confidence scoring significantly improves 

all three metrics and can enable use of ASR for reliable estimates of the traditional manual VF 

scores.
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1. Introduction

Tests of verbal fluency (VF) (Benton and Hamsher, 1994) are widely used in neurological, 

psychiatric, mental health, and school settings. There are two main types of VF tests - 

phonemic and semantic. The phonemic test (PVF) consists of naming as many words as 

possible in one minute that begin with a letter of the alphabet (e.g., A, F, or S). The semantic 

test (SVF) consists of naming words belonging to a semantic category (e.g., animals). These 

tests have been demonstrated to be useful for characterization of cognitive impairment due 

to a number of conditions including neurodegenerative disease (Henry et al., 2005, 2004; 

Henry and Crawford, 2004a), psychiatric diagnoses (Henry and Crawford, 2005), 

developmental disorders (Spek et al., 2009), drug toxicity or metabolic effects (Marino et 

al., 2012; Witt et al., 2013), as well as impairment due to traumatic brain injury or 

cardiovascular accidents (Henry and Crawford, 2004b, 2004c). In particular, contact sports 

such as boxing, mixed martial arts, football, and hockey are particularly well-known for 

high prevalence of repetitive head trauma which is a major risk factor for chronic traumatic 

encephalopathy (CTE), a devastating and untreatable condition that ultimately results in 

permanent disability and premature death (McKee et al., 2013). Athletes with prior exposure 

to head trauma show significant declines in verbal fluency performance among other types 

of cognitive impairment (Tremblay et al., 2013).

While clinically useful, VF tests are currently administered manually and are too 

cumbersome for wide adoption on a large scale in fast-paced and overburdened healthcare 

systems. Furthermore, manual VF testing is also prone to scoring subjectivity and 

variability, and cannot be easily self-administered, which limits its applications in large 

and/or longitudinal investigations of cognitive biomarkers of neurodegenerative disease. 

One of the goals of developing automated VF testing is to enable easy and non-threatening 

long-term monitoring of cognitive performance in an attempt to detect early subtle cognitive 

changes that may warrant a more in-depth clinical assessment. Following the desiderata for 

computerized VF testing (Kemper and McDowd, 2008), we propose to address existing 

limitations of VF tests by automating their administration and scoring. Our approach 

consists of using automatic speech recognition (ASR) technology applied to the speech 

collected during VF testing to estimate an approximate count of “legitimate” words 

produced during the VF task.

A typical administration of VF testing includes instructing the subject to restrict his or her 

responses to the specified stimulus (letter or category) and avoid using proper names. A 

subject's test-taking behavior is commonly evaluated both by the total number of correct 

responses produced during the task, and by an analysis of the subject's errors or incorrect 

responses. Under ideal circumstances, given all correct responses, an individual's speech 

produced on these tasks would consist of 1-, 2-, or 3-word phrases denoting the concepts 

relevant to the test (e.g., animals) separated by silent pauses without any repetitions, 

disfluencies, comments, or other extraneous utterances and noise. However, in reality, 

response errors and noise are common and subjects’ speech often contains events that should 

not be included in the calculation of the total test score, which presents a significant 

challenge for automation (Miller et al., 2013).
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Computerized administration and scoring of VF tests is a promising area in which 

computational linguistic and computerized speech processing approaches can make a 

significant contribution. While ample evidence exists to show clinical usefulness of 

manually administered VF tests, in order to extend this body of evidence to automated 

approaches, it is necessary to demonstrate that automated approaches provide acceptable 

estimates of the manual VF assessments in a variety of populations and environments (Bauer 

et al., 2012). Miller and colleagues successfully experimented with using an ASR-driven 

interactive voice response system to administer and score VF tests (Miller et al., 2013). 

However, using ASR for automatic scoring of VF tests remains a largely unexplored area 

and needs to be investigated further. To our knowledge, the use of various ASR techniques 

such as acoustic speaker adaptation and confidence scoring of ASR output have not been 

investigated in relation to optimizing automatic VF scoring.

Previous work shows that unsupervised speaker adaptation of acoustic models used in ASR 

can significantly improve recognition accuracy even with very limited (as little as 11 

seconds) amounts of available adaptation data (Leggetter and Woodland, 1995; Wang et al., 

2007) and is useful in a number of specific applications including dialogue act segmentation 

(Kolář et al., 2010) and language tutoring systems (Ohkawa et al., 2009). Similarly to 

speaker adaptation, the use of confidence scoring in general-purpose ASR applications has 

also been well documented (see (Jiang, 2005) for a review), although the findings with 

respect to confidence scoring are mixed. Confidence scoring approaches tend to be highly 

application specific (Zeljkovic, 1996) and lack a systematic way of determining the most 

optimal confidence threshold (Bouwman et al., 1999). In the current study, we apply 

confidence scoring to post-process ASR output from VF responses in the context of using a 

language model with a highly constrained vocabulary in an attempt to leverage the fact that 

any speech that does not contain an item from the semantic category of interest would get a 

lower confidence score and thus may be reliably filtered out. The objective of the current 

study was to experiment with speaker adaptation and confidence scoring as applied to the 

specific task of automated VF assessment and to validate these approaches on an ‘animal’ 

verbal fluency test in a sample of cognitively normal individuals.

2. Materials and Methods

2.1 Animal name recognition system

Standard ASR approaches (described in the next section in more detail) were used to create 

a system designed specifically to yield a score that represents how many animal names the 

speaker was able to produce in response to the VF task. The resulting animal name 

recognition system consisted of the ASR decoder with a specially trained animal fluency 

language model and a speaker adapted acoustic model, as well as a set of post-processing 

filters. The post-processing filters were designed to account for the spurious words that may 

appear in the raw ASR output. Some of these spurious words represent errors produced by 

the ASR decoder; however, many of these words represent animal naming errors– non-

animal names that were recognized correctly by the ASR decoder. The latter type of errors 

should not be counted against the accuracy of the ASR system but should be counted against 

the accuracy of the animal name recognition system. Thus the SVF score estimate produced 
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by the animal naming recognition system represents the number of words that were both 

most likely to be correctly recognized by the ASR decoder and most likely to be names of 

animals. The post-processing filters use confidence scores produced by the ASR decoder 

and a set of additional output characteristics to produce an estimate of the actual SVF animal 

fluency score from the raw ASR output, as described in the next section.

2.2 Animal name recognition system components

To implement an ASR system designed specifically to process VF responses, we used 

KALDI, an open source automatic speech recognition toolkit (Povey et al., 2012). Our 

KALDI-based ASR system relies on an acoustic model and a language model in order to 

automatically convert the input speech signal to a textual representation. For the current 

implementation of the system, we trained a speaker-independent acoustic model and a bi-

gram statistical language model as described in detail in the following sub-sections.

Acoustic model—We trained a speaker-independent acoustic model that consists of a set 

of Hidden Markov Models (HMMs) that represent 88 base phones occurring in multiple 

acoustic contexts collected from a large corpus of general English speech. The phone set of 

88 phones was derived from the Carnegie Mellon University dictionary (CMU dictionary) of 

pronunciations and included 84 consonants and vowels with preserved stress marking, a 

special silence phone (“SIL”) and special phones to represent speech noise (“SPN”), non-

speech noise (“NSN”) and filled pauses (“ah” – FPU, and “um” – FPM). Each of the 84 

consonants and vowels were modeled as consisting of three parts: an onset, a nucleus, and a 

coda, represented by a 4-state HMM network consisting of one non-emitting state and three 

emitting states, each having a transition to itself and the following state. The other phones 

(SIL, SPN, NSN, FPU and FPM) were modeled with a 6-state network in which each state 

could transition to itself or the following two states. The corpus of audio recordings with 

corresponding verbatim transcriptions used to estimate the parameters of the Gaussian 

mixtures for the phones appearing in various acoustic contexts consisted of the Wall Street 

Journal corpus (CSR-II – approximately 78,000 utterances from read and dictated speech of 

over 240 different speakers) (Paul and Baker, 1992), augmented with spontaneous speech 

from the TRAINS corpus (approximately 98 dialogs between 34 different speakers – 55,000 

words) (Allen et al., 1995).

Language Model—We trained a bi-gram language model that represents the distribution 

of two-word sequences obtained from a corpus of prior clinical and research studies that 

included verbal fluency testing. This model partially captures the fact that when people 

respond to the animal verbal fluency task they tend to group animals into categories (Troyer, 

2000) thus making some two-word sequences more likely to appear than others. For 

example, this modeling process captures the fact that the word ALLIGATOR is much more 

likely to be followed by the word CROCODILE (probability of 0.166 in our data) than the 

word GOOSE (probability of 0.003). However, prior work has demonstrated that the mean 

size of semantic clusters is around 1.5, which means that most clusters consist of one or two 

words. Based on this observation, we limited language modeling to bi-grams. To train the 

bi-gram model we used a corpus of responses to SVF tests provided by 1,367 participants in 

a Mayo Clinic Study of Aging (Roberts et al., 2008) that repeated this test up to 7 times (at 
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the time of training the model) resulting in a total of 6,453 responses (125,601 words). The 

resulting model consisted of n-gram probability estimates for 990 unigrams, 18,325 bigrams 

with the Good-Turing discounting smoothing method, as implemented in the open-source 

CMU Language Modeling Toolkit (Rosenfeld and Clarkson, 1997).

The data used to train the language model consisted of handwritten notes taken by the 

psychometrists during SVF testing and subsequently converted to electronic format. Thus, 

these notes do not represent verbatim transcriptions of the speech. Therefore, the language 

model constructed from these notes does not capture bi-gram distributions of filled pauses or 

the speech and non-speech noise events. We manually introduced filled pauses and speech 

and non-speech noise events as unigrams into the model after it was trained by taking some 

of the probability mass from word tokens and assigning it to these events.

Speech-to-text Conversion (Decoding)—The speech signal was pre-processed by 

splitting it into 25 millisecond frames shifted by 10 milliseconds. Each frame was coded as a 

set of 13 Mel-spectrum Frequency Cepstral Coefficients (MFCCs) with added delta 

coefficients, resulting in a vector of 26 coefficients. For each set of MFCC vectors 

representing the speech input frames, KALDI ASR decoder was used to find the highest 

likelihood path through the lattice of hypotheses constructed based on the language and 

acoustic models described above. The output of the decoding process consists of the most 

likely sequence of phones and words (tokens) corresponding to the input audio signal with 

the start and end time information for each phone and word.

Confidence scoring—In order to obtain confidence scores for the output of the ASR 

decoder, we used the lattice-to-ctm tool in the KALDI toolkit with default parameters to 

generate maximum a-posteriori scores for each token in the top best hypothesis from the 

decoder lattices. For the current study, we used a threshold to filter out tokens with lower 

confidence scores from the decoder output prior to estimating the SVF score. The optimal 

threshold value was determined with respect to minimizing ASR word error rate with 5-fold 

cross-validation. Minimum word error rates were found at the threshold value of 0.7 on both 

training and testing folds.

Speaker Adaptation—As part of the cognitive test battery, the participants were asked to 

read aloud a short paragraph consisting of the first 6 sentences of “The Rainbow Passage” 

(Fairbanks, 1960), repeated here for convenience:

The Rainbow Passage

When the sunlight strikes raindrops in the air, they act as a prism and from a rainbow. The 

rainbow is a division of white light into many beautiful colors. These take the shape of a 

long round arch, with its path high above, and its two ends apparently beyond the horizon. 

There is, according to legend, a boiling pot of gold at one end. People look, but no one ever 

finds it. When a man looks for something beyond his reach, his friends say he is looking for 

the pot of gold at the end of the rainbow.

The audio recordings of the participants reading this passage were force-aligned with the 

text of the passage and subsequently used to perform feature-space Maximum Likelihood 
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Linear Regression (fMLLR) adaptation of the speaker-independent acoustic model. 

Consequently, we were able to process each audio sample with a speaker-independent as 

well as a speaker-adapted set of acoustic models.

Reliability scoring—In addition to using confidence scores to filter the ASR output prior 

to counting words in the speaker's SVF response, we also used the ratio of the number of 

words with low confidence scores to the total number of unique words produced by the ASR 

decoder to identify speakers that were likely to produce poor SVF score estimates with the 

automated approach. Our rationale was that if a large proportion of words in the ASR output 

were recognized with low confidence, or if the total number of words produced on this test 

was too high, then we may treat these results with caution and, possibly, exclude these 

suspect samples from automatic analysis altogether. For the current study we used a 

reliability threshold of 0.5 (not to be confused with the confidence threshold) as the 

minimum acceptable ratio of low confidence words, and one standard deviation above the 

mean SVF score as the threshold for the total number of unique words. Thus, we marked a 

sample as suspect if more than 50% of the ASR output consisted of low-confidence words 

(those with confidence scores below the empirically established confidence threshold of 

0.7). We also marked samples as suspect if they contained more than 30 words, a number 

that is substantially higher than what is produced on this test on average by healthy speakers. 

The intended use of this reliability scoring in a clinical practice scenario is to identify audio 

samples that may need to be verified by hand. In this study, we evaluated the effect of this 

strategy on the accuracy of automated scoring for those participants that passed this 

reliability scoring filter.

2.3 Study Participants

The participants in this study were 38 (mean age 28.4, SD 13.5; mean years of education 

13.5, SD 2.15; 4 women and 34 men) novice and experienced professional fighters (boxing 

and mixed martial arts) participating in a longitudinal study of effects of repetitive head 

trauma on brain function. For the current study, we used baseline recordings of cognitive 

tests only for those participants that were considered to be cognitively normal at baseline.

2.4 Study Design

All participants underwent a series of cognitive tests that included semantic verbal fluency 

as part of the neuropsychological test battery. Following informed consent, each participant 

was given a brief description of the tasks he or she was expected to perform during testing. 

The participants were then seated in a quiet room equipped with a standard hand-held audio 

recorder. The examiner initiated the test sequence that included reading aloud of “The 

Rainbow Passage” and the verbal fluency task. For the verbal fluency task, the participants 

were asked to name all animals they could think of as fast as they could in 60 seconds. The 

responses were audio recorded and subjected to subsequent automated as well as manual 

scoring. Automatic scoring was performed using several methods for subsequent 

comparison. In this study, we experimented with several ways of enhancing ASR accuracy 

and automatically estimating the SVF scores summarized in Table 1. The baseline ASR 

system consisted of KALDI decoder with the speaker independent acoustic model and the 

“animal” language model described above. Enhancements to the baseline system consisted 
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of using confidence scoring with and without speaker adaptation, and reliability score 

filtering.

2.5 Manual assessment of verbal fluency

All verbal fluency tests collected in this study were manually examined by one scorer who 

followed standard scoring guidelines to calculate the total number of legitimate animal 

names excluding repetitions and non-animal words. The guidelines used for scoring instruct 

the scorer to count all animals, including birds, fish, reptiles, insects, humans, extinct and 

mythical animals, but not made up animals. Credit may be given for general category terms 

(e.g., dog) and for specific instances (e.g., terriers) when both are given. However, only one 

item is to be counted when people name the same animal at different developmental stages 

(e.g., sheep, lamb). Questionable cases (e.g., counting mythical creatures as valid responses) 

were discussed and resolved with the first author (SP) to ensure consistency in scoring.

In addition to standard manual scoring of verbal fluency tests, all responses were transcribed 

verbatim including all erroneous words, repetitions, word fragments, filled pauses (“um's” 

and “ah's”), noise (e.g., breaths, coughs, lipsmacks, laughter), and comments (i.e., “oh I 

already said cat”, “I can't think of anything else”, etc.). These verbatim transcripts were used 

to investigate the rate of disfluent events that could present a potential challenge for 

automated scoring.

As a result of manual assessments, we were able to measure the performance of both the 

ASR decoder component and the animal naming recognition system as a whole. The 

verbatim manual transcripts were used to evaluate the performance of the ASR decoder 

component separately from the overall system performance, as detailed in the next section. 

The standard manual SVF scoring was used to evaluate the performance of the animal 

naming recognition system that included post-processing in addition to the ASR decoder 

component.

2.6 Automatic assessment of verbal fluency

The raw ASR output produced by the system described in Section 2.1 was used to estimate 

speaker SVF performance as follows. We counted all tokens in the ASR output that were not 

labeled as silent/filled pauses, noise, and utterance boundaries (SIL, FPU, FPM, NSN, SPN, 

<s>, </s>). Since the language model was constrained to a closed vocabulary consisting of 

animal names, the system's output was consequently also constrained to animal names only. 

Constraining the language model to animal names also had the effect of producing lower 

confidence scores on input that does not correspond to naming an animal and the confidence 

score filter leverages that to exclude, to some degree, extraneous speech not relevant to SVF 

scoring. The variations of the systems that used confidence scoring also excluded all tokens 

with confidence scores below the threshold of 0.7. The scoring approach is illustrated in 

Figure 1 showing a side-by-side comparison between a manual verbatim transcript and raw 

ASR output with confidence scores for a 15 second segment of a VF test audio sample. This 

example shows minimal differences between automatic and manual scoring despite a 

number of errors produced by the recognizer (e.g. ELEPHANT recognized as COYOTE and 

WREN; a filled pause (FPU) recognized as CAT; extraneous words SAME THING 
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recognized as animal names OXEN and SNAKE). This example also shows that using the 

confidence scoring threshold can help avoid erroneously counting CAT, OXEN, and 

SNAKE but it can also mistakenly leave out legitimate words (e.g., ELEPHANT) that 

happened to be recognized as two words (COYOTE and WREN) with confidence below the 

threshold.

2.7 Statistical Analysis

To compare the performance of various approaches to ASR-based fluency scoring we used 

the following measures: the standard word error rate (WER), the distance between manual 

and automatic SVF scores, the correlation between manual and automatic SVF scores 

(CORR), and the naming error rate (NER). WER was computed with the NIST sctk (http://

www.itl.nist.gov/iad/mig//tools/) package based on the alignment between the manual 

transcription (reference) of each audio sample and the ASR output (hypothesis), and was 

defined as the proportion of all substitutions, deletions, and insertions to the total number of 

words in the reference. Prior to performing alignment, the words in both the reference and 

the hypothesis were stemmed to remove plural forms using regular expressions, which 

resulted in requiring that only the stems of the words be identical to be considered as a 

correct match. Differences between manual and automatic SVF scores can be positive or 

negative, depending on whether the automated scoring approach under- or over-estimated 

true SVF performance. In order to account for this, we report two types of differences – 

absolute (aDIFF) and signed (sDIFF). Absolute differences were computed as the average of 

absolute values, whereas signed differences rely on signed positive and negative values. The 

correlation between manual and automatic scores was estimated by calculating the 

Spearman rank correlation coefficient. NER was defined as the number of insertions and 

deletions divided by the total number of words in the raw ASR output. This measure is 

specific to evaluating category naming recognition performance and is based on the 

observation that only insertion and deletion errors contribute to measuring naming 

performance in terms of the total number of valid words that belong to a category (e.g., 

animals in this case). Differences between various experimental approaches were tested for 

statistical significance by using the Student's t-test for paired observations. The statistical 

significance threshold was set at p < 0.05. All statistical computations were performed using 

the R package (R Core Team, 2014).

3. Results

In this section, we present the results of comparisons between manual assessments of SVF 

responses and various combinations of the base ASR decoder components with and without 

adaptation and confidence scoring. Two types of evaluations are presented. First, we 

evaluated the animal naming recognition system on verbatim transcripts of the audio 

samples to get a sense of the ASR decoder performance in general using WER. 

Subsequently, we also evaluated the system specifically with respect to its ability to 

correctly estimate the number of valid animal names produced by the speaker on the task 

using NER.
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3.1 Word and animal naming accuracy comparisons

Table 2 and Figure 2 show the comparison between the various experimental approaches in 

terms of the ASR WERs. The boxplot in Figure 2 shows that using speaker adaptation 

combined with confidence scoring results in a significant reduction in WER as compared to 

the baseline and to the adaptation alone. It also shows that confidence scoring without 

adaptation results in a significant improvement in the WER over the baseline.

Table 3 and Figure 3 show the comparison between the experimental approaches in terms of 

aDIFF and sDIFF in manually and automatically estimated SVF scores. Figure 3 juxtaposes 

only the sDIFFs between manually and automatically obtained scores with the differences in 

scores obtained by 8 human raters that participated in an independent study of verbal 

fluency scoring reliability (Passos et al., 2011).

The smallest aDIFF of 3.1 (95% CI: 2.1, 4.0) between the manually and the automatically 

computed scores was a result of using a speaker-adapted acoustic model and filtering the 

ASR output with a confidence threshold. The application of reliability score filtering to 

identify potentially suspect samples to the results produced with the approach that combined 

speaker adaptation with confidence score filtering further reduced aDIFF between manual 

and automatic scores to 2.14 (95% CI: 1.02, 3.26). However, the reliability score filtering 

also reduced the number of participants that could be scored automatically from 38 to 14 

(37%). For the purposes of comparing our study's results with other studies, we also 

calculated sDIFF between manual and automatically computed scores after adaptation and 

confidence scoring, resulting in sDIFF of 0.46 (95% CI: 0.32, 0.62).

Correlations (CORR) between the best performing combination of approaches (speaker 

adaption together with confidence scoring) with manual SVF scores as well as the total 

number of unique words spoken by the participants are shown in Figure 4. We observe 

higher correlation between automatically computed SVF scores and the total number of 

words (r = 0.81, n = 38) than between automatically computed SVF scores and the manually 

estimated scores (r = 0.80, n = 38). The correlation between automatic and manual scores 

after reliability filtering improved to r = 0.86 (n = 14).

3.2 Extraneous speech and non-speech events

The speech produced on PVF and SVF tests is not completely natural and continuous; 

however, it also does not consist of only isolated words. In addition to the words spoken in 

response to the task, the speech samples also contain disfluencies including filled pauses, 

non-speech and speech noise, word fragments, as well as repetitions, comments, and 

intrusions (e.g., errors - words spoken on the animal fluency test that do not denote an 

animal or proper nouns on phonemic fluency tests). In addition to these events generated by 

the participant, in a typical testing situation, the audio recordings may also contain the 

speech of the examiner. All of these events can present a challenge to the approach 

described in this study testing the assumption that the traditional total verbal fluency score 

can be estimated by simply counting utterances produced by the person taking the test 

without knowing the content of these utterances. Therefore, we assessed the rate of 

occurrence of these potentially problematic events in the samples obtained in this study. The 
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results are illustrated in Figure 5 that shows the variability in the amount of various 

extraneous speech and non-speech events. For example, speakers 3, 16, and 31 show fairly 

large differences between the total number of unique words that they uttered on the SVF test 

and their SVF score. These speakers produced a large number of conversational comments, 

requests for clarification and other “asides” (e.g., “ok that's it I am done”, “can it be 

variations”, “ what's another one ... UM dang I'm trying to get my animal- animal planet 

brain going”). At the other end of the spectrum, there are speakers 10-12, 15, 17, 20, 22-24, 

26, 30, 33 that produced hardly any conversational comments.

4. Discussion

We have developed and evaluated a fully automated approach to the assessment of 

performance on standard neuropsychological tests of verbal fluency. Our approach offers 

significant advantages over traditional manual assessments including objectivity and 

reproducibility, ease of administration, and the possibility of self-administration. 

Automation of verbal fluency tests can facilitate wider adoption and standardization of these 

tests in research and clinical evaluation settings including remote administration over the 

telephone or the Internet.

4.1 Effects of speaker adaptation and confidence scoring on ASR accuracy

We found that both speaker adaptation using “The Rainbow Passage” reading task and 

filtering raw ASR output with a confidence score threshold improves the accuracy of ASR 

by the same amount (from 90% WER for baseline to 70% WER with either speaker 

adaptation or confidence scoring alone). However, the improvement in WER for these two 

approaches happens for different reasons. Speaker adaptation results in more words that are 

correctly recognized (see Table 2) but also produces more insertions – words produced by 

the recognizer that are not found in the manual transcription of the speech. The confidence 

scoring approach reduces the number of insertions; however, the trade-off is an increased 

number of deletions – words that are in the manual transcription but were either filtered out 

from the ASR output or were not in the output initially. An interesting finding of this study 

is that, when combined, speaker adaption and confidence scoring result in a synergistic 

interaction – the ASR system that combines these approaches is able to take advantage of 

the improved accuracy that comes with speaker adaption and at the same time compensate 

for the additional spurious words by removing them with confidence filtering. This 

combination also leads to fewer substitutions, which is likely to be due to the better match 

between the acoustic model and the speaker as a result of speaker adaptation.

4.2 Comparison between manual and automatic scores

The results of this study suggest that it is feasible to closely approximate traditional 

manually obtained verbal fluency scores on the SVF task by using ASR. This study also 

demonstrates that even very limited speaker adaptation combined with filtering of ASR 

output with confidence scores leads to significant improvements in the accuracy of 

automatic measurement of performance on the SVF test. In order to perform speaker 

adaptation for this study, we had the participants read only 6 sentences (~ 30 seconds). A 

reading task like this one would be easy to implement on a computer (e.g., a mobile tablet, 
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laptop, or desktop). The reading task can be administered immediately prior to administering 

the SVF task without substantially adding to the testing time or imposing a significant 

additional burden on the person taking or administering the test. In a repeated testing 

scenario, either the speaker's prior audio samples from the reading task may be used for 

adaptation or a new reading sample may be collected in order to account for possible 

seasonal or age-related changes in voice quality.

While we found relatively high correlation between manual and automatic scores, there 

clearly are individual samples in which there were differences between the scores. In order 

to determine the causes of these differences, we calculated the frequency of various events 

unrelated to the SVF performance that may have been erroneously counted towards the 

automated score estimate, resulting in decreased accuracy. Not surprisingly, the extraneous 

comments were the biggest contributor to the discrepancies between the manually and 

automatically estimated SVF scores. We experimented with one way of accounting for the 

extraneous comments by taking advantage of the fact that the language model constructed 

for this task consisted of animal names and did not include most of the words used by the 

speakers to comment on the task itself (unless they were homophonous – e.g., mite vs. 

might). Thus, non-animal words spoken by the participants that are phonetically distinct 

from animal names included in the language model are likely to result in lower overall 

confidence scores produced by the ASR decoder and can subsequently be filtered out.

Manual scoring of verbal fluency tests responses has been previously demonstrated to have 

very high inter-rater reliability (Moms et al., 1989; Norris et al., 1995); however, we were 

only able to find one study by Passos et al. (2011) that reported inter-rater agreement in 

terms of the actual differences in scores in addition to the standard summary agreement 

statistics (intra-class correlation coefficient, kappa or Pearson correlation). This study was 

conducted to assess the reliability of manual verbal fluency scoring on 120 test samples 

scored by 8 individuals. While Passos and colleagues found very high agreement between 

the scorers (intra-class correlation coefficient ~ 0.98), they also found that the 95% 

confidence interval included deviations of approximately up to 2 words in both positive and 

negative directions from perfect agreement. Passos and colleagues also found deviations of 

up to 6 words outside of the 95% confidence interval. Although the Passos et al. (2011) 

study was conducted in Portuguese, both English and Portuguese are Indo-European 

languages and there is no reason to believe that the scoring of SVF responses in these two 

languages would present significantly different challenges, and thus can be treated as similar 

for the purposes of estimating the variability in SVF scoring. In the current study, we found 

that after using speaker adaptation combined with confidence score filtering, the automated 

approach presented in this paper was able to significantly reduce the discrepancy between 

manually and automatically estimated SVF scores (sDIFF) from −6.0 at baseline to 0.47 

words on average after adaptation and confidence filtering. The finding of this fairly small 

mean difference between manual and automatic assessments is particularly encouraging in 

light of the data on inter-rater variability in manual assessments of SVF tests presented by 

Passos et al. (2011). The comparison of our study results to the Passos et al. study (Passos et 

al., 2011) shows that we can expect the differences in SVF score estimates obtained by ASR 

enhanced with acoustic adaptation and confidence scoring to be well within the limits on 
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variability of human raters manually scoring the test, despite the lower correlation between 

manual and automatic scores.

Furthermore, the results of the current study also show that if greater accuracy is desired, it 

can be achieved by performing reliability filtering based on simple heuristics. Reliability 

filtering does reduce the number of samples that can be automatically scored; however, the 

scores on these samples are very close to manual scores. While the samples that do not pass 

the reliability filter would need to be manually verified, this approach would still be useful 

in a practical setting (e.g., a clinic) by significantly reducing the workload required to score 

SVF tests.

It is also worth mentioning that some of the practical (e.g., clinical) applications of verbal 

fluency testing can tolerate some variability in scoring. For example, the mean number of 

legitimate words produced on the “animal” verbal fluency test by healthy individuals range 

from 21 for younger persons (50-60 years old) to 18 for older persons (70-80 years old) 

(Lezak, 2004). The mean score for cognitively impaired individuals with mild Alzheimer's 

disease dementia is 8.8 (SD 3.9) and 6.8 (SD 3.8) for individuals with moderate Alzheimer's 

disease dementia. Thus, even with the larger mean aDIFF of 3.1 words from the manual 

score, the ASR-based approach to verbal fluency scoring may be used as a screening tool; 

however, its validity for any clinical application would need to the further established on 

larger samples containing patients from relevant diagnostic categories.

4.3 Comparison to previous studies of automatic verbal fluency scoring

A number of studies have demonstrated the utility of using ASR for the assessment of 

various types of fluency. For example, several automated approaches have been developed 

towards automated assessment of reading fluency in children and language learners 

(Bolaños et al., 2013; Cucchiarini et al., 2000); however, automated assessment of 

generative verbal fluency (semantic and phonemic) has not been extensively studied despite 

the recognition that computerized methods such as ASR would lend themselves well to this 

task (Kemper and McDowd, 2008).

The study by Miller et al. (Miller et al., 2013) is one of the few studies we were able to find 

that is most directly relevant to the work presented in this paper. Miller and colleagues 

evaluated a telephone-based interactive voice response (IVR) system that was designed to 

administer and score several common cognitive tests including the SVF test (fruits 

category). The evaluation was performed on a large set of participants (n = 158) between 65 

and 92 years old. The findings of this study with respect to the SVF testing are consistent 

with the findings of the current study. The mean discrepancy between the IVR-generated 

scores and those assigned by a clinician in the Miller et al. (Miller et al., 2013) study was 

−1.26 (95% CI: −1.38, −0.88). In the current study, we found a similarly small discrepancy 

of 0.47 (95% CI: 0.32, 0.62), despite the differences in modality (telephone vs. hand-held 

recorder) and category (animals vs. fruits). Both studies also show the negative impact of 

extraneous speech and non-speech events. Our approach to handling the extraneous events 

focuses on using confidence scoring to identify speech and non-speech segments that are 

less likely to represent words produced in response to a specific verbal fluency task (e.g., 

animals). Another approach is to instruct the participants to refrain from making comments 
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or from verbal interaction with the examiner; however, this is less desirable because it may 

result in making the test more awkward and unnatural. Furthermore, having the participants 

remember to refrain from comments may also alter the psychometric properties of the test 

by imposing an additional cognitive burden.

In another study, Jimison et al. (Jimison et al., 2008) developed a computer-game based 

approach to indirectly approximate verbal fluency scores in a home-based cognitive 

monitoring system. Their approach consists of having the participants compose words from 

sets of letters presented as part of a computer game. They found that the complexity of the 

words composed using their approach correlated with traditionally measured verbal fluency 

performance; however, the word complexity measure accounted for 42% (r = 0.65) of the 

variability in the traditional verbal fluency scores. Fitting a regression model with several 

other performance characteristics in addition to word complexity improved the correlation 

with verbal fluency scores but only marginally to account for 46% of the variability (r = 

0.68). It is difficult to compare our study's results to those reported by Jimison and 

colleagues due to fundamental differences in the measurements produced; however, a 

comparison in terms of correlations between manual and automatic scores shows that the 

ASR-based approach presented in this paper estimates verbal fluency scores more directly 

and thus is able to account for 64% of the variability (r = 0.80) in the traditional verbal 

fluency scores. Furthermore, after implementing reliability filtering we were able to 

automatically compute scores for a subset of individuals in which our approach was able to 

account for 74% (r = 0.86) of the variability in the traditional verbal fluency scores.

4.4 Limitations

This study has a number of limitations that should be considered in the interpretation of the 

results. The current study sample consists of younger individuals with no known cognitive 

impairment but are routinely exposed to repetitive head trauma. These participants are at a 

higher risk than the general population for developing CTE (McKee et al., 2009; Omalu et 

al., 2010). However, at the time of testing for this study, none of the participants were 

diagnosed with CTE or any other neurodegenerative disorder. In order to determine the 

feasibility of using this technology for the evaluation of more demographically varied and/or 

clinical populations, further investigation is necessary for its use in the appropriate similar 

samples.

The collection of audio recordings for this study was not optimized to produce the highest 

quality audio. While we believe that better ASR results may be achieved with higher quality 

equipment optimally positioned in front of the speaker's mouth (e.g., head-word Sennheiser 

ME-3 microphone), the current study represents a more “realistic” scenario in which 

cognitive testing is typically performed. Nonetheless, further experimentation is necessary to 

determine the effect of equipment position and quality on the accuracy of automatic scoring 

because any such impact will be mediated by the necessity to filter out erroneous words and 

comments regardless of how well they are recognized by the ASR decoder.

We used a very basic approach to language modeling for this particular study. We created a 

bi-gram language with Good-Turing discounting as a way of smoothing n-gram counts. 

Other smoothing methods may yield better results. It would also be interesting to experiment 
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with class-based modeling to represent various semantic subcategories of animals to better 

reflect clustering and switching behavior during the performance of verbal fluency tests. It 

may also be beneficial to use more sophisticated confidence-scoring methods that, for 

example, rely on differences in scores obtained from multiple ASR passes with different 

acoustic models. Furthermore, due to relatively small sample size, we did not attempt to 

optimize the confidence threshold on an independent dataset and instead used cross-

validation. Thus, the results obtained with the current threshold of 0.7 may not readily 

generalize to other datasets and may need to be further verified.

The participants in this study were all native or near-native speakers of English and were 

asked to perform the test in English. Thus our study's results may not readily generalize to 

English language learners performing this test in English or speakers of other languages 

performing the test in their native language. Our current findings as well as prior research 

suggest that use of speaker adaptation is going to be beneficial in multi-lingual applications 

and for accented speech; however, further validation of these assumptions is required.

The current study only examined one semantic category – animals; therefore, our study's 

results may not generalize to other categories typically used in verbal fluency testing. 

However, the animal category is used most frequently, which is why we focused on this 

category first.

Our approach to automating VF testing and administration assumes that the person being 

tested is being cooperative and is not consciously trying to cheat. The only defense 

mechanism that the current approach has against possible deception is the reliability filtering 

that can help flag samples with suspiciously high number of words (possibly indicating 

reading) or low mean confidence scores (possibly indicating use of nonsense words). We do 

not consider this to be an effective mechanism to identify deception, which limits the 

usefulness of this approach in law enforcement, as well as certain psychiatric and 

educational performance testing settings. Similarly, the technology presented here would 

need to be further validated on other clinical groups including those with different forms of 

aphasias that may negatively influence the accuracy of the ASR component.

5. Future Directions

In this paper, we reported the results of a basic approach to automated scoring of verbal 

fluency tests with a focus on producing an estimate that is as close as possible to the 

manually calculated score. However, this is just one of the possibilities that computerized 

cognitive assessment can offer. ASR technology could potentially be used for more detailed 

semantic-level analyses such as measuring the size of semantic clusters and the frequency of 

switching between semantic clusters. However, the current implementation of the ASR-

based system is not designed for this task and, thus, the relatively high WER of 56%, even 

with the best-performing combination of acoustic adaptation and confidence scoring, 

precludes any semantic-level analysis. We believe that we can significantly reduce the WER 

by implementing a combination of approaches consisting of language modeling, recording 

equipment, and speaker behavior modification. We have conducted another study with 

healthy volunteers in which we used the Sennheiser ME-3 microphone to collect higher 
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quality audio combined with automated audio instructions for the participants. The latter 

approach effectively removes the test administrator from the immediate testing environment 

and thus eliminates the opportunity for participants to engage in a dialogue with the 

administrator, which in turn results in greatly reducing the amount of extraneous speech. In 

this subsequent study, we also plan to introduce a background language model consisting of 

typical patterns representative of extraneous speech in order to better separate countable 

responses from speech that needs to be ignored during scoring. Furthermore, it may be 

beneficial to apply standard keyword spotting approaches to this task in an attempt to 

eliminate extraneous speech as well as capture some of the relevant test characteristics, such 

as repeated words.

6. Conclusions

This study shows that using ASR in conjunction with minimal speaker adaptation and 

confidence filtering produces VF score estimates that are very close to human assessments. 

We found that speaker adaptation and confidence filtering need to be used in tandem in 

order to maximize each other's benefits – neither technique by itself appears to produce most 

optimal results. We also found that additional classification of ASR output in terms of how 

likely it is to be accurate based on simple heuristics can help in identifying speakers that can 

be scored with the automated system without supervision. These findings have practical 

implications for implementing automated VF scoring in clinical and educational settings. 

Implementing “The Rainbow Passage” reading task as a way to perform speaker enrollment 

for acoustic adaptation would require minimal effort and additional time – a total of about 1 

minute. Both the reading task and the VF task can be performed as part of an automated 

sequence on a tablet computer with no additional time required on the part of the staff 

administering the test. Further investigation is required, however, in order to validate 

automated VF testing in larger cross-sectional and longitudinal samples of healthy 

individuals, as well as, various clinical populations.

ACKNOWLEDGEMENTS

Work on the automated verbal fluency assessment system was supported in part by grants from the National 
Institutes of Health (NINDS - 5R01NS076665) and the Alzheimer's Association (DNCFI-12-242985). We also 
would like to thank James Ryan for helping with manual scoring of the audio responses on the VF task.

REFERENCES

Allen, J.; Heeman, PA. Linguistic Data Consortium. TRAINS Spoken Dialog Corpus. University of 
Rochester, Department of Computer Science; 1995. 

Bauer RM, Iverson GL, Cernich AN, Binder LM, Ruff RM, Naugle RI. Computerized 
Neuropsychological Assessment Devices: Joint Position Paper of the American Academy of 
Clinical Neuropsychology and the National Academy of Neuropsychology. Archives of Clinical 
Neuropsychology. 2012; 27:362–373. doi:10.1093/arclin/acs027. [PubMed: 22382386] 

Benton, A.; Hamsher, K. Multilingual Aphasia Examination. 3rd ed.. Iowa City, IA.: 1994. 

Bolaños D, Cole RA, Ward WH, Tindal GA, Hasbrouck J, Schwanenflugel PJ. Human and automated 
assessment of oral reading fluency. Journal of Educational Psychology. 2013; 105:1142–1151. doi:
10.1037/a0031479. 

Pakhomov et al. Page 15

Speech Commun. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bouwman G, Sturm J, Boves L. Incorporating confidence measures in the Dutch train timetable 
information system developed in the ARISE project. IEEE. 1999; 1:493–496. doi:10.1109/ICASSP.
1999.758170. 

Cucchiarini C, Strik H, Boves L. Quantitative assessment of second language learners’ fluency by 
means of automatic speech recognition technology. The Journal of the Acoustical Society of 
America. 2000; 107:989. doi:10.1121/1.428279. [PubMed: 10687708] 

Henry JD, Crawford J. A meta-analytic review of verbal fluency deficits in schizophrenia relative to 
other neurocognitive deficits. Cognitive Neuropsychiatry. 2005; 10:1–33. doi:
10.1080/13546800344000309. [PubMed: 16571449] 

Henry JD, Crawford JR. Verbal fluency deficits in Parkinson's disease: A meta-analysis. Journal of the 
International Neuropsychological Society. 2004a; 10:608–622. doi:10.1017/S1355617704104141. 
[PubMed: 15327739] 

Henry JD, Crawford JR. A Meta-Analytic Review of Verbal Fluency Performance Following Focal 
Cortical Lesions. Neuropsychology. 2004b; 18:284–295. doi:10.1037/0894-4105.18.2.284. 
[PubMed: 15099151] 

Henry JD, Crawford JR. A Meta-Analytic Review of Verbal Fluency Performance in Patients With 
Traumatic Brain Injury. Neuropsychology. 2004c; 18:621–628. doi:10.1037/0894-4105.18.4.621. 
[PubMed: 15506829] 

Henry JD, Crawford JR, Phillips LH. A Meta-Analytic Review of Verbal Fluency Deficits in 
Huntington's Disease. Neuropsychology. 2005; 19:243–252. doi:10.1037/0894-4105.19.2.243. 
[PubMed: 15769208] 

Henry JD, Crawford JR, Phillips LH. Verbal fluency performance in dementia of the Alzheimer's type: 
a meta-analysis. Neuropsychologia. 2004; 42:1212–22. doi:10.1016/j.neuropsychologia.
2004.02.001 S0028393204000296 [pii]. [PubMed: 15178173] 

Jiang H. Confidence measures for speech recognition: A survey. Speech Communication. 2005; 
45:455–470. doi:10.1016/j.specom.2004.12.004. 

Jimison H, Pavel M, Le T. Home-based cognitive monitoring using embedded measures of verbal 
fluency in a computer word game. IEEE. 2008:3312–3315. doi:10.1109/IEMBS.2008.4649913. 

Kemper, S.; McDowd, JM. Handbook of Cognitive Aging: Interdisciplinary Perspectives. SAGE 
Publications, Inc.; 2455 Teller Road, Thousand Oaks California 91320 United States: 2008. 
Dimensions of Cognitive Aging: Executive Function and Verbal Fluency; p. 181-192.

Kolář J, Liu Y, Shriberg E. Speaker adaptation of language and prosodic models for automatic dialog 
act segmentation of speech. Speech Communication. 2010; 52:236–245. doi:10.1016/j.specom.
2009.10.005. 

Leggetter CJ, Woodland PC. Maximum likelihood linear regression for speaker adaptation of 
continuous density hidden Markov models. Computer Speech & Language. 1995; 9:171–185. doi:
10.1006/csla.1995.0010. 

Lezak, MD. Neuropsychological Assessment. 4th ed.. Oxford University Press; Oxford, England: 
2004. 

Marino SE, Pakhomov SVS, Han S, Anderson KL, Ding M, Eberly LE, Loring DW, Hawkins-Taylor 
C, Rarick JO, Leppik IE, Cibula JE, Birnbaum AK. The effect of topiramate plasma concentration 
on linguistic behavior, verbal recall and working memory. Epilepsy & Behavior. 2012; 24:365–
372. doi:10.1016/j.yebeh.2012.04.120. [PubMed: 22658432] 

McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, Santini VE, Lee H-
S, Kubilus CA, Stern RA. Chronic Traumatic Encephalopathy in Athletes: Progressive Tauopathy 
After Repetitive Head Injury. Journal of Neuropathology and Experimental Neurology. 2009; 
68:709–735. doi:10.1097/NEN.0b013e3181a9d503. [PubMed: 19535999] 

McKee AC, Stein TD, Nowinski CJ, Stern RA, Daneshvar DH, Alvarez VE, Lee H-S, Hall G, 
Wojtowicz SM, Baugh CM, Riley DO, Kubilus CA, Cormier KA, Jacobs MA, Martin BR, 
Abraham CR, Ikezu T, Reichard RR, Wolozin BL, Budson AE, Goldstein LE, Kowall NW, Cantu 
RC. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013; 136:43–64. doi:
10.1093/brain/aws307. [PubMed: 23208308] 

Pakhomov et al. Page 16

Speech Commun. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Miller DI, Talbot V, Gagnon M, Messier C. Administration of Neuropsychological Tests Using 
Interactive Voice Response Technology in the Elderly: Validation and Limitations. Frontiers in 
Neurology 4. 2013 doi:10.3389/fneur.2013.00107. 

Moms JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, Mellits ED, Clark C. The 
Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and 
neuropsychological assessment of Alzheimer's disease. Neurology. 1989; 39:1159–1159. doi:
10.1212/WNL.39.9.1159. [PubMed: 2771064] 

Norris M, Blankenship-Reuter L, Snow-Turek L, Finch J. Influence of depression on verbal fluency 
performance. Aging, Neuropsychology, and Cognition. 1995; 2:206–215.

Ohkawa Y, Suzuki M, Ogasawara H, Ito A, Makino S. A speaker adaptation method for non-native 
speech using learners' native utterances for computer-assisted language learning systems. Speech 
Communication. 2009; 51:875–882. doi:10.1016/j.specom.2009.05.005. 

Omalu BI, Bailes J, Hammers JL, Fitzsimmons RP. Chronic Traumatic Encephalopathy, Suicides and 
Parasuicides in Professional American Athletes: The Role of the Forensic Pathologist. The 
American Journal of Forensic Medicine and Pathology. 2010; 31:130–132. doi:10.1097/PAF.
0b013e3181ca7f35. [PubMed: 20032774] 

Passos V, Giatti L, Barret S, Figueiredo R, Caramelli P, Bensenor I, Fonseca M, Cade N, Goulart A, 
Nunes M, Alves M, Trindade A. Verbal fluency tests reliability in a Brazilian multicentric study, 
ELSA-Brasil. Arquivos de Neuro-Psiquiatria. 2011; 69:814–816. [PubMed: 22042187] 

Paul DB, Baker JM. The design for the wall street journal-based CSR corpus. Association for 
Computational Linguistics. 1992:357. doi:10.3115/1075527.1075614. 

Povey, D.; Boulianne, G.; Burget, L.; Glembek, O.; Goel, N.; Hannermann, M.; Motlicek, P.; Qian, Y.; 
Schwarz, P.; Silovsky, J.; Stemmer, G.; Vesely, K. The Kaldi Speech Recognition Toolkit.. 
Presented at the IEEE Automatic Speech Recognition and Understanding Workshop; Honolulu, 
HI.. 2012. 

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical 
Computing; Vienna, Austria: 2014. 

Roberts RO, Geda YE, Knopman DS, Cha RH, Pankratz VS, Boeve BF, Ivnik RJ, Tangalos EG, 
Petersen RC, Rocca WA. The Mayo Clinic Study of Aging: Design and Sampling, Participation, 
Baseline Measures and Sample Characteristics. Neuroepidemiology. 2008; 30:58–69. doi:
10.1159/000115751. [PubMed: 18259084] 

Rosenfeld, R.; Clarkson, P. Statistical Language Modeling Using the CMU-Cambridge Toolkit. ESCA 
Eurospeech. Presented at the Eurospeech; RHODES, GREECE. 1997. 

Spek A, Schatorjé T, Scholte E, van Berckelaer-Onnes I. Verbal fluency in adults with high 
functioning autism or Asperger syndrome. Neuropsychologia. 2009; 47:652–656. doi:10.1016/
j.neuropsychologia.2008.11.015. [PubMed: 19084028] 

Tremblay S, De Beaumont L, Henry LC, Boulanger Y, Evans AC, Bourgouin P, Poirier J, Theoret H, 
Lassonde M. Sports Concussions and Aging: A Neuroimaging Investigation. Cerebral Cortex. 
2013; 23:1159–1166. doi:10.1093/cercor/bhs102. [PubMed: 22581847] 

Troyer AK. Normative data for clustering and switching on verbal fluency tasks. J Clin Exp 
Neuropsychol. 2000; 22:370–8. [PubMed: 10855044] 

Wang S, Cui X, Alwan A. Speaker Adaptation With Limited Data Using Regression-Tree-Based 
Spectral Peak Alignment. IEEE Transactions on Audio, Speech and Language Processing. 2007; 
15:2454–2464. doi:10.1109/TASL.2007.906740. 

Witt J-A, Elger CE, Helmstaedter C. Impaired verbal fluency under topiramate - evidence for 
synergistic negative effects of epilepsy, topiramate, and polytherapy. European Journal of 
Neurology. 2013; 20:130–137. doi:10.1111/j.1468-1331.2012.03814.x. [PubMed: 22827489] 

Zeljkovic I. Decoding optimal state sequence with smooth state likelihoods. IEEE. 1996:129–132. doi:
10.1109/ICASSP.1996.540307. 

Pakhomov et al. Page 17

Speech Commun. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• We evaluated an ASR-based system for automatic scoring of verbal fluency 

tests

• Combination of confidence scoring and speaker adaptation result in improved 

scoring over baseline

• Automated scoring is comparable to manual scoring
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Figure 1. 
An example showing a comparison between manual and automatic SVF scoring. Raw ASR 

output from a system using speaker adaptation and confidence scoring (upper panel) is 

compared to manual verbatim transcription (lower panel). Confidence scores shown inside 

oval shapes are below the threshold of 0.7. The rendering was generated using Praat.

Pakhomov et al. Page 19

Speech Commun. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Boxplot of differences in WER means between experimental approaches.
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Figure 3. 
Mean signed differences (sDIFF) between manual and automatic SVF scores produced by 

different experimental approaches as compared to differences between scores determined by 

human raters that participated in the Passos et al. (2011) study.
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Figure 4. 
Comparison between SVF score estimates based on ASR output after adaptation and 

confidence filtering with manual counts of permissible words (manual SVF score).
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Figure 5. 
Distribution of various speech and non-speech events in the manual verbatim transcription 

of each participant's SVF response relative to the manually determined SVF score value 

(marked with the white asterisk symbol).
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Table 1

Summary of experimental approaches to estimating the raw SVF scores

Approach Accoustic Model Speaker Adaptation Confidence Scoring

Baseline SI
* NO NO

+Confidence SI NO YES

+Adaptation SA YES NO

+Confidence+Adaptation SA YES YES

*
SI – speaker independent; SA – speaker adapted
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Table 2

Comparison of errors in the ASR output across various methods for automatically estimating the SVF scores 

averaged across speakers.

Corr.
*
 (N words) Ins. (N words) Del. (N words) Sub. (N words) Word Error Rate 

(WER %)
Name Error Rate 

(NER %)

N=38 Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Baseline 12.7 (5.6) 9.2 (5.9) 3.2 (4.9) 18.6 (11.4) 89 (21) 38 (19)

+Confidence 11.9 (5.8) 2.0 (2.7) 10.7 (7.7) 11.9 (7.9) 70 (16) 36 (12)

+Adaptation 17.5 (5.0) 8.2 (4.9) 2.6 (3.5) 14.5 (10.0) 70 (17) 32 (13)

+Confidence
+Adaptation

16.5 (5.1) 1.7 (2.1) 9.1 (7.0) 8.9 (6.8) 53 (16) 30 (12)

*
Corr. – count of correctly recognized words averaged across all amples; Ins. – insertions; Del. – deletions; Sub. – substitutions
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Table 3

Comparison of differences between manually and automatically estimated SVF scores averaged across 

speakers.

Manual SVF score 
(N words)

Automatic SVF 
score (N words)

Manual-Auto absolute 
difference (aDIFF)

Manual-Auto signed 
difference (sDIFF)

Mean (SD) Mean (SD) Mean (95% CI) Mean (95% CI)

Baseline 24.2 (6.9) 30.2 (8.1) 7.3 (5.0, 9.7) −6.0 (−4.1, −7.9)

+Confidence 24.2 (6.9) 20.9 (6.8) 5.5 (3.8, 7.3) 3.3 (2.3, 4.4)

+Adaptation 24.2 (6.9) 32.9 (9.5) 8.8 (6.0, 11.6) −8.7 (−5.9, −11.5)

+Confidence+Adaptation 24.2 (6.9) 23.7 (6.8) 3.1 (2.1, 4.0) 0.47 (0.32, 0.62)
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